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In-Context Learning — Downsides
Inefficiency: the prompt needs to be processed every time the model 
makes a prediction


Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]


Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], 
order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]


Lack of clarity regarding what the model learns from the prompt — 
even random label can provide non-trivial results [Min et al., 2022]!



In-Context Learning — Downsides
Inefficiency: the prompt needs to be processed every time the model 
makes a prediction


Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]


Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], 
order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]


Lack of clarity regarding what the model learns from the prompt — 
even random label can provide non-trivial results [Min et al., 2022]!



In-Context Learning — Downsides
Inefficiency: the prompt needs to be processed every time the model 
makes a prediction


Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]


Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], 
order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]


Lack of clarity regarding what the model learns from the prompt — 
even random label can provide non-trivial results [Min et al., 2022]!



In-Context Learning — Downsides
Inefficiency: the prompt needs to be processed every time the model 
makes a prediction


Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]


Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], 
order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]


Lack of clarity regarding what the model learns from the prompt — 
even random label can provide non-trivial results [Min et al., 2022]!



Fine-Tuning  Parameter-Efficient Fine-Tuning→



Fine-Tuning  Parameter-Efficient Fine-Tuning→



Fine-Tuning  Parameter-Efficient Fine-Tuning→
Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

• Updating the last layer of the model was common in computer vision 

[Donahue et al., 2014]. In NLP, people experimented with static 
(frozen) and non-static (trainable) [Kim, 2014]


• ELMo did not fine-tune word embeddings [Peters et al., 2018]

In practice, fine-tuning everything seems to work better in practice — 
why go back o fine-tuning only some parameters?

• Fine-tuning everything is impractical with large models

• LLMs nowadays are massively over-parameterised — PEFT matches 

full fine-tuning in downstream accuracy



Fine-Tuning  Parameter-Efficient Fine-Tuning→
Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

• Updating the last layer of the model was common in computer vision 

[Donahue et al., 2014]. In NLP, people experimented with static 
(frozen) and non-static (trainable) [Kim, 2014]


• ELMo did not fine-tune word embeddings [Peters et al., 2018]

In practice, fine-tuning everything seems to work better in practice — 
why go back o fine-tuning only some parameters?

• Fine-tuning everything is impractical with large models

• LLMs nowadays are massively over-parameterised — PEFT matches 

full fine-tuning in downstream accuracy



Some Notation
Let  be a neural network, which can be decomposed into 
a composition of functions , where each function 
has parameters  with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters  can modify a function  as follows:


• Parameter composition:                                   


• Input composition:    


• Function composition:              


Typically, only module parameters  are updated while  is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g., 
element-wise addition

Concatenation



Some Notation
Let  be a neural network, which can be decomposed into 
a composition of functions , where each function 
has parameters  with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters  can modify a function  as follows:


• Parameter composition:                                   


• Input composition:    


• Function composition:              


Typically, only module parameters  are updated while  is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g., 
element-wise addition

Concatenation



Some Notation
Let  be a neural network, which can be decomposed into 
a composition of functions , where each function 
has parameters  with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters  can modify a function  as follows:


• Parameter composition:                                   


• Input composition:    


• Function composition:              


Typically, only module parameters  are updated while  is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g., 
element-wise addition

Concatenation



Some Notation
Let  be a neural network, which can be decomposed into 
a composition of functions , where each function 
has parameters  with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters  can modify a function  as follows:


• Parameter composition:                                   


• Input composition:    


• Function composition:              


Typically, only module parameters  are updated while  is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g., 
element-wise addition

Concatenation

Composition



Some Notation
Let  be a neural network, which can be decomposed into 
a composition of functions , where each function 
has parameters  with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters  can modify a function  as follows:


• Parameter composition:                                   


• Input composition:    


• Function composition:              


Typically, only module parameters  are updated while  is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g., 
element-wise addition

Concatenation



Composition Functions

Parameter 
Composition

Input 
Composition

Function 
Composition



Composition Functions

Parameter 
Composition

Input 
Composition

Function 
Composition



Composition Functions

Parameter 
Composition

Input 
Composition

Function 
Composition



Parameter 
Composition

Input 
Composition

Function 
Composition

Composition Functions



Parameter Composition
Sparse Subnetworks, where module 
parameters  are enforced to be sparse 

Structured Composition, where we 
impose a structure on the weights  
that we select — e.g., we update the 
weights belonging to a pre-defined 
group 

Low-Rank Composition, where the 
module parameters  lie in a low-
dimensional space 

ϕ

θi

ϕ
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Parameter Composition — Sparse Subnetworks
A common inductive bias on module parameters  is sparsity: when we do 

 (element-wise product), we mask part of the neural network 

Most common sparsity method: pruning — e.g., see [Han et al., 2017]

ϕ
gi = fθi⋅ϕ(x) f



Parameter Composition — Structured Composition

We can impose a structure on the weights that we 
select: we only modify the weights that are 
associated in a pre-defined group , for example, a 
layer, a group of layers, or more fine-grained 
components

𝒢

Example: only update bias vectors — BitFit [Ben-
Zaken et al., 2022]



Parameter Composition — Low-Rank Composition
Another useful inductive bias: module parameters  should lie in a low-
dimensional space. Li et al., 2018 show that models can be optimised in a low-
dimensional, randomly oriented subspace rather than the full parameter space

ϕ

Low-rank fine-tuning takes the form  where  — with a dense 
matrix of shape , this scales as  in time and storage

g = fθ+Pϕ P ∈ ℝD×d

D × d 𝒪(Dd)



Parameter Composition — LoRA
Low-Rank Adaptation — instead of learning a low-rank factorisation via a 
random matrix , we can learn the projection matrix directly

LoRA [Hu et al., 2022] learns two matrices 


 and  that are applied to 

the self-attention weights:

P

B ∈ ℝd×r A ∈ ℝr×k

h = [W0 + ΔW] x = [W0 + BA] x

In our notation:

gi = fθi+BiAi
, ∀fi ∈ 𝒢

Update to parameters W0
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Parameter Composition — LoRA
Applying LoRA to a Transformer layer — remember how Transformers work:

We can use LoRA to adapt the weights , , and/or  — in the case of 
, the updated weights will be:

WQ,i WK,i WV,i
WQ,i

𝖬𝗎𝗅𝗍𝗂𝖧𝖾𝖺𝖽(Q, K, V) = 𝖢𝗈𝗇𝖼𝖺𝗍(𝗁𝖾𝖺𝖽1, …, 𝗁𝖾𝖺𝖽n)WO

𝗐𝗂𝗍𝗁 𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(QWQ,i, KWK,i, VWV,i) 𝖺𝗇𝖽 𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(Q, K, V) = 𝗌𝗈𝖿𝗍𝗆𝖺𝗑 ( QK⊤

dk )

W̃Q,i = WQ,i + ΔWQ,i

= WQ,i + BQ,iAQ,i 𝗐𝗂𝗍𝗁 B ∈ ℝd×r, A ∈ ℝr×k
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Computation Functions — Comparison
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Input Composition
Idea — augment the input of the model with  a 
learnable vector :ϕ

gi(x) = fθi ([ϕi, x])
Input Composition and Prompting — standard 
prompting can be seen as finding a discrete text 
prompt that, when embedded using the model’s 
embedding layer, yields 


However, models tend to be sensitive to the 
choice of the prompt [Webson and Pavlick, 2022] 
and the order of examples [Zhao et al., 2021; Lu et 
al., 2022]

ϕi
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Prompt Tuning
Idea — we can directly learn a continuous prompt  
which is pre-pended to the input

[Liu et al., 2021; Hambardzumyan 

et al., 2021; Lester et al., 2021]

ϕ

Here the module parameters  is 
typically a matrix consisting of a 
sequence of continuous prompt 
embeddings

ϕ

[Li and Liang, 2021]
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Prompt Tuning Works Well at Scale
Only using trainable parameters at 
the input layer limits its capacity 
for adaptation

 Prompt tuning performs 
poorly at smaller model sizes 
and on harder tasks [Mahabadi 
et al., 2021; Liu et al., 2022]

→

Prompt tuning vs. Standard fine-tuning and prompt design 
across T5 models of different sizes [Lester et al., 2021]



Multi-Layer Prompt Tuning
Instead of learning the module parameters  only at the input layer, we can 
learn them at every layer of the model [Li and Jiang, 2021; Liu et al., 2022]

ϕi

In practice, continuous prompts  are concatenated with the keys and 
values in the self-attention layer [Li and Jiang, 2021]

ϕi
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Function Composition
Function composition augments a model’s functions with 
new task-specific functions:

gi(x) = fθi
⊙ fϕ(x)

Commonly used in multi-task learning, where we have 
multiple task-specific models composed together — e.g., 
see the surveys in [Ruder, 2017; Crawshaw, 2020]

However, here we focus on functions that can be added to 
pre-trained models like LLMs 🙂



Adapters
The main purpose of functions  added to a pre-trained 
model is to adapt it to a new task — these functions are 
also known as adapters

fϕi

In NLP, an adapter in a Transformer layer typically 
consists of a feed-forward down-projection 

, a feed-forward up-projection , 
and an activation function  [Houlsby et al., 2019]
WD ∈ ℝk×d WU ∈ ℝd×k

σ

fϕi
(x) = WD [σ (WUx)]

Adapter usually placed after multi-head attention and/
or after the feed-forward layer
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Benefits of Adapters
Increased robustness [He et al., 2021; Han et al., 2021]



Benefits of Adapters
Increased robustness [He et al., 2021; Han et al., 2021]

Increased sample efficiency [Mahabadi et al., 2021]

Results on GLUE with different numbers 
of training examples per task



Computation Functions — Comparison


