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Evolution of Pre-Trained Language Models
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Evolution of Pre-Trained Language Models
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In-Context Learning — Downsides

Inefficiency: the prompt needs to be processed every time the model
makes a prediction

Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022],
order of examples — e.qg., see [Zhao et al., 2021; Lu et al., 2022]

Lack of clarity regarding what the model learns from the prompt —
even random label can provide non-trivial results [Min et al., 2022]!
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Fine-Tuning — Parameter-Efficient Fine-Tuning
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Fine-Tuning — Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

* Updating the last layer of the model was common in computer vision
IDonahue et al., 2014]. In NLP, people experimented with static
(frozen) and non-static (trainable) [Kim, 2014]

 ELMo did not fine-tune word embeddings [Peters et al., 2018]



Fine-Tuning — Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

* Updating the last layer of the model was common in computer vision
IDonahue et al., 2014]. In NLP, people experimented with static
(frozen) and non-static (trainable) [Kim, 2014]

 ELMo did not fine-tune word embeddings [Peters et al., 2018]
In practice, fine-tuning everything seems to work better in practice —
why go back o fine-tuning only some parameters?

* Fine-tuning everything is impractical with large models

|| Ms nowadays are massively over-parameterised — PEFI matches
full fine-tuning in downstream accuracy
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Some Notation

Let f, : & — ¥ be a neural network, which can be decomposed into
a composition of functions fy © f, O ... O fy , where each function

has parameters 0, withi € { 1,...,n}.

A module with parameters ¢ can modify a function f, as follows:

. Parameter composition: g = ]Cei@¢()(:)
. Input composition:  g;(x) = fy ( [x, ¢] )
. Function composition: 8/(x) = fo O f4(X)

Typically, only module parameters ¢ are updated while @ is fixed
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Parameter Composition

Sparse Subnetworks, where module
parameters ¢ are enforced to be sparse

Structured Composition, where we

impose a structure on the weights 6.

that we select — e.g., we update the
weights belonging to a pre-defined

group

Low-Rank Composition, where the

module parameters ¢ lie in a low-
dimensional space




Parameter Composition — Sparse Subnetworks

A common inductive bias on module parameters ¢ is sparsity: when we do
g =fy. ¢(x) (element-wise product), we mask part of the neural network f

Most common sparsity method: pruning — e.g., see [Han et al., 2017]
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Parameter Composition — Structured Composmon

BitFit

: LayerNorm | b \
We can impose a structure on the weights that we 1
select: we only modify the weights that are ; ) Y .
associated in a pre-defined group &, for example, a | 2x Feed-Forward | b [
layer, a group of layers, or more fine-grained : - .
components LayerNorm | b

S
Example: only update bias vectors — BitFit [Ben- § i )
Zaken et al., 2022] Feed-Formard [b]

Multi-Headed Attention | b

.................................




Parameter Composition — Low-Rank Composition

Another useful inductive bias: module parameters ¢ should lie in a low-

dimensional space. Li et al., 2018 show that models can be optimised in a low-
dimensional, randomly oriented subspace rather than the full parameter space

Low-rank fine-tuning takes the form g = f, py Where P € RPX4 _ with a dense
matrix of shape D X d, this scales as O(Dd) in time and storage

Standard fine-tuning: )
D) _ p(D) D) ™. gD) D) _ p(D) d
0P =6y + 0P 0; P =g,") 4+ PoY
"-_0(1)) —

A random D X d

projection matrix

g D — 3 Everything but 9(?) is fixed. Only ) = 3
— d dimensions are optimized.
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Parameter Composition — LoRA

Low-Rank Adaptation — instead of learning a low-rank factorisation via a

random matrix P, we can learn the projection matrix directly
LoRA [Hu et al., 2022] learns two matrices

B € R and A € R™* that are applied to

h | |
the self-attention weights: _ &’ %
h=|W,+AW|x = |W,+ BA| x S

Update to parameters W, Weights

In our notation:

8 =Jo+Ba, Vi €Y
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Applying LoRA to a Transformer layer — remember how Transformers work:
MultiHead(Q, K, V) = Concat(head,, ..., head,)W,,

.
with Attention( and Attention(Q, K, V) = softmax ( f%c

)



Parameter Composition — LoRA

Applying LoRA to a Transformer layer — remember how Transformers work:
MultiHead(Q, K, V) = Concat(head,, ..., head,)W,,

.
with Attention( and Attention(Q, K, V) = softmax ( f%c )

We can use LoRA to adapt the weights W, ;, Wi ;, and/or Wy,; — in the case of

Wo.i» the updated weights will be:

WQ,i — WQ,i + AWQ,i
= W, + By Ap; with B € R*, A € R™



Computation Functions — Comparison
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Input Composition

Idea — augment the input of the model with a
learnable vector ¢:

g;(x) =fel. ( [¢i, x] )

Input Composition and Prompting — standard
prompting can be seen as finding a discrete text
prompt that, when embedded using the model’s

embedding layer, yields ¢

However, models tend to be sensitive to the
choice of the prompt [Webson and Pavlick, 2022]
and the order of examples [Zhao et al., 2021; Lu et
al., 2022]




Prompt Tuning

Idea — we can directly learn a continuous prompt ¢
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Prompt Tuning

Idea — we can directly learn a continuous prompt ¢

which Is pre-pended to the input

Fine-tuning

IlLiu et al., 2021; Hambardzumyan

Transformer (Translation)
| M — | |

et al., 2021; Lester et al., 2021]

Transformer (Summarization)
[ .. - L1 L1 |

Here the module parameters ¢ is

typically a matrix consisting of a
sequence of continuous prompt ”(Ts;g;,g;pog,t,‘l

(Summarization)
) . .

5 C-Prompt
(Table-to-text)

embeddings C-Prompt L

k —

Transformer (Table-to-text)

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Prompt tuning

J

Transformer (Pretrained)

[lLi and Liang, 2021]

name Starbucks type coffee shop [SEP] Starbucks serves coffee
input (table-to-text) Output (table-to-text)



Prompt Tuning Works Well at Scale

100
—=Ml- Prompt Design

Only using trainable parameters at Model Tuning

the input layer limits its capacity =~ 20~ TomPriuning .
for adaptation g /

O 2

5 o0

O
— Prompt tuning performs g /9 / _/
poorly at smaller model sizes & /" /-\./
and on harder tasks [Mahabadi 60  x Ve
et al., 2021; Liu et al., 2022] /"""
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108 10° 1010 10
Model Parameters
Prompt tuning vs. Standard fine-tuning and prompt design

across T5 models of different sizes [Lester et al., 2021]



Multi-Layer Prompt Tuning

Instead of learning the module parameters ¢. only at the input layer, we can
learn them at every layer of the model |[Li and Jiang, 2021; Liu et al., 2022]

In practice, continuous prompts ¢, are concatenated with the keys and
values in the self-attention layer [Li and Jiang, 2021]

—________ PromptEncoder Optional) o -ESESEEE. (" Reparameterization (Optional) - CPURZAOR___
[CLS] Amazing mo*vie ; : : IMASK} 0 v [ CI;S] Ama:zing mo:/ie ! :
e([C*LS]) e(Amfzing) e(m(*)ive) eg!) }:0 }z,,; e([M}}SK]) E i * * Ee([C+LS]) e(Am:zing) e(m(:ivc) e&!) E

4 il ™\ ! " Layerl Prompts .. , N |
S N SISO - W S| Loyer2 Prompts P

\_ T : ) E Laycr.\i .P‘rompls \: ___________ : ‘ J. E

|
|

Prompt tuning Multi-layer prompt tuning
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Function Composition

Function composition augments a model’s functions with
new task-specific functions:

g(x) = fel. © f4(x)

Commonly used in multi-task learning, where we have
multiple task-specific models composed together — e.qg.,
see the surveys in [Ruder, 2017; Crawshaw, 2020]

However, here we focus on functions that can be added to
pre-trained models like LLMs
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Adapters

The main purpose of functions f¢i added to a pre-trained

Add & Norm

>
model is to adapt it to a new task — these functions are

also known as adapters

In NLP, an adapter in a Transformer layer typically el

consists of a feed-forward down-projection —
W, & R4 4 feed-forward up-projection Wy, € Rk,
and an activation function o [Houlsby et al., 2019] Feed
Forward
f¢.(x) — WD [0 (WUX)] Add & Norm
Multi-Head

Adapter usually placed after multi-head attention and/ Attention
or after the feed-forward layer ¥




Benefits of Adapters

Increased robustness [He et al., 2021; Han et al., 2021}

aCcC.

aCcC.

MNLI (1k)
0.65 -
0.4 4 0.60 - + ﬁ ﬁ
0.55 - *‘ i ;
0.34
0.50 - S
0.2% : 0.45 -
01 B Fine-tune s
I Adapter 03¢
0.0 - ' ' ' L ' ' ‘¢ ¢
ColLA (1k) MNLI (1k)
0.5 - + é i
0.7 -
0.4 4 ? i ; ? ’ *
0.6
0.3 4 & 4
0.2 - ' 0.5 1
0.14 0.4
0.0 - I ¢ —¢ —¢ o —¢ —
2e5 4eS 6e5 8e5 le-4 2e5 4e5 GeS 8eS le-4

learning rate

learning rate

acc.

acc.

0.6

0.5 4
0.4 4
0.3
0.2 4
0.1-
0.0 -

0.6 -
0.5+
0.4 +
0.3 1
0.2 4
0.1-
0.0 -

ColLA (5k)

'?*-I-.I.-I'{'_'I' + =

.

4

ColLA (5k)

- g * =

¢ ¢

i 0—0

2e5 4e5 6e5 BeS lé-d

learning rate

0.75

0.70 +
0.65 -
0.60 1
0.55+
0.50 -
0.45 -

0.40

0.80 -

0.78 1

0.76 -

0.74

MNLI (5k)

MNLI (Sk)

W ¢ T ®

¢

2e-5 4e-5 6e-5 B8e-5
learning rate

le-4




Benefits of Adapters

Increased robustness [He et al., 2021; Han et al., 2021}
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