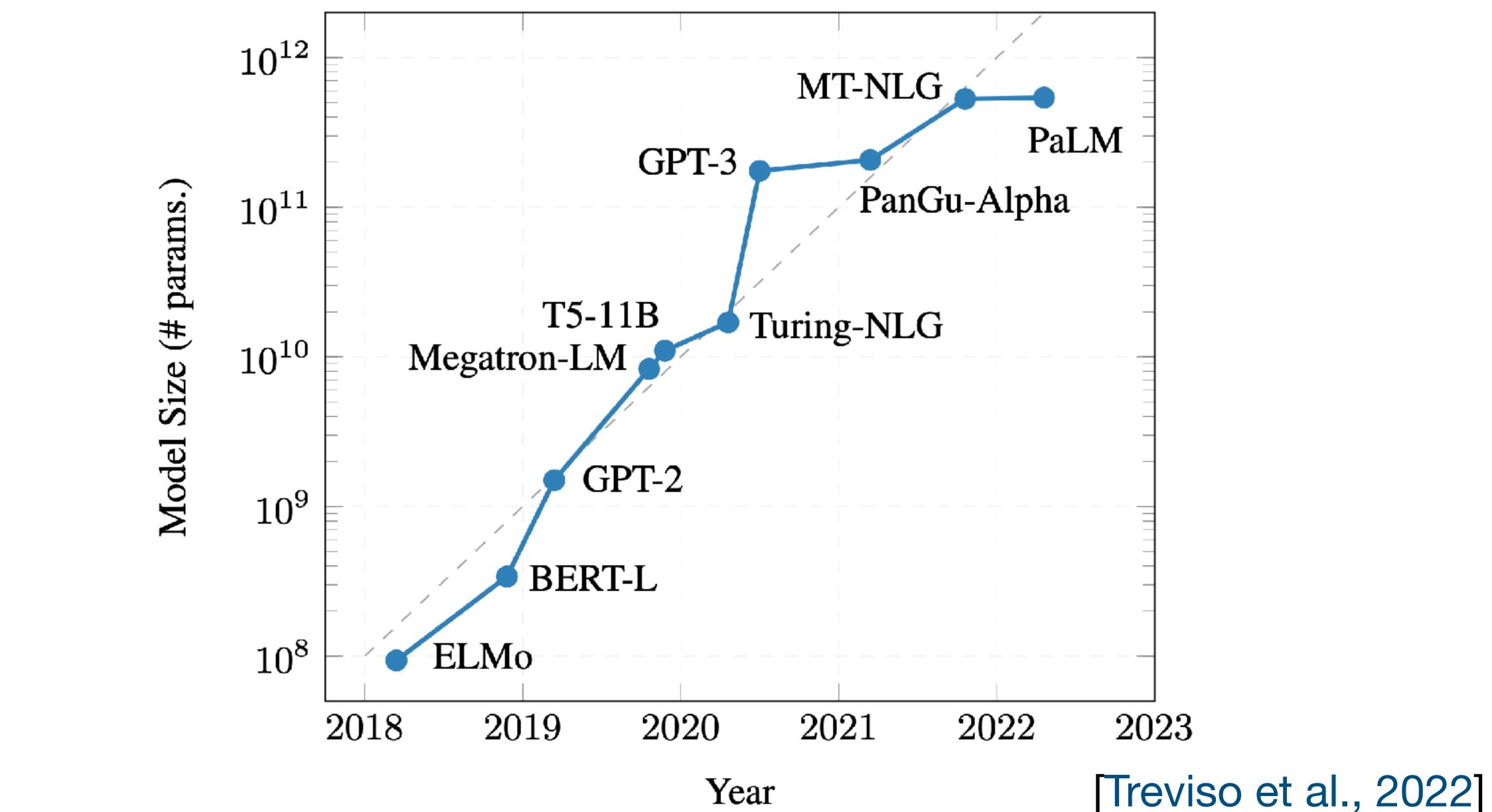
Natural Language Understanding, Generation, and Machine Translation

Lecture 27: Parameter-Efficient Fine-Tuning

Pasquale Minervini p.minervini@ed.ac.uk March 22nd, 2024

Evolution of Pre-Trained Language Models



Evolution of Pre-Trained Language Models

QUESTION ANSWERING

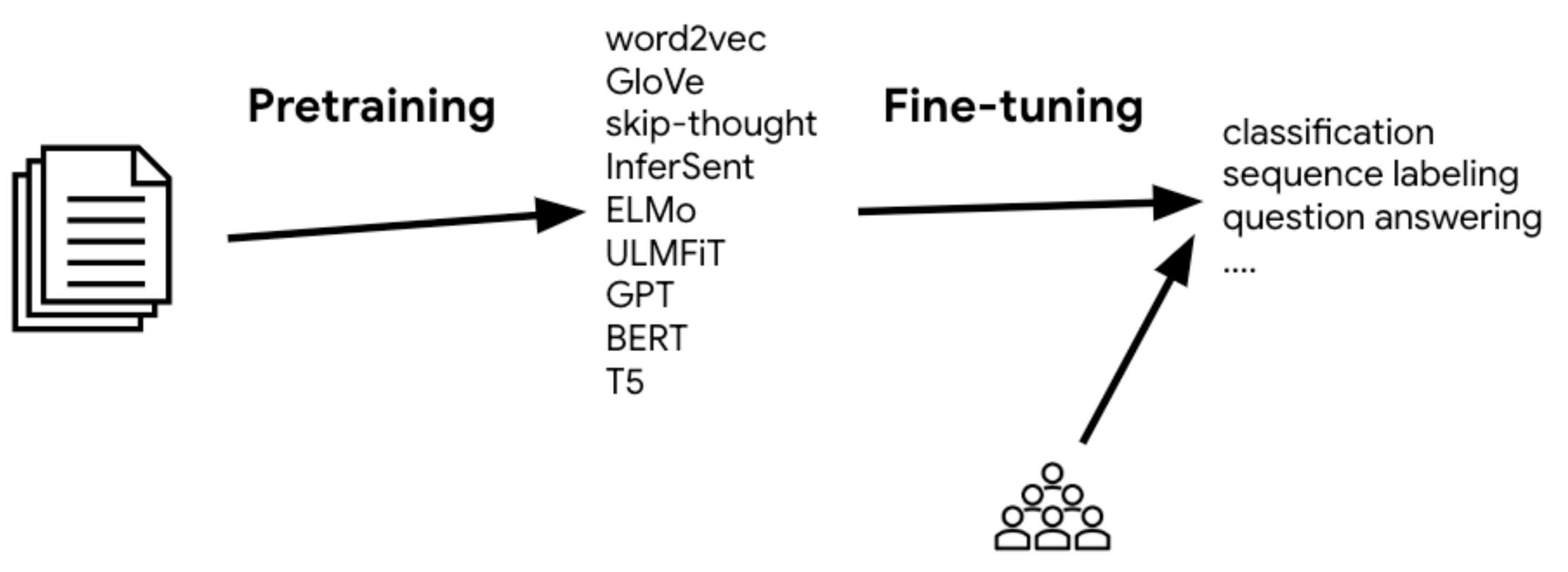
ARITHMETIC

LANGUAGE UNDERSTANDING

8 billion parameters

Transfer Learning in the Era of LLMs

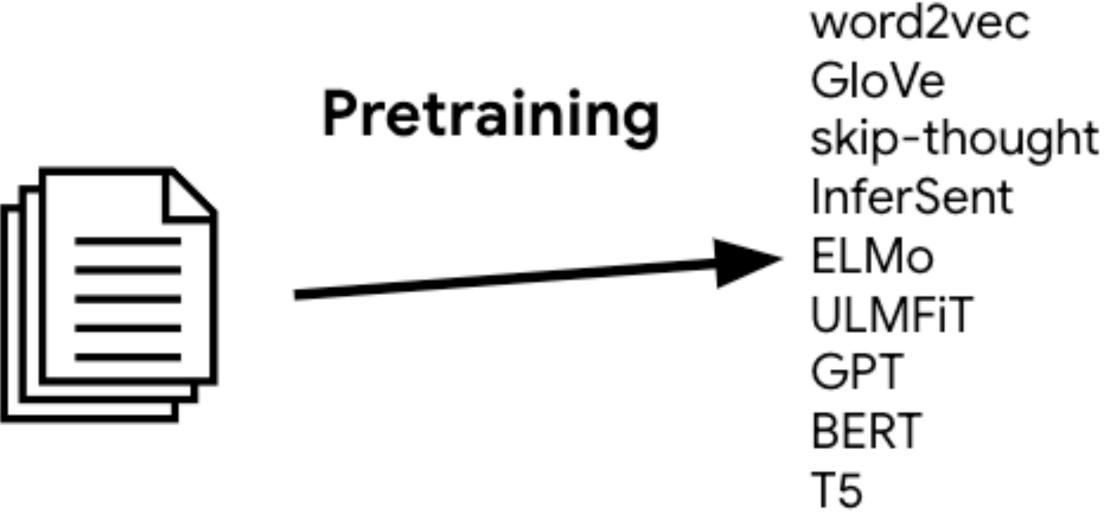
With increasing model size, ٠ fine-tuning becomes increasingly expensive



The standard transfer learning formula breaks down

Transfer Learning in the Era of LLMs

With increasing model size, ٠ fine-tuning becomes increasingly expensive



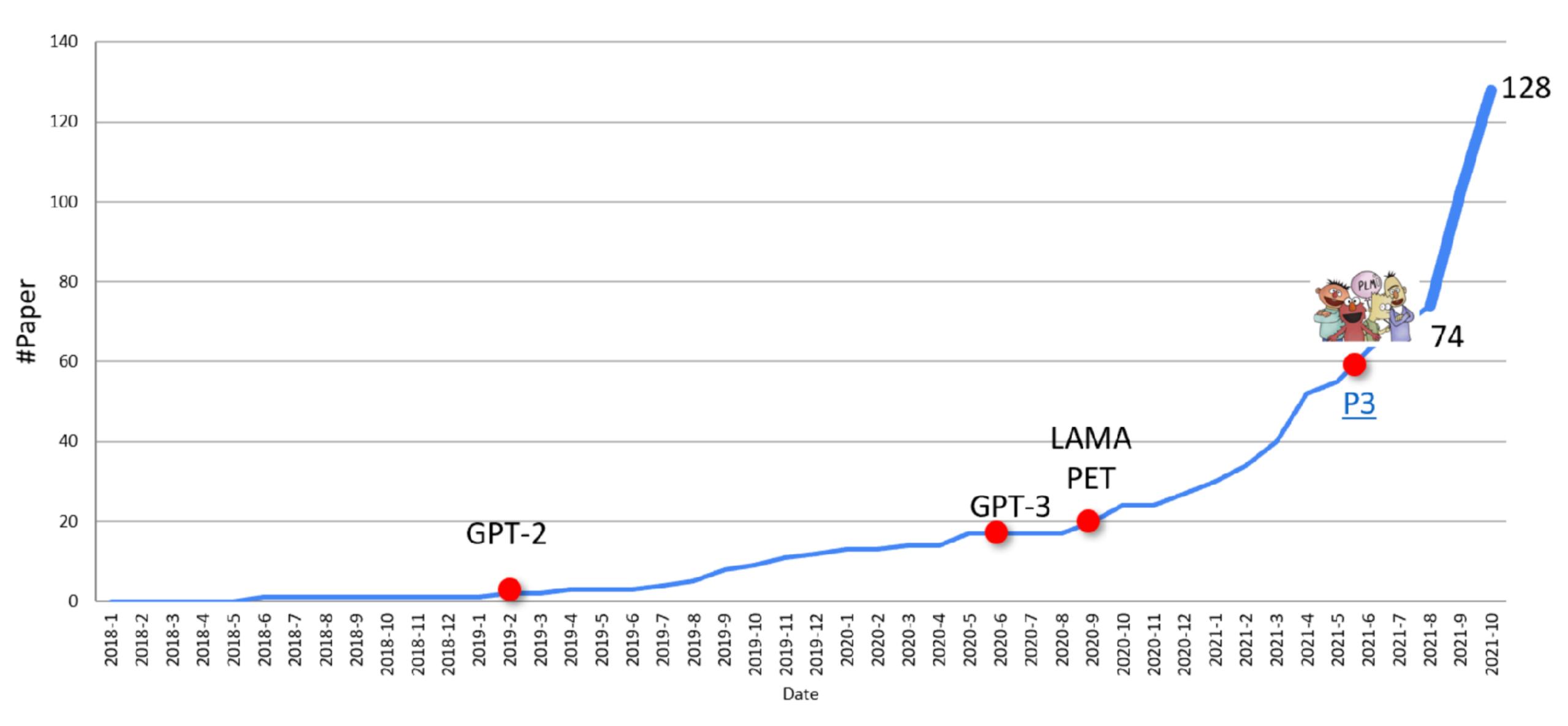
The standard transfer learning formula breaks dow

Fine-tu

238

ation nce labeling tion answering

In-Context Learning



Inefficiency: the prompt needs to be processed every time the model makes a prediction

Inefficiency: the prompt needs to be processed *every time* the model makes a prediction

Poor performance: prompting generally performs worse than finetuning [Brown et al., 2020]

Inefficiency: the prompt needs to be processed *every time* the model makes a prediction

Poor performance: prompting generally performs worse than fine-tuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]

makes a prediction

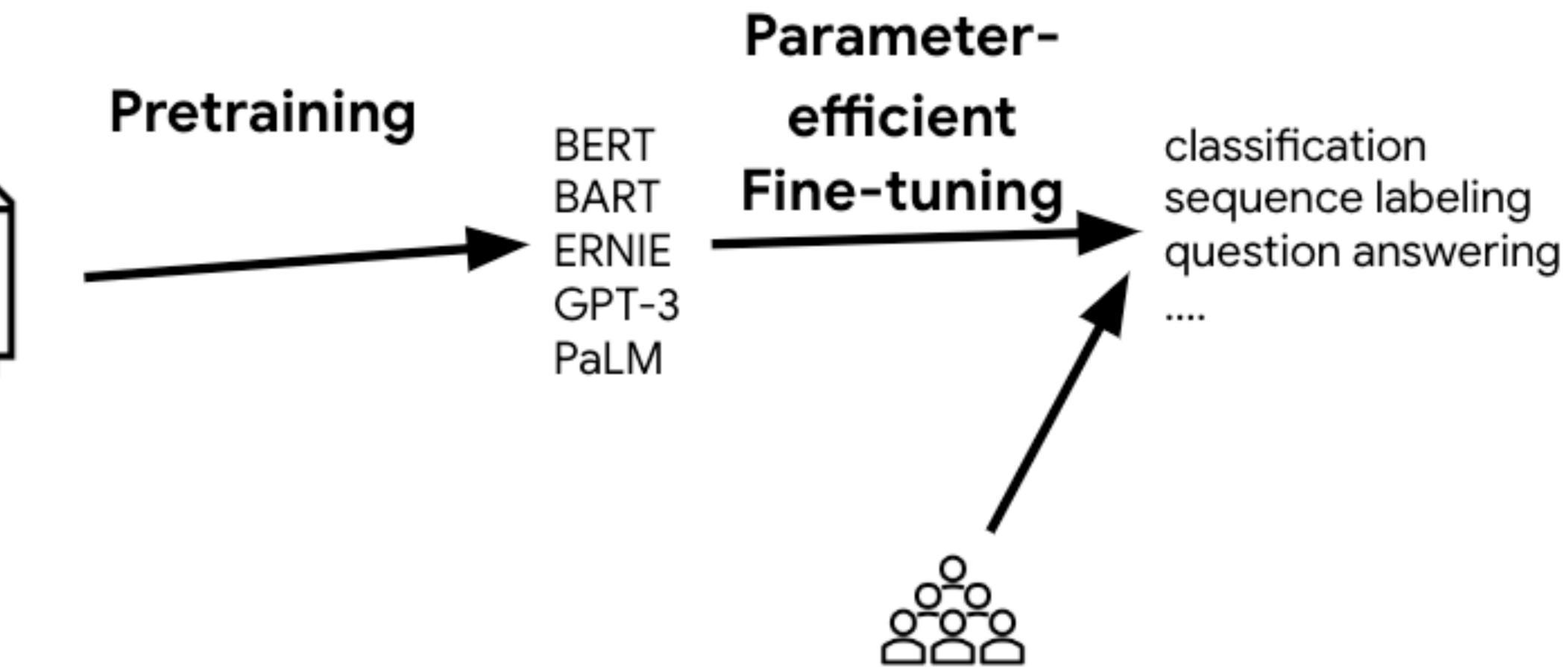
Poor performance: prompting generally performs worse than finetuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022], order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]

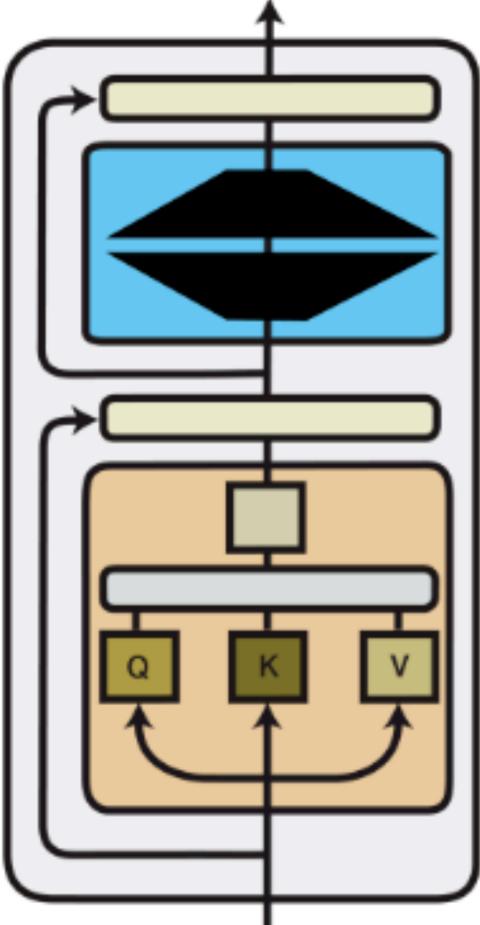
Lack of clarity regarding what the model learns from the prompt even random label can provide non-trivial results [Min et al., 2022]!

Inefficiency: the prompt needs to be processed every time the model

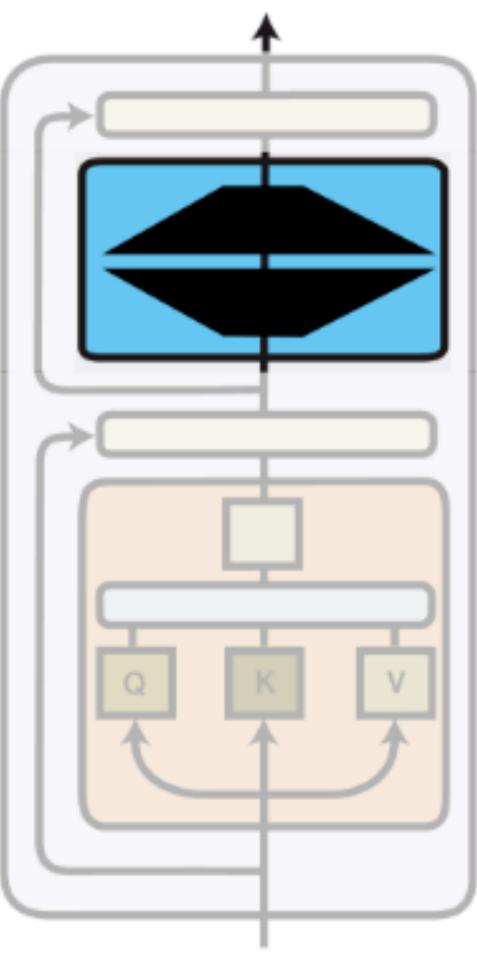
Fine-Tuning → Parameter-Efficient Fine-Tuning



Fine-Tuning → Parameter-Efficient Fine-Tuning



Full Fine-tuning Update all model parameters



Parameter-efficient Fine-tuning Update a small subset of model parameters

Fine-Tuning \rightarrow Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

- Updating the last layer of the model was common in computer vision [Donahue et al., 2014]. In NLP, people experimented with static (frozen) and non-static (trainable) [Kim, 2014]
- ELMo did not fine-tune word embeddings [Peters et al., 2018]

Fine-Tuning \rightarrow Parameter-Efficient Fine-Tuning

- Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!
- Updating the last layer of the model was common in computer vision [Donahue et al., 2014]. In NLP, people experimented with static (frozen) and non-static (trainable) [Kim, 2014]
- ELMo did not fine-tune word embeddings [Peters et al., 2018]
- In practice, fine-tuning everything seems to work better in practice why go back o fine-tuning only some parameters?
- Fine-tuning everything is **impractical** with large models
- LLMs nowadays are massively over-parameterised PEFT matches full fine-tuning in downstream accuracy

Let $f_{A}: \mathcal{X} \mapsto \mathcal{Y}$ be a neural network, which can be decomposed into a composition of functions $f_{\theta_1} \odot f_{\theta_2} \odot \ldots \odot f_{\theta_n}$, where each function has parameters θ_i with $i \in \{1, ..., n\}$.

A module with parameters ϕ can modify a function f_{θ_i} as follows:

Some Notation

- Let $f_A: \mathcal{X} \mapsto \mathcal{Y}$ be a neural network, which can be decomposed into has parameters θ_i with $i \in \{1, ..., n\}$.
- A module with parameters ϕ can modify a function f_{θ_i} as follows:
- Parameter composition:

Some Notation

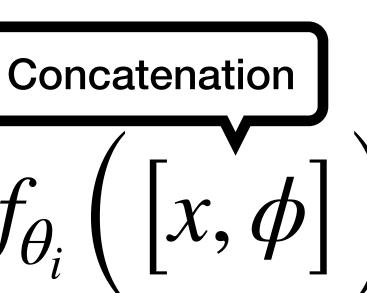
a composition of functions $f_{\theta_1} \odot f_{\theta_2} \odot \ldots \odot f_{\theta_n}$, where each function

 $g_i = f_{\theta_i \bigoplus \phi}(x)$ Interpolation – e.g., element-wise addition

- has parameters θ_i with $i \in \{1, ..., n\}$.
- A module with parameters ϕ can modify a function f_{θ_i} as follows:
- Parameter composition:
- **Input composition**: $g_i(x) = f_{\theta_i}\left(\begin{bmatrix} x, \phi \end{bmatrix} \right)$

Some Notation

Let $f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}$ be a neural network, which can be decomposed into a composition of functions $f_{\theta_1} \odot f_{\theta_2} \odot \ldots \odot f_{\theta_n}$, where each function



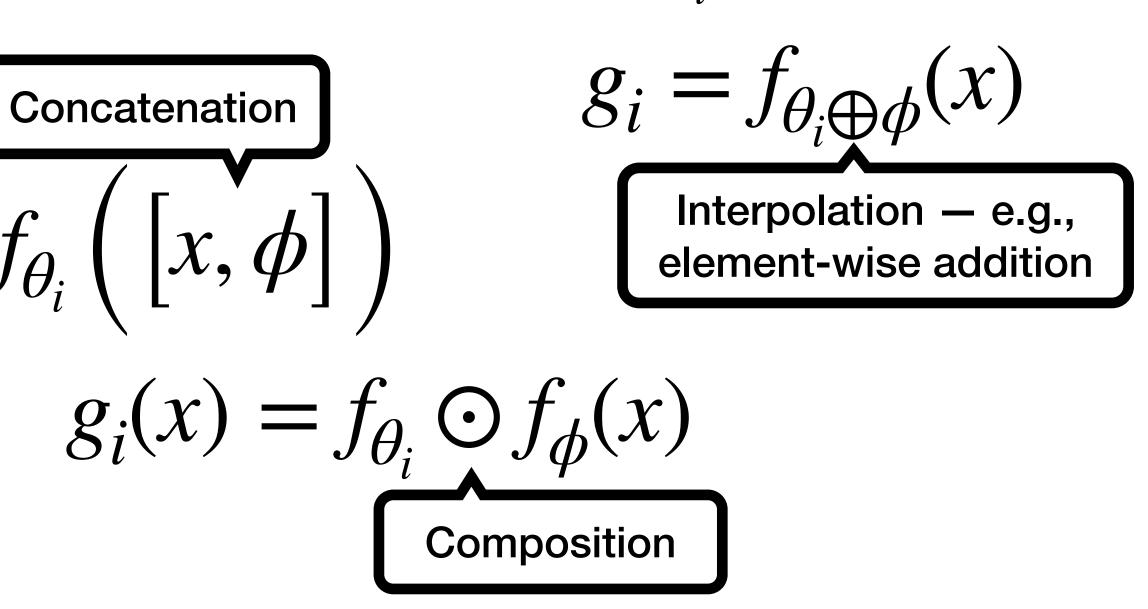
$$g_i = f_{\theta_i \bigoplus \phi}(x)$$

Interpolation – e.g., element-wise addition

- has parameters θ_i with $i \in \{1, ..., n\}$.
- A module with parameters ϕ can modify a function f_{θ_i} as follows:
- Parameter composition:
- **Input composition**: $g_i(x) = f_{\theta_i}\left(\begin{bmatrix} x, \phi \end{bmatrix} \right)$
- Function composition:

Some Notation

Let $f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}$ be a neural network, which can be decomposed into a composition of functions $f_{\theta_1} \odot f_{\theta_2} \odot \ldots \odot f_{\theta_n}$, where each function

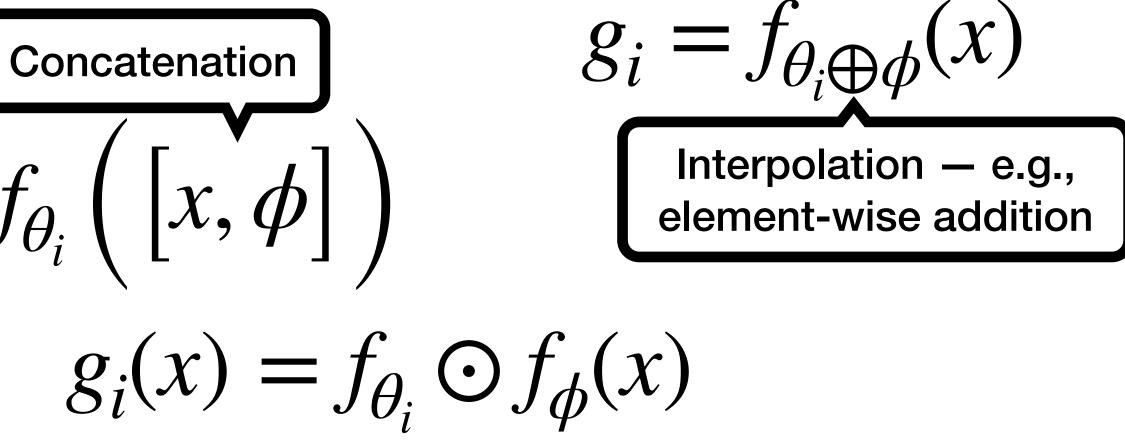


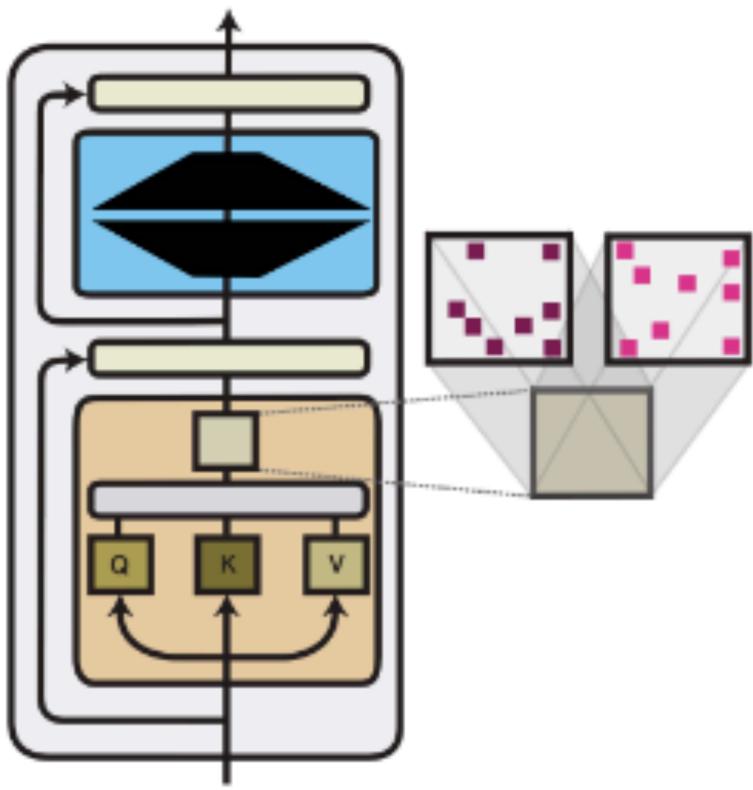
- has parameters θ_i with $i \in \{1, ..., n\}$.
- A module with parameters ϕ can modify a function f_{θ_i} as follows:
- Parameter composition:
- **Input composition**: $g_i(x) = f_{\theta_i}\left(\begin{bmatrix} x, \phi \end{bmatrix} \right)$
- Function composition:

Typically, only module parameters ϕ are updated while θ is fixed

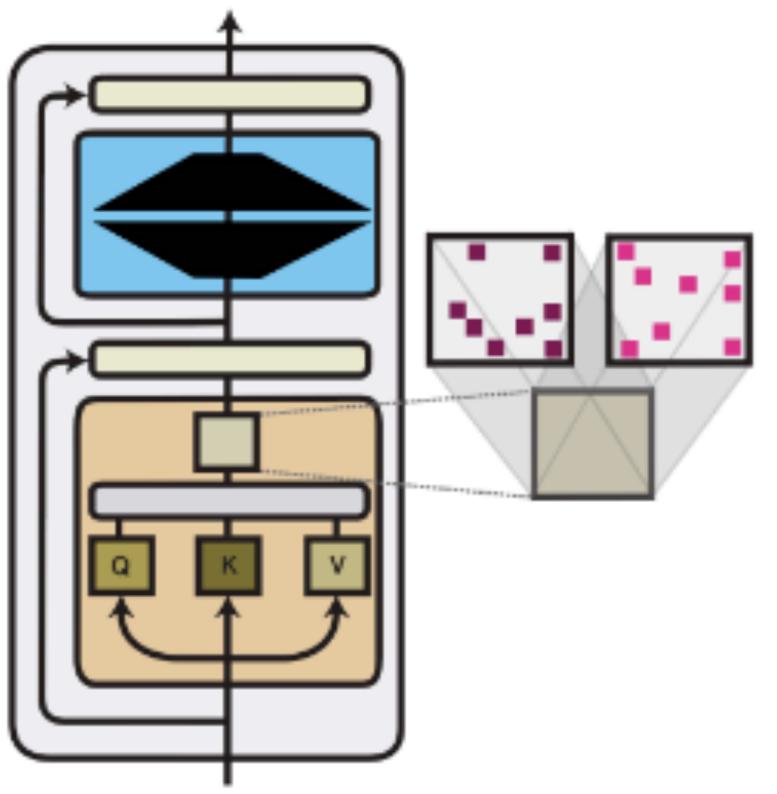
Some Notation

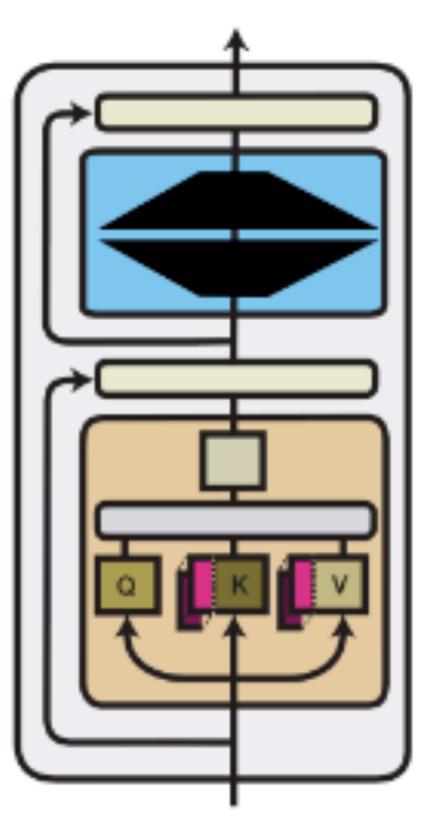
Let $f_{\theta}: \mathcal{X} \mapsto \mathcal{Y}$ be a neural network, which can be decomposed into a composition of functions $f_{\theta_1} \odot f_{\theta_2} \odot \ldots \odot f_{\theta_n}$, where each function





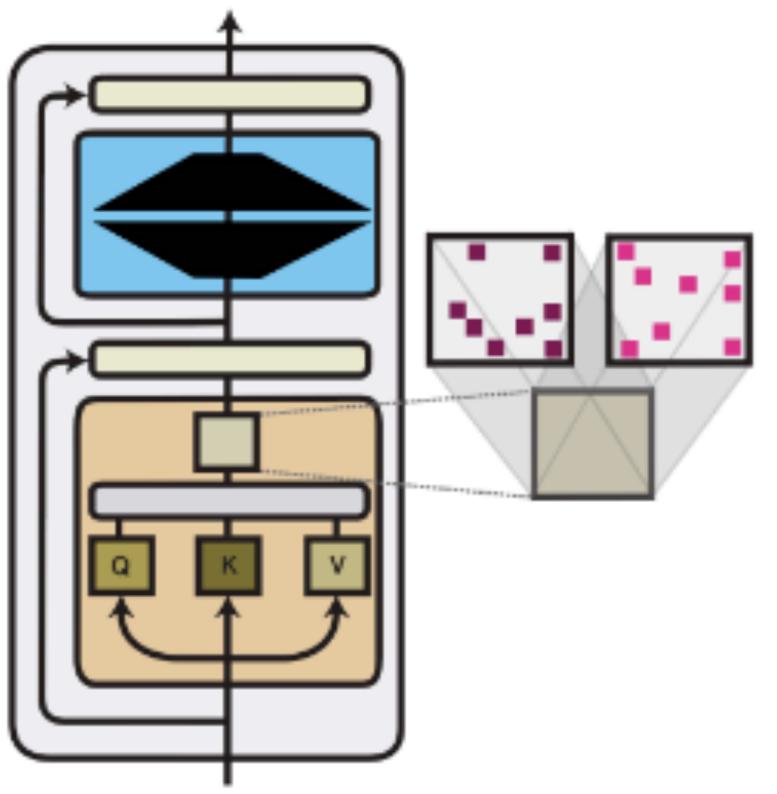
Parameter Composition

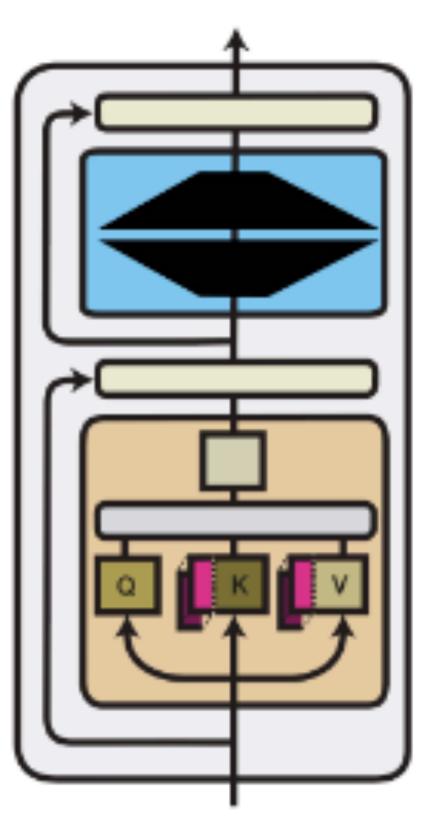




Parameter Composition

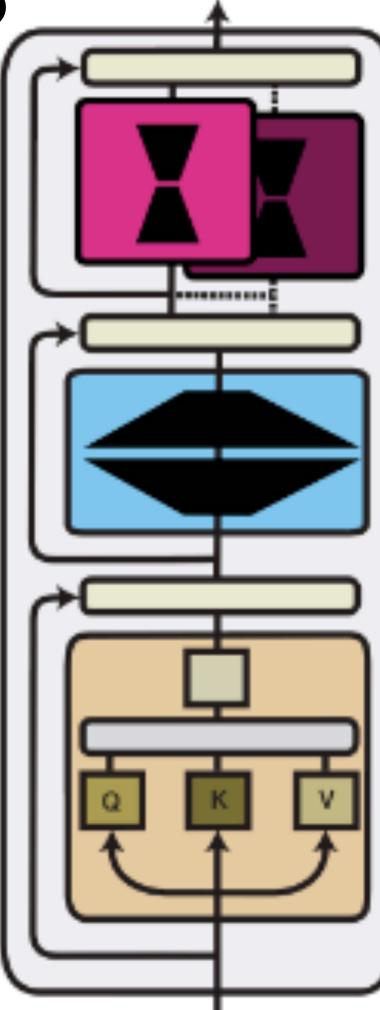
Input Composition



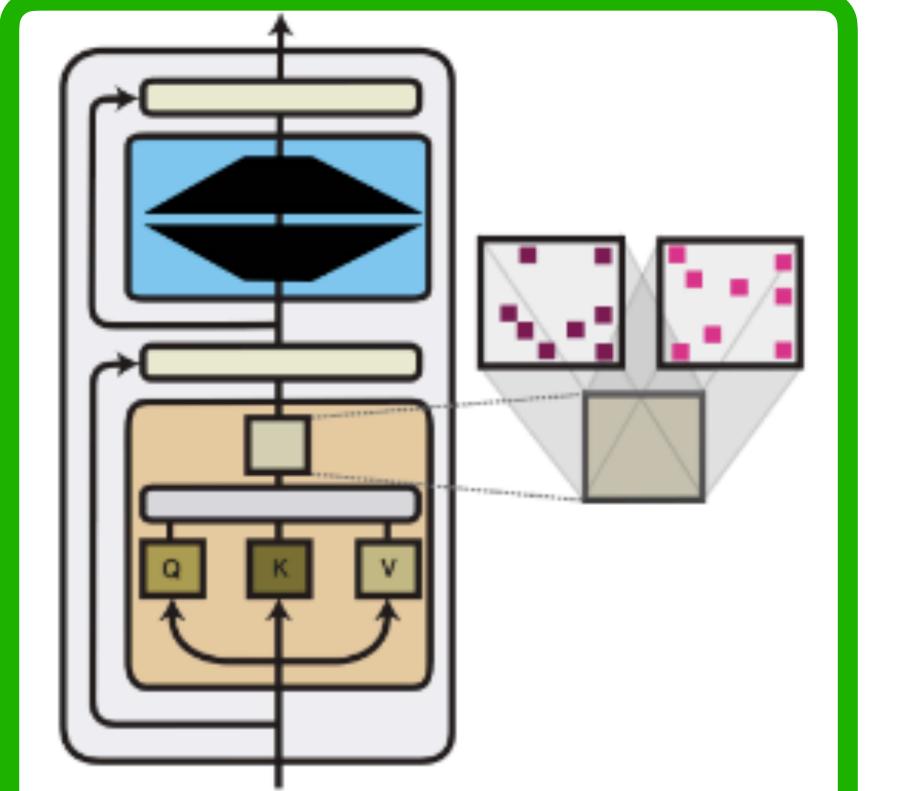


Parameter Composition

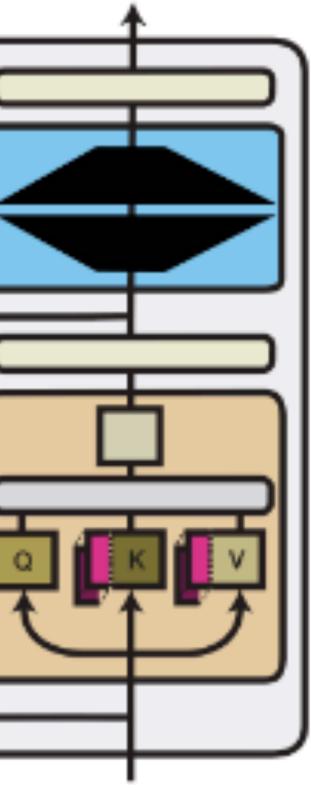
Input Composition



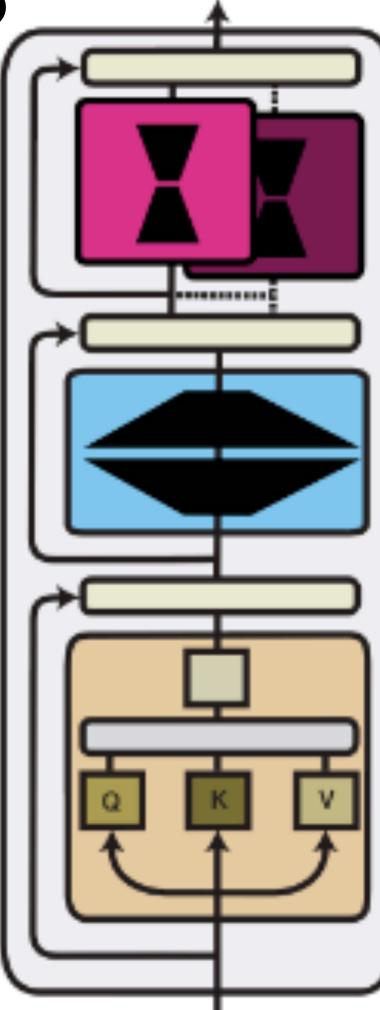
Function Composition



Parameter Composition

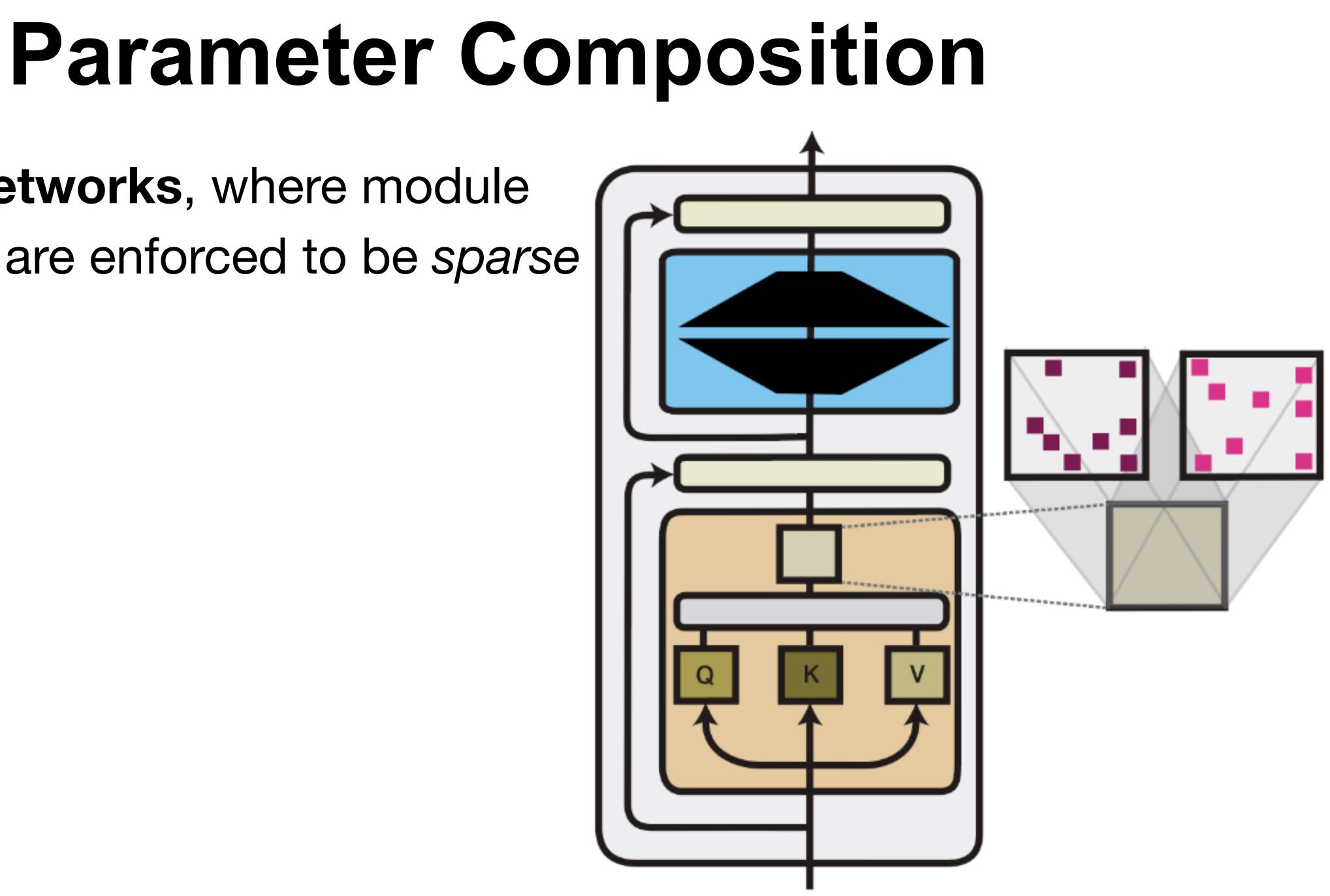


Input Composition



Function Composition

Sparse Subnetworks, where module parameters ϕ are enforced to be sparse



Parameter Composition

Sparse Subnetworks, where module parameters ϕ are enforced to be sparse

Structured Composition, where we impose a structure on the weights θ_i that we select — e.g., we update the weights belonging to a pre-defined group

Parameter Composition

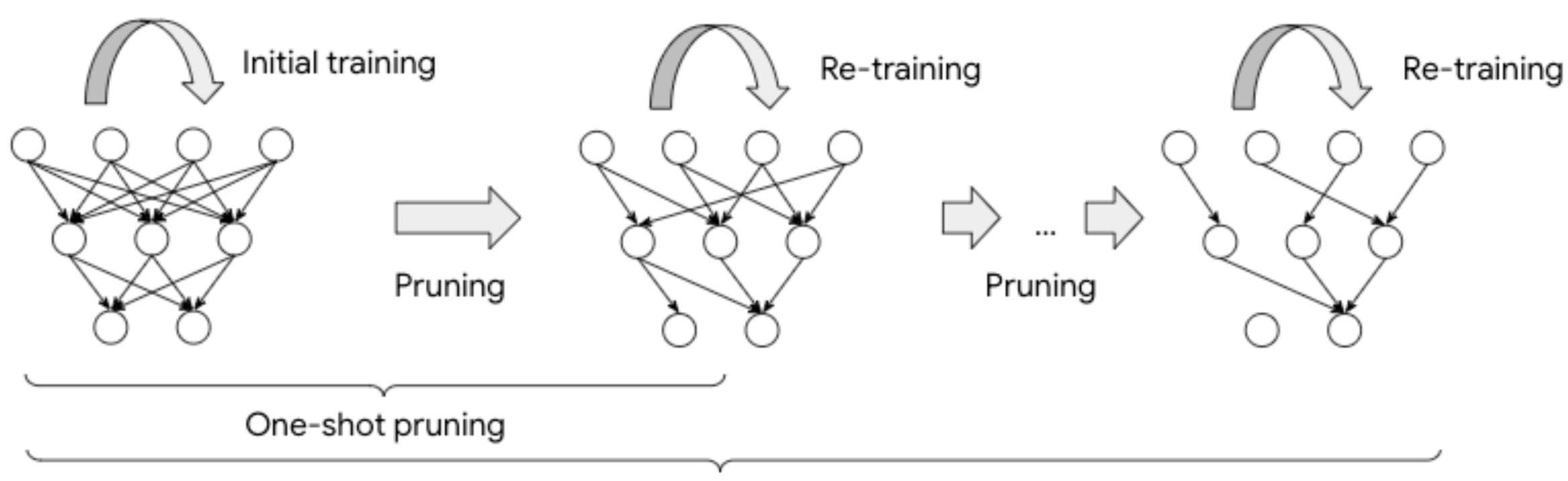
Sparse Subnetworks, where module parameters ϕ are enforced to be sparse

Structured Composition, where we impose a structure on the weights θ_i that we select - e.g., we update the weights belonging to a pre-defined group

Low-Rank Composition, where the module parameters ϕ lie in a *low*dimensional space

Parameter Composition — Sparse Subnetworks

 $g_i = f_{\theta_i \cdot \phi}(x)$ (element-wise product), we mask part of the neural network f



Iterative pruning

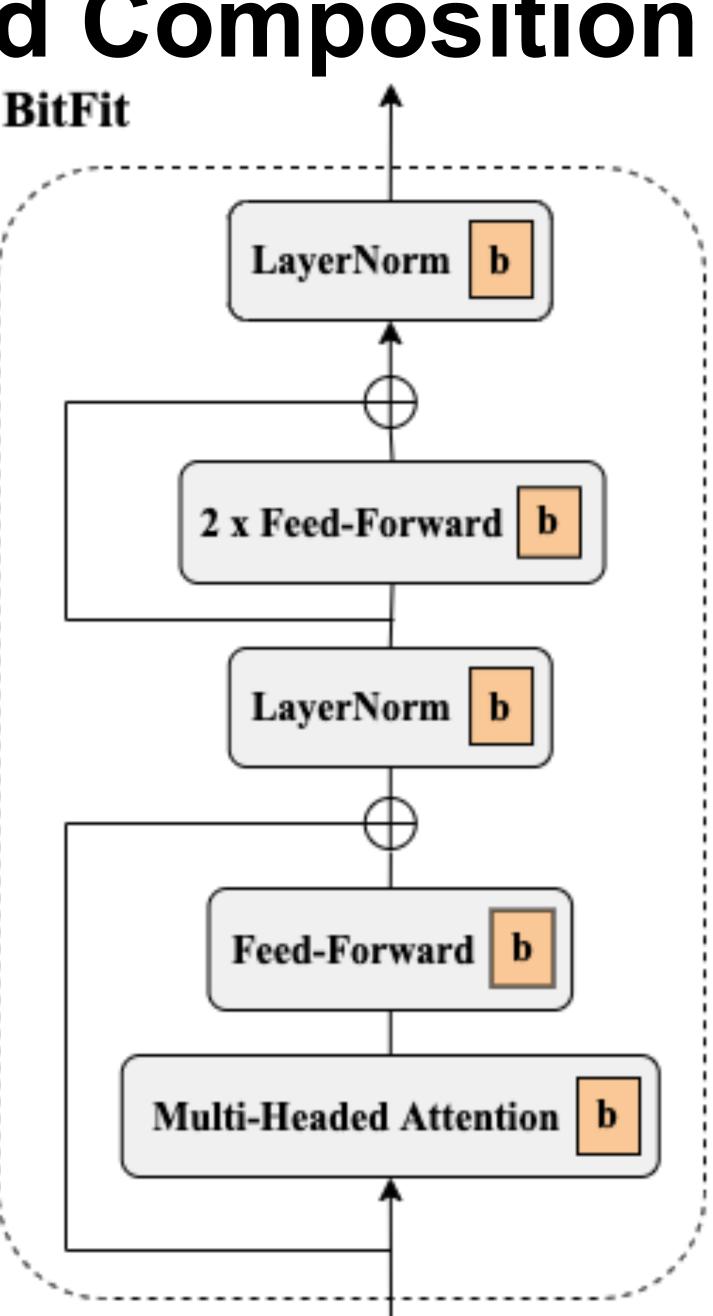
A common inductive bias on module parameters ϕ is **sparsity**: when we do

Most common sparsity method: pruning — e.g., see [Han et al., 2017]

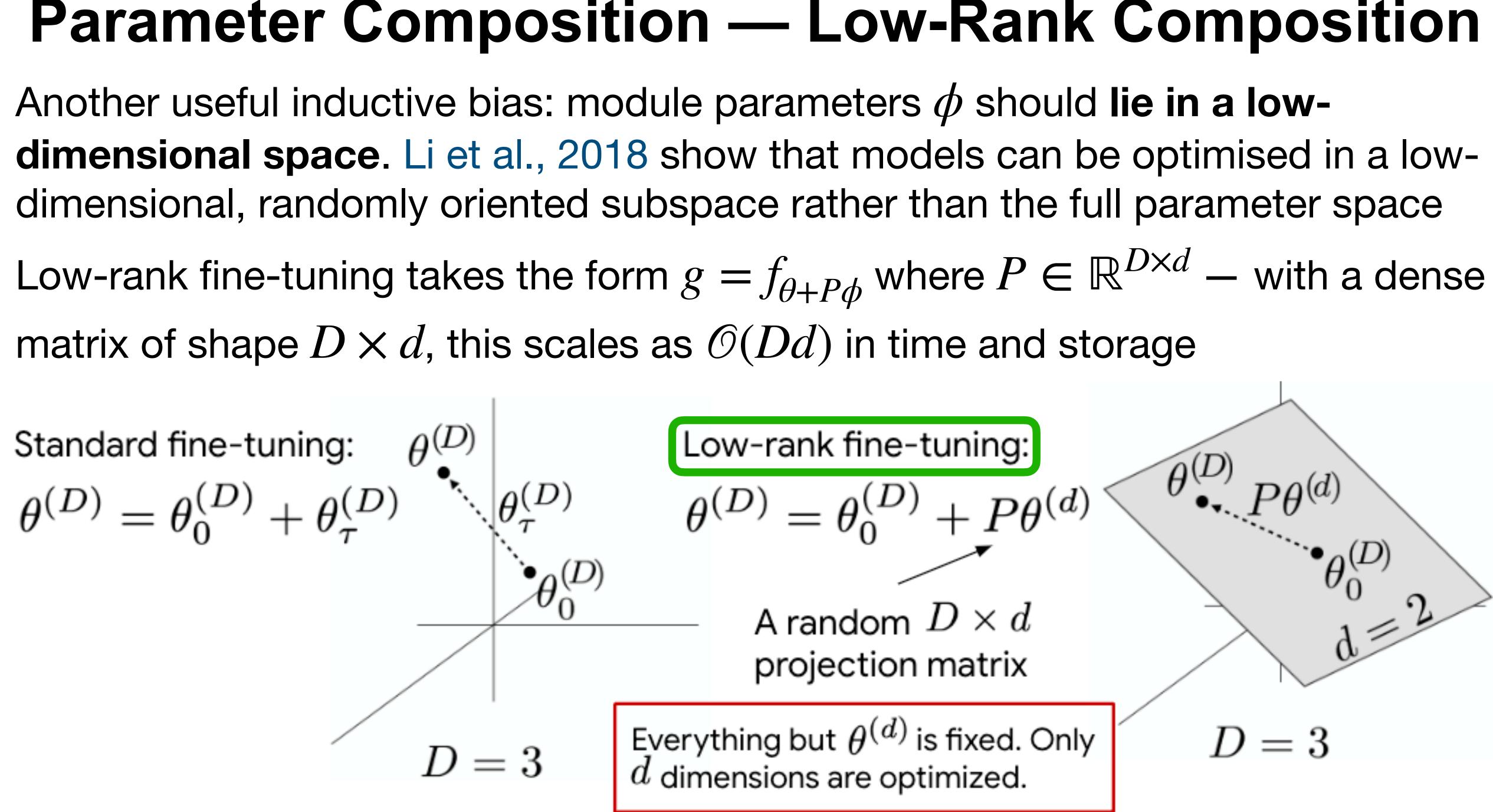
Parameter Composition — Structured Composition

We can impose a structure on the weights that we select: we only modify the weights that are associated in a pre-defined group \mathcal{G} , for example, a layer, a group of layers, or more fine-grained components

Example: only update bias vectors — BitFit [Ben-Zaken et al., 2022

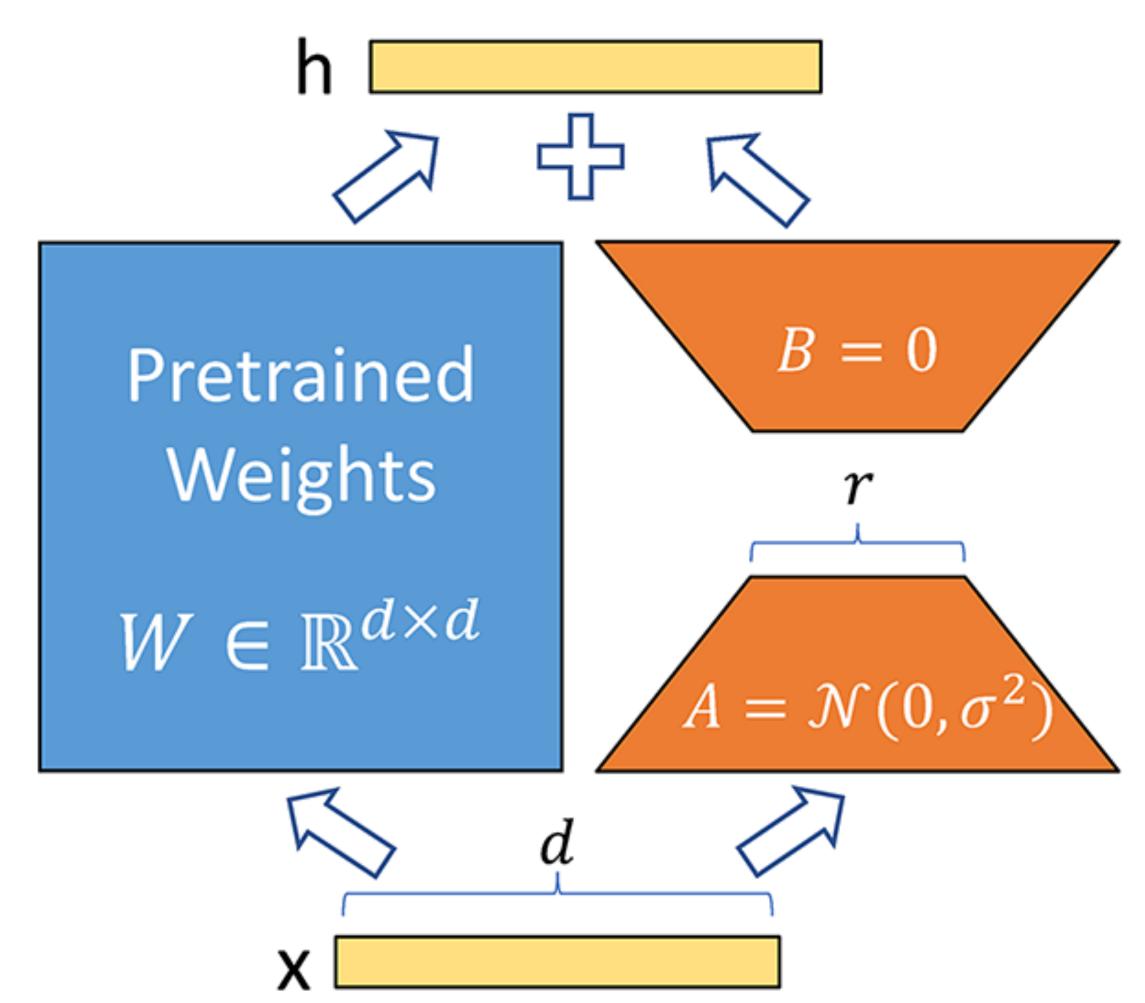


Parameter Composition — Low-Rank Composition



Parameter Composition — LoRA

Low-Rank Adaptation — instead of learning a low-rank factorisation via a random matrix P, we can learn the projection matrix directly LoRA [Hu et al., 2022] learns two matrices $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$ that are applied to the self-attention weights:



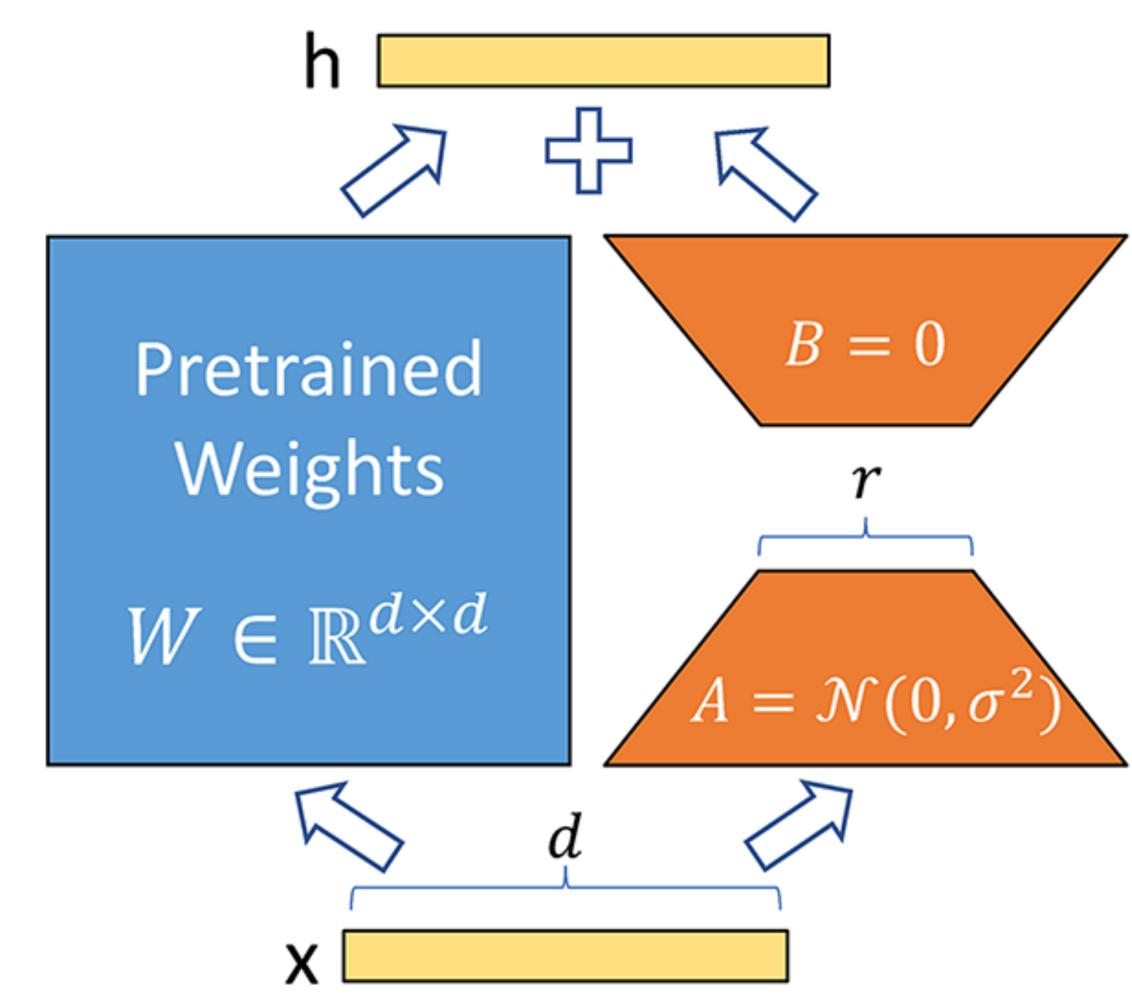
Parameter Composition — LoRA

Low-Rank Adaptation — instead of learning a low-rank factorisation via a random matrix P, we can learn the projection matrix directly LoRA [Hu et al., 2022] learns two matrices $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$ that are applied to the self-attention weights:

$$h = \begin{bmatrix} W_0 + \Delta W \end{bmatrix} x = \begin{bmatrix} W_0 + BA \end{bmatrix}$$

Jpdate to parameters W_0

- ${\mathcal X}$



Parameter Composition — LoRA

Low-Rank Adaptation — instead of learning a low-rank factorisation via a random matrix P, we can learn the projection matrix directly LoRA [Hu et al., 2022] learns two matrices $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$ that are applied to the self-attention weights:

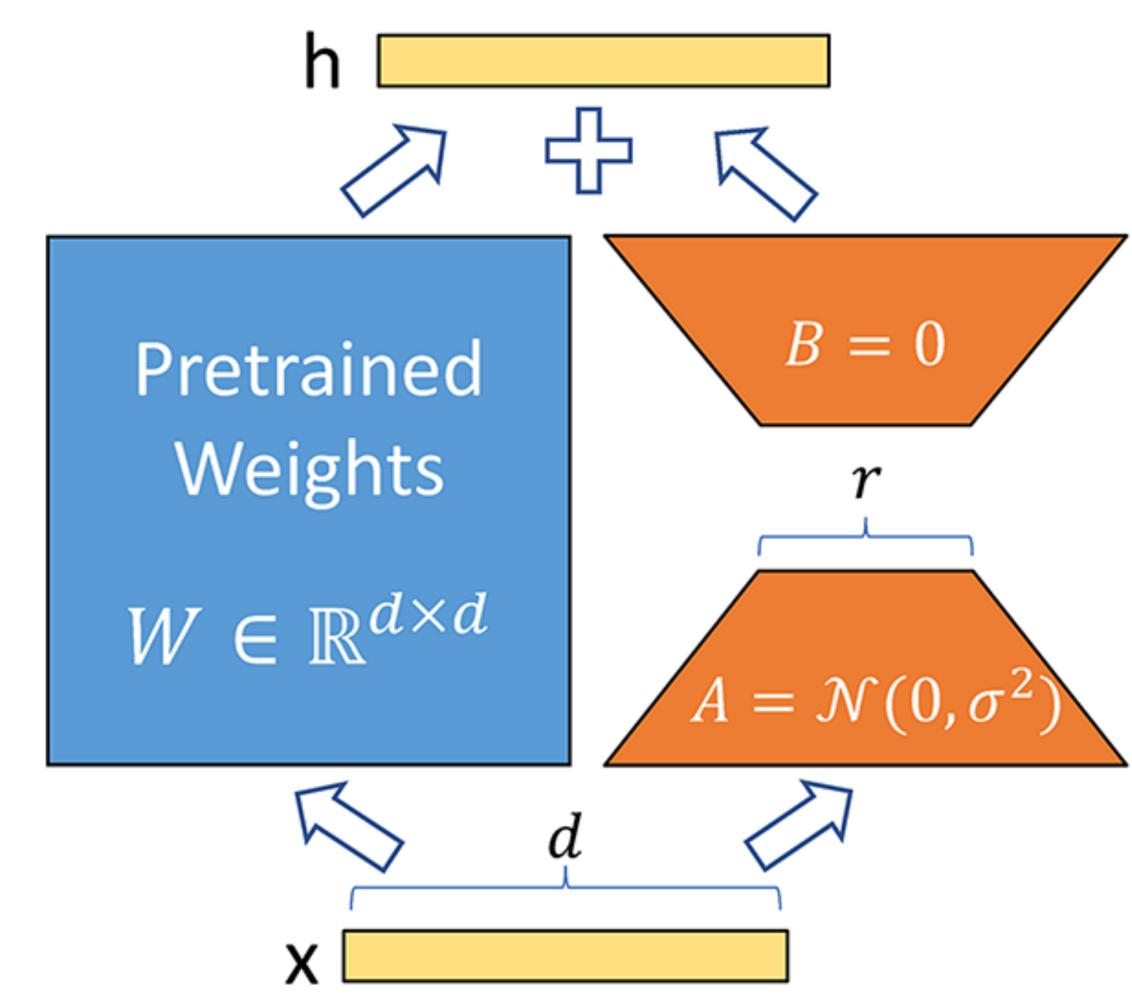
$$h = \begin{bmatrix} W_0 + \Delta W \end{bmatrix} x = \begin{bmatrix} W_0 + BA \end{bmatrix}$$

Update to parameters W_0

In our notation:

$$g_i = f_{\theta_i + B_i A_i}, \forall f_i \in \mathscr{G}$$

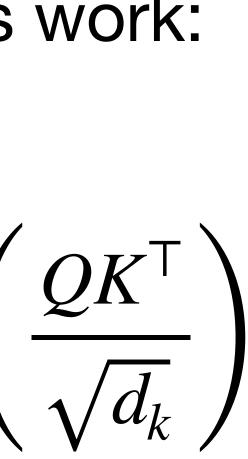
- ${\mathcal X}$



Parameter Composition — LoRA Applying LoRA to a Transformer layer — remember how Transformers work: MultiHead(Q, K, V) = Concat(head₁, ..., head_n) W_O

with Attention(
$$QW_{Q,i}, KW_{K,i}, VW_{V,i}$$
)

- and Attention(Q, K, V) = softmax $\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)$



Parameter Composition — LoRA Applying LoRA to a Transformer layer — remember how Transformers work: MultiHead(Q, K, V) = Concat(head₁, ..., head_n) W_O

with Attention(
$$QW_{Q,i}, KW_{K,i}, VW_{V,i}$$
)

 $W_{O,i}$, the updated weights will be:

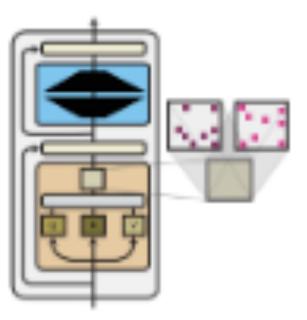
$$\widetilde{W_{Q,i}} = W_{Q,i} + \Delta W_{Q,i}$$
$$= W_{Q,i} + B_{Q,i}A_{Q,i} \text{ with } B \in \mathbb{R}$$

- and Attention(Q, K, V) = softmax $\left(\frac{QK^{\top}}{\sqrt{d_k}}\right)$
- We can use LoRA to adapt the weights $W_{O,i}$, $W_{K,i}$, and/or $W_{V,i}$ in the case of

Computation Functions — Comparison

Parameter efficiency

Parameter composition



Methods such as LoRA require < 3% of parameters

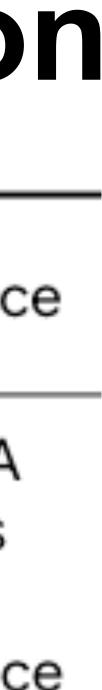
Training
efficiency

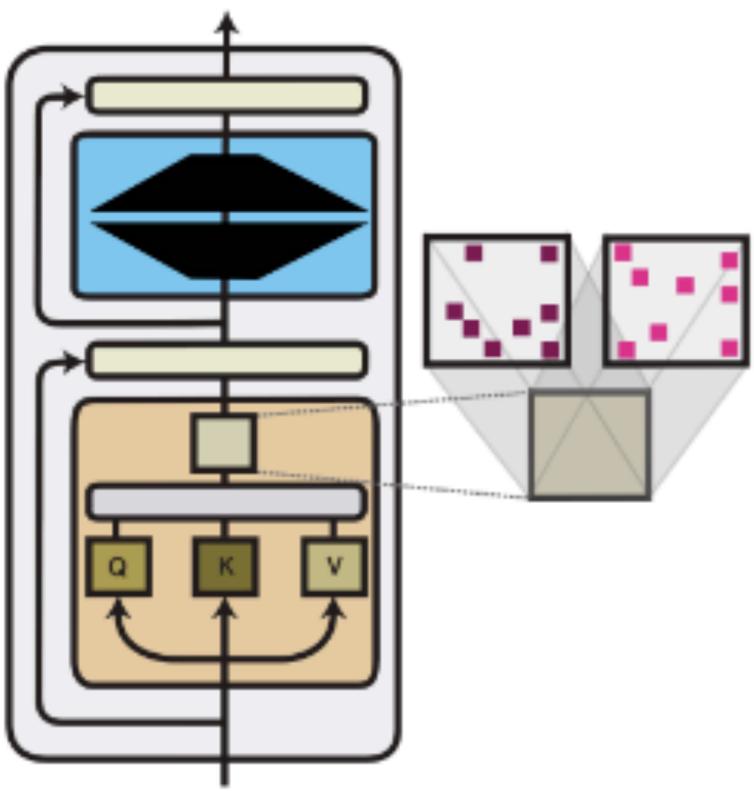
Inference efficiency

Performance

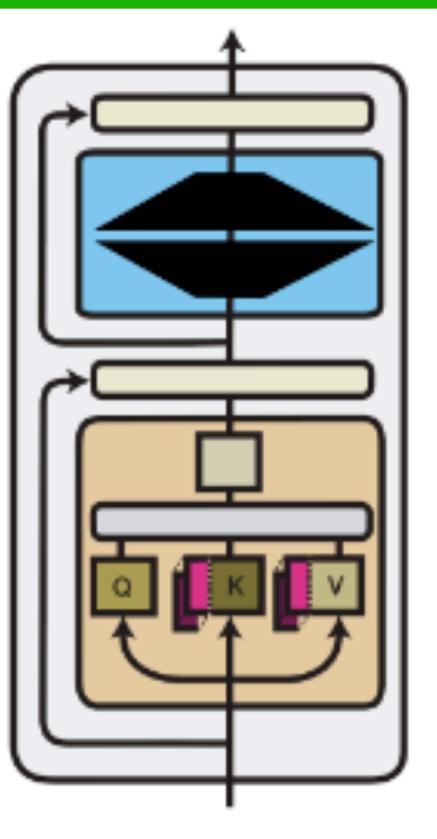
Pruning requires re-training iterations

Does not increase the model size E.g., LoRA achieves strong performance

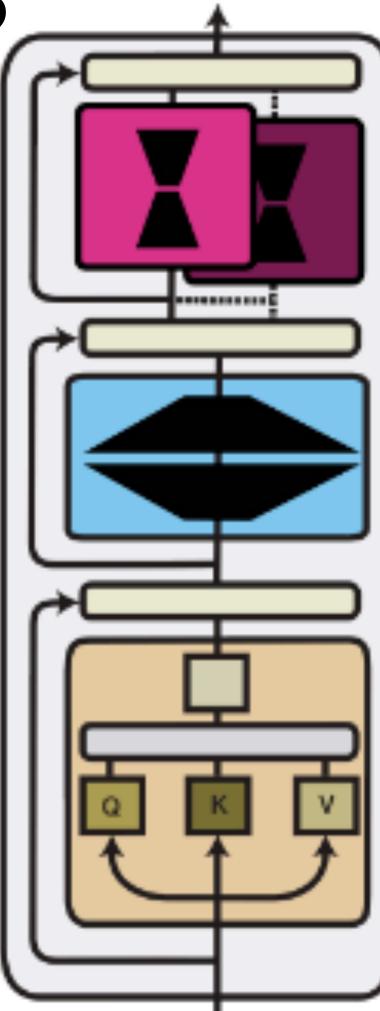




Parameter Composition

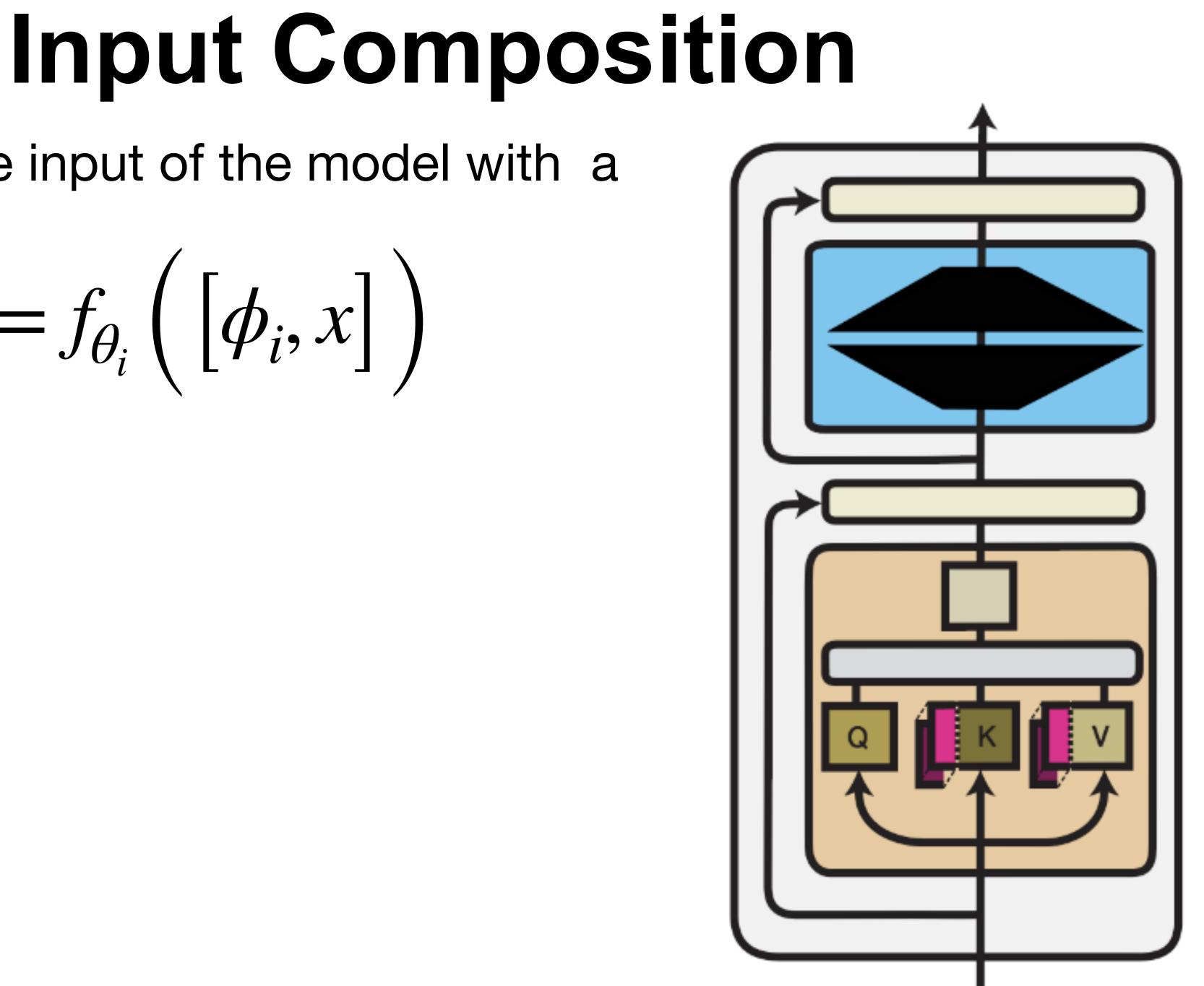


Input Composition



Function Composition

Idea — augment the input of the model with a learnable vector ϕ : $g_i(x) = f_{\theta_i}\left(\left[\phi_i, x\right]\right)$

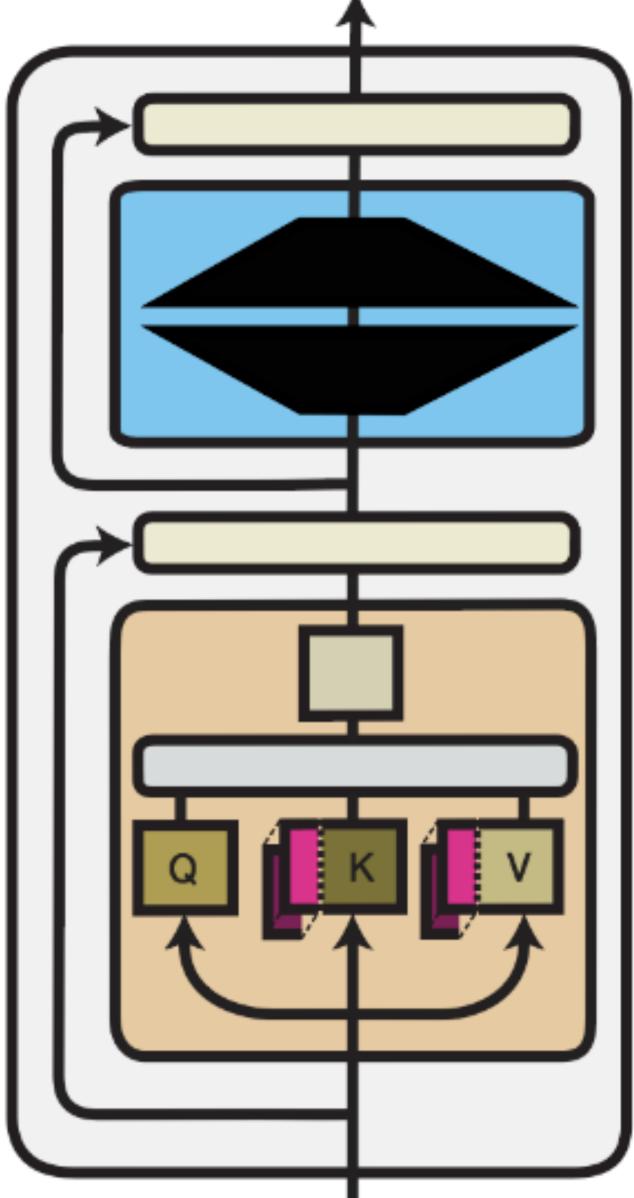


Input Composition

Idea – augment the input of the model with a learnable vector ϕ :

$$g_i(x) = f_{\theta_i}\left(\left[\phi_i, x\right]\right]$$

Input Composition and Prompting — standard prompting can be seen as finding a discrete text prompt that, when embedded using the model's embedding layer, yields ϕ_i



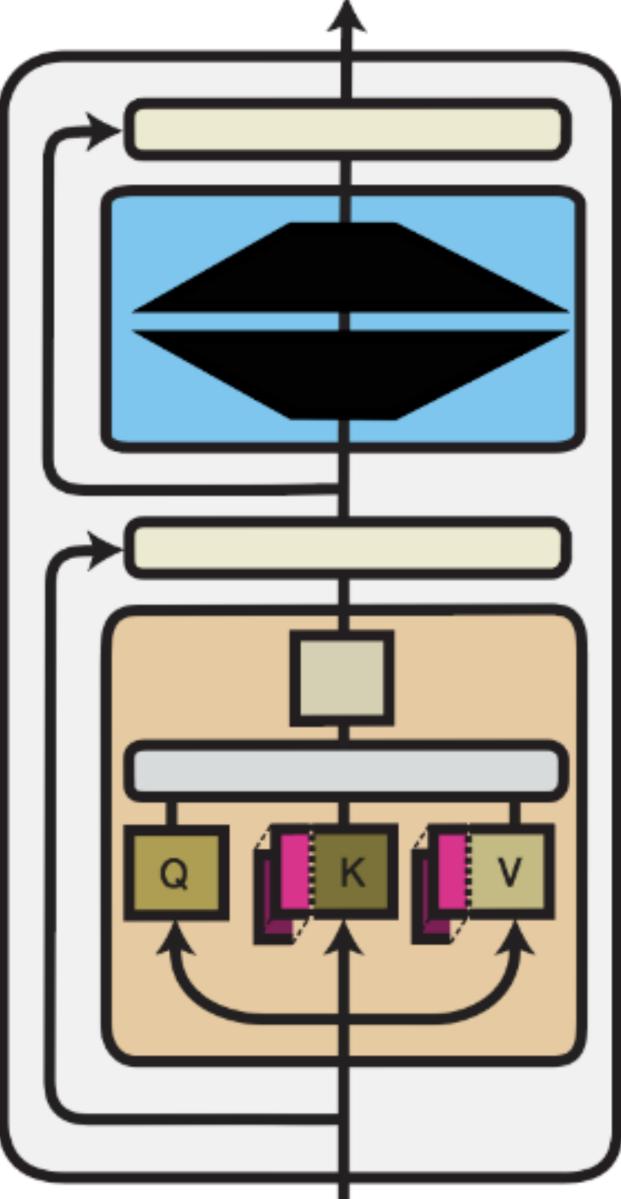
Input Composition

Idea – augment the input of the model with a learnable vector ϕ :

$$g_i(x) = f_{\theta_i}\left(\left[\phi_i, x\right]\right]$$

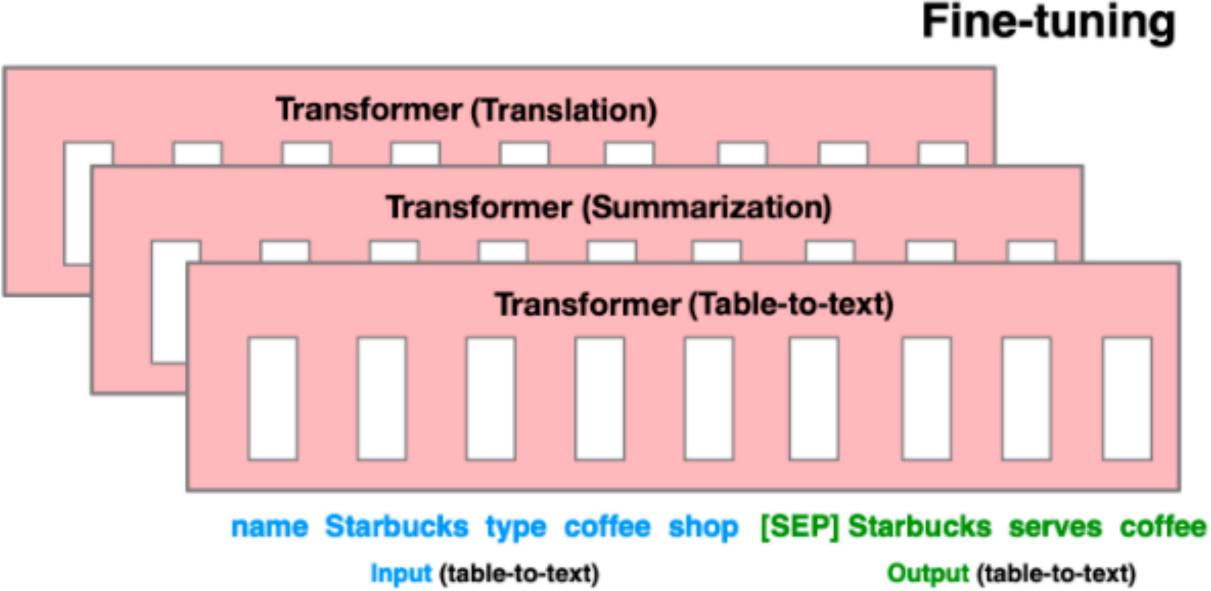
Input Composition and Prompting — standard prompting can be seen as finding a discrete text prompt that, when embedded using the model's embedding layer, yields ϕ_i

However, models tend to be sensitive to the choice of the prompt [Webson and Pavlick, 2022] and the order of examples [Zhao et al., 2021; Lu et al., 2022]



Prompt Tuning

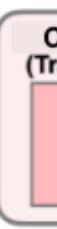
Idea — we can directly learn a continuous prompt ϕ which is pre-pended to the input [Liu et al., 2021; Hambardzumyan et al., 2021; Lester et al., 2021]



Prompt Tuning

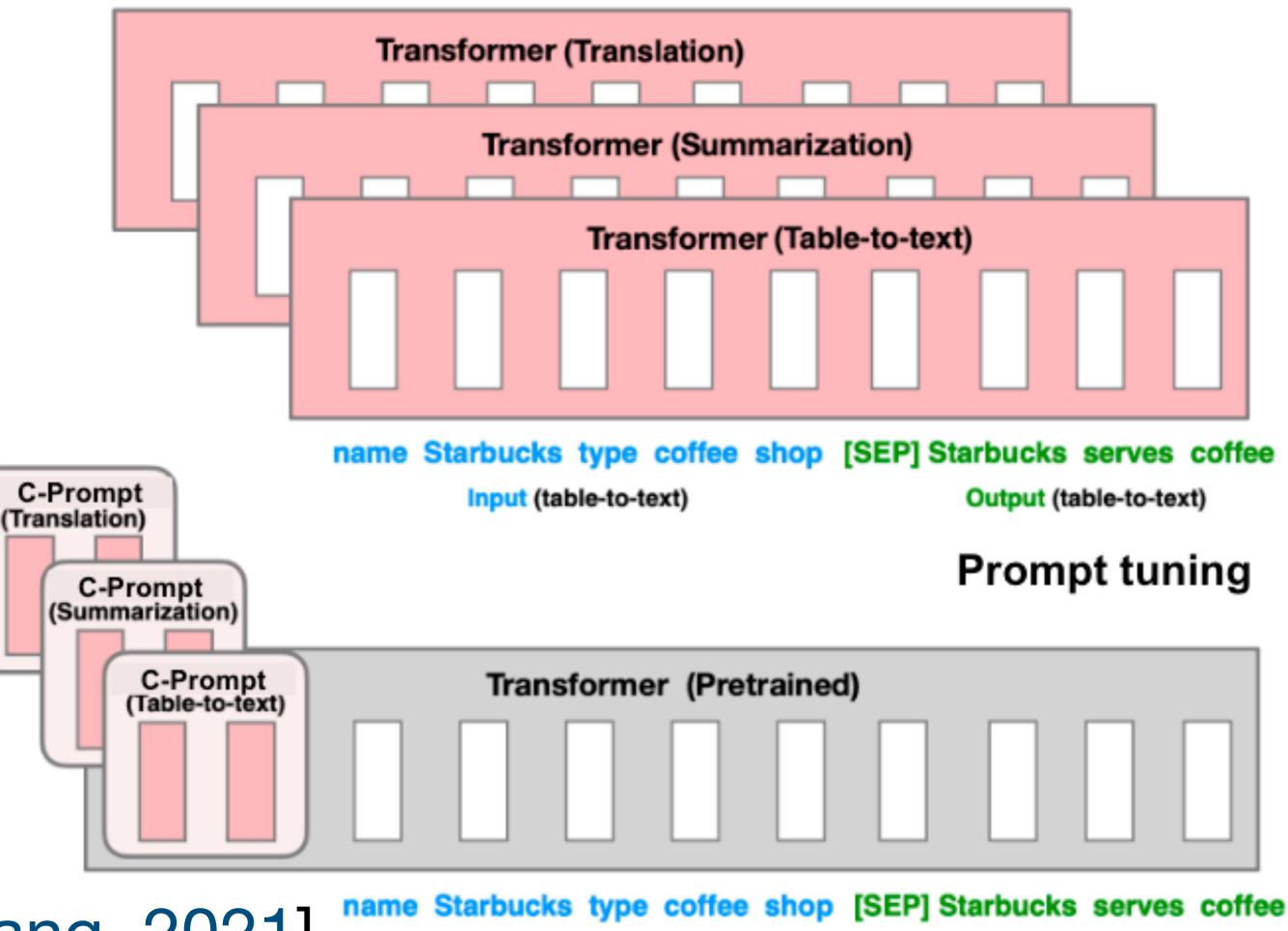
Idea — we can directly learn a continuous prompt ϕ which is pre-pended to the input [Liu et al., 2021; Hambardzumyan et al., 2021; Lester et al., 2021]

Here the module parameters ϕ is typically a matrix consisting of a sequence of continuous prompt embeddings



[Li and Liang, 2021]

Fine-tuning



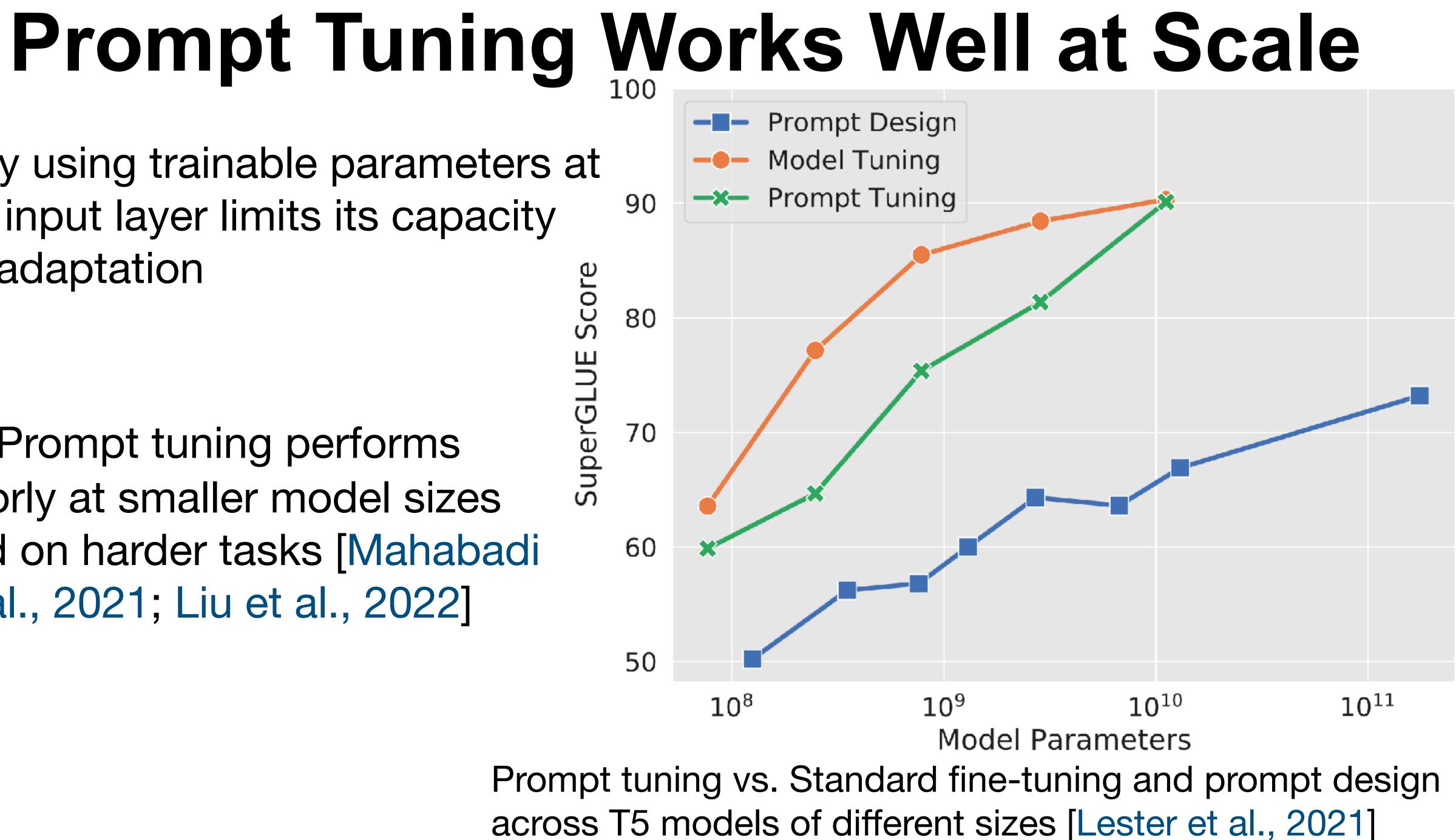
Input (table-to-text)

Output (table-to-text)

Only using trainable parameters at the input layer limits its capacity for adaptation Score

 \rightarrow Prompt tuning performs poorly at smaller model sizes and on harder tasks [Mahabadi et al., 2021; Liu et al., 2022]

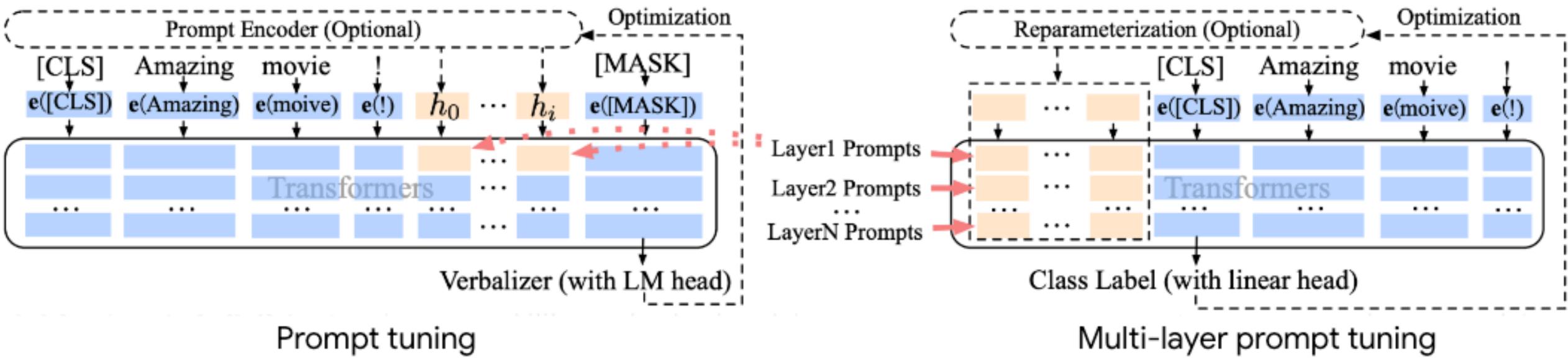
SuperGLUE



Multi-Layer Prompt Tuning

Instead of learning the module parameters ϕ_i only at the input layer, we can learn them at every layer of the model [Li and Jiang, 2021; Liu et al., 2022]

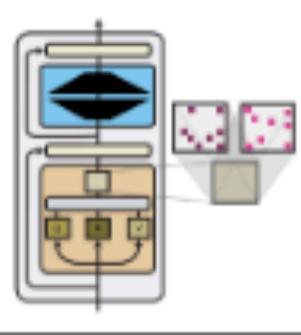
In practice, continuous prompts ϕ_i are concatenated with the keys and values in the self-attention layer [Li and Jiang, 2021]



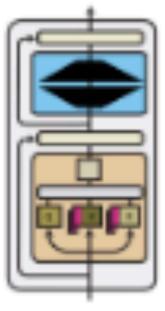
Computation Functions — Compariso

Parameter efficiency

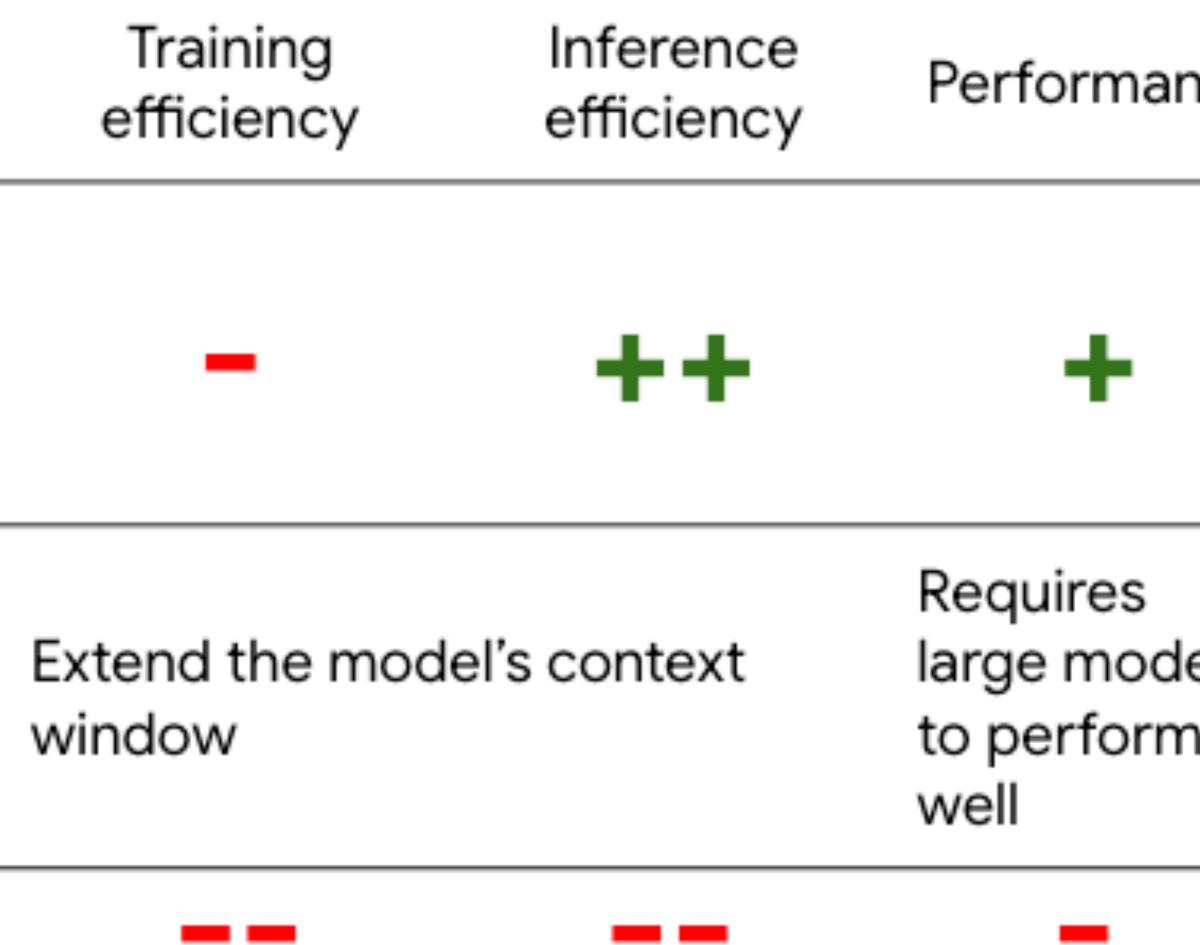
Parameter composition



Input composition

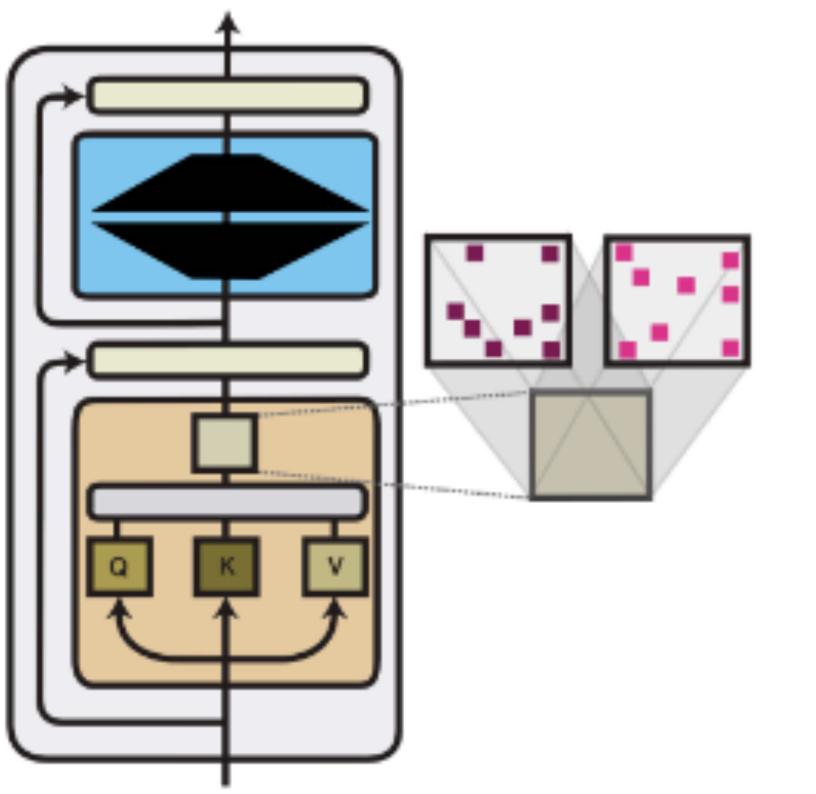


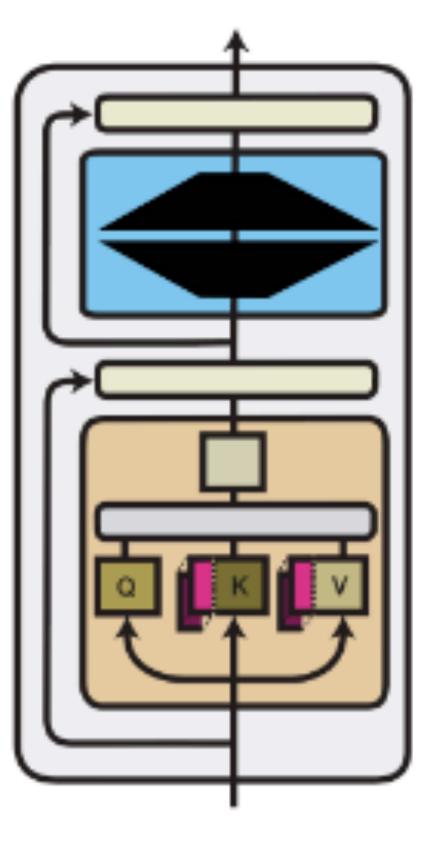
Only add a small number of parameters



)r	
nce	
els	
1	_

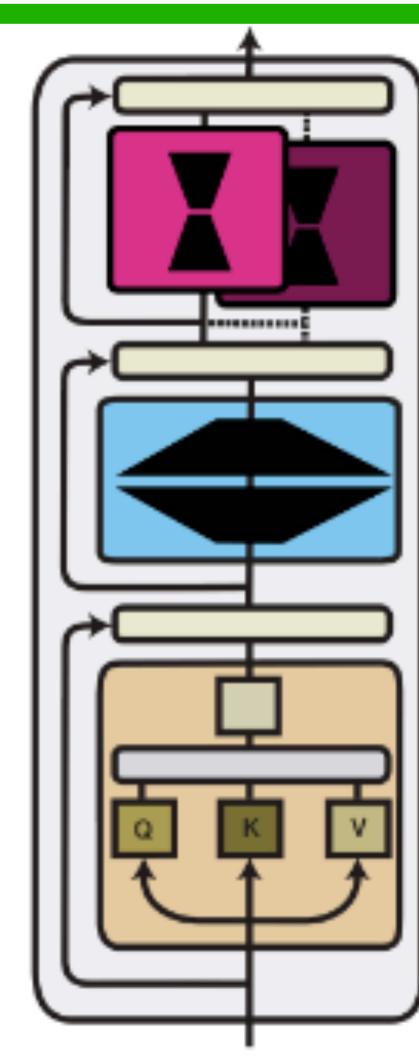
Composition Functions





Parameter Composition

Input Composition



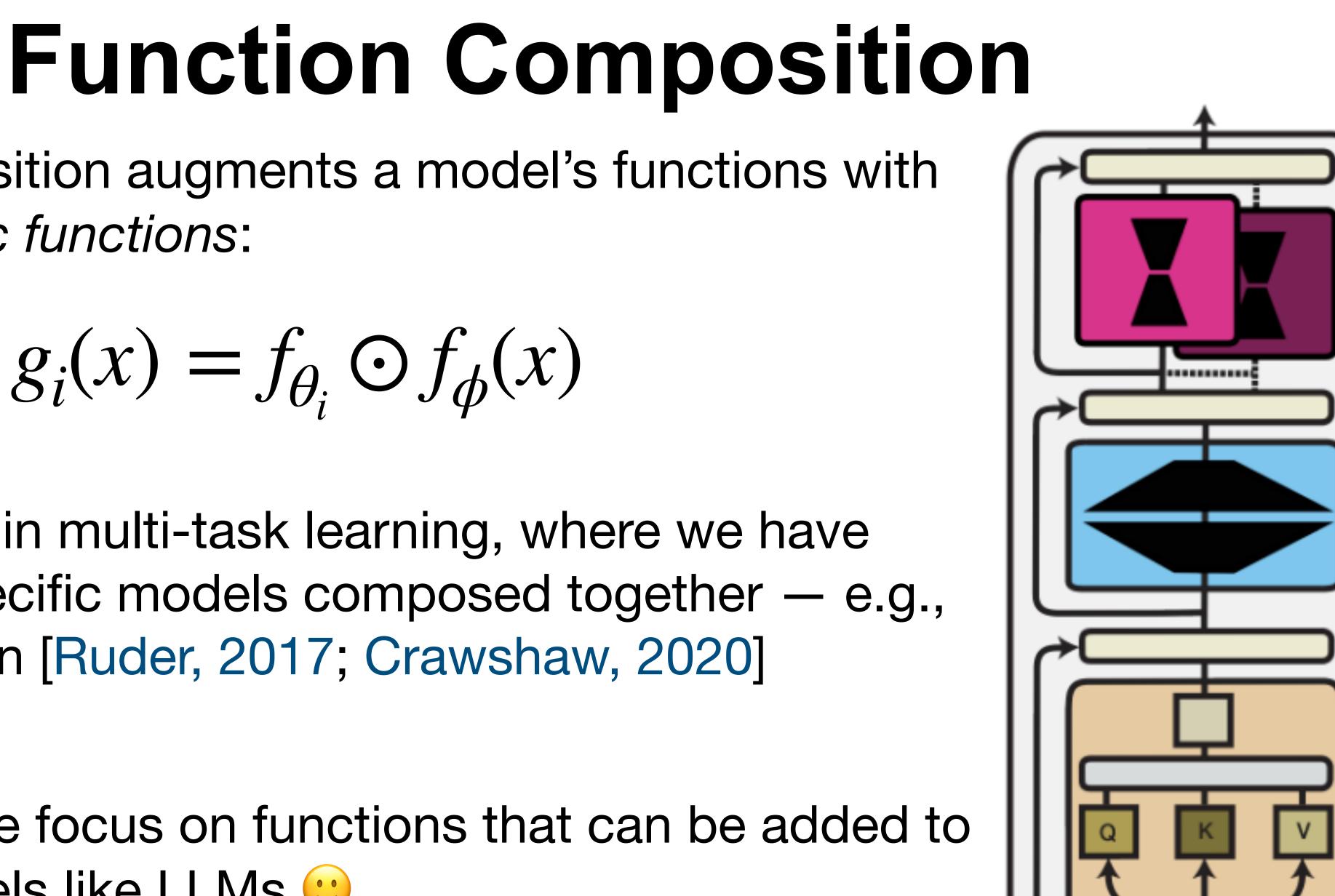
Function Composition

Function composition augments a model's functions with new task-specific functions:

$$g_i(x) = f_{\theta_i} \odot f_{\theta_i}$$

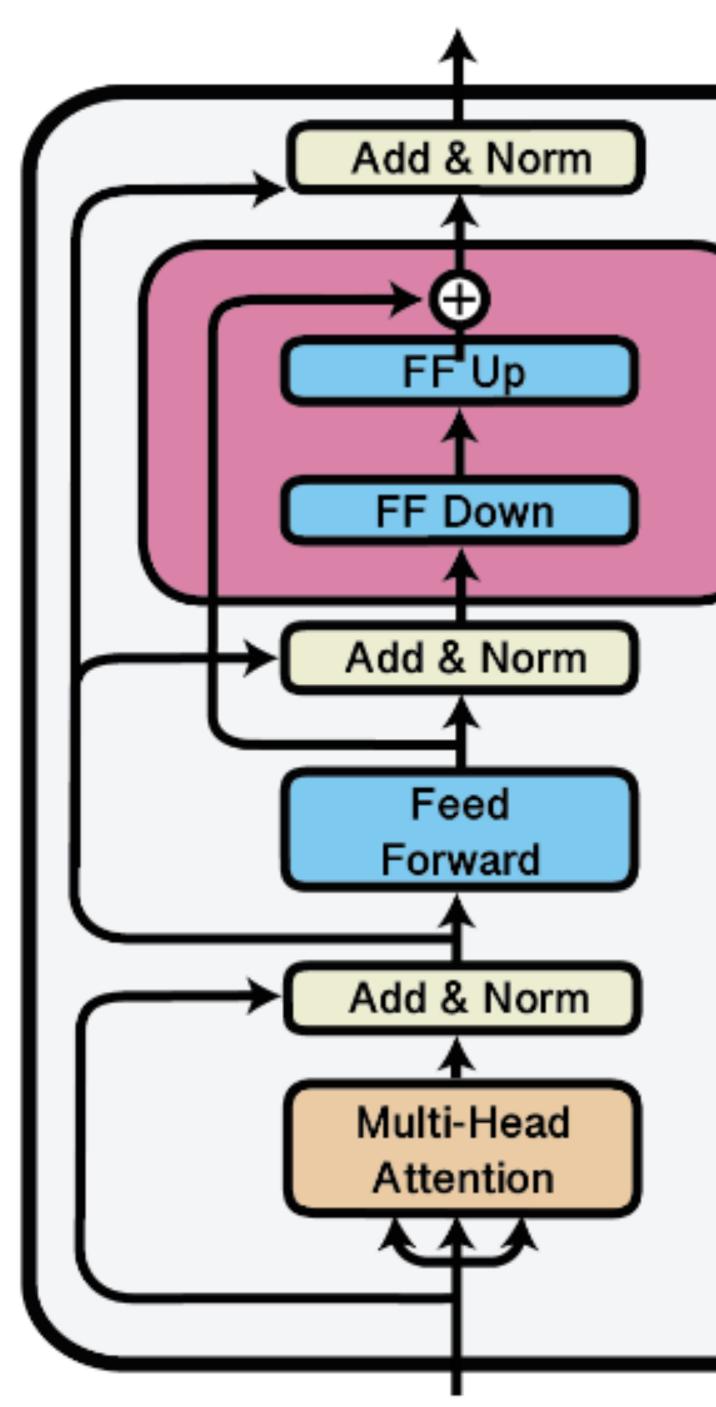
Commonly used in multi-task learning, where we have multiple task-specific models composed together — e.g., see the surveys in [Ruder, 2017; Crawshaw, 2020]

However, here we focus on functions that can be added to pre-trained models like LLMs



Adapters

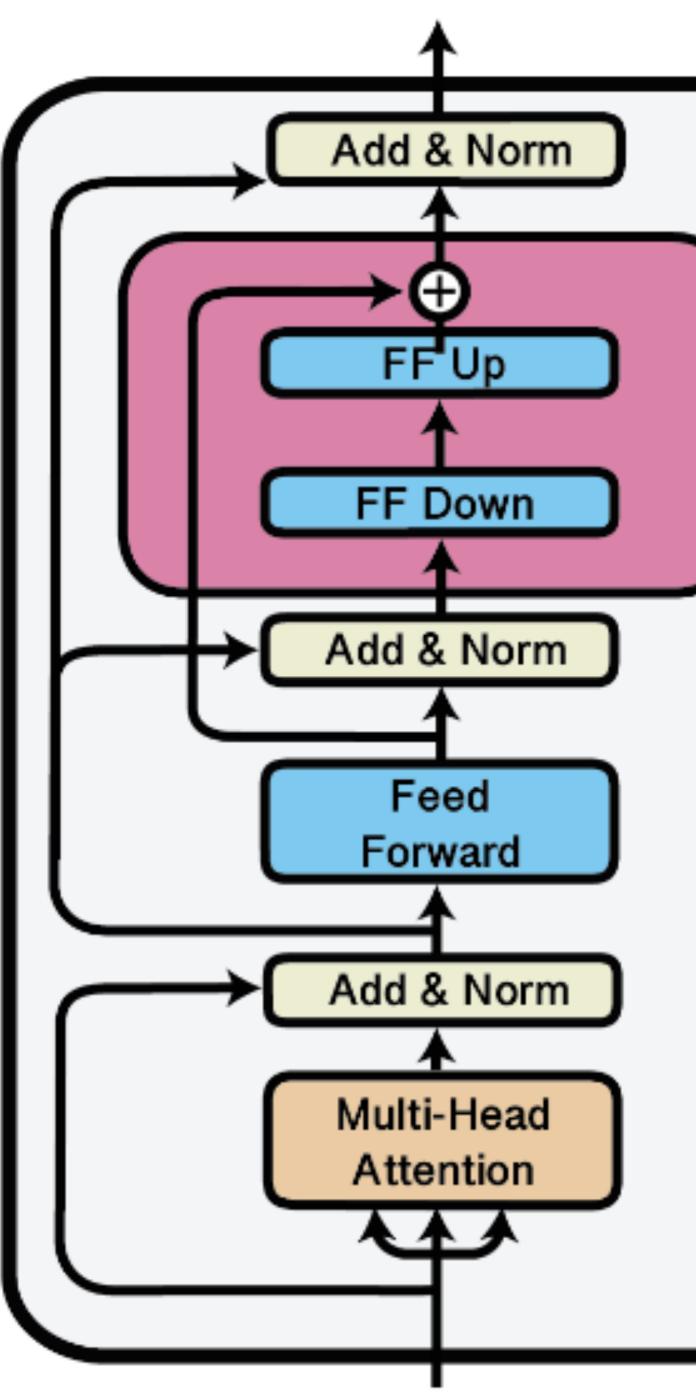
The main purpose of functions f_{ϕ_i} added to a pre-trained model is to adapt it to a new task — these functions are also known as adapters



Adapters

- The main purpose of functions f_{ϕ_i} added to a pre-trained model is to adapt it to a new task — these functions are also known as adapters
- In NLP, an adapter in a Transformer layer typically consists of a feed-forward down-projection $W_D \in \mathbb{R}^{k \times d}$, a feed-forward up-projection $W_U \in \mathbb{R}^{d \times k}$, and an activation function σ [Houlsby et al., 2019]

$$f_{\phi_i}(x) = W_D \left[\sigma \left(W_U x \right) \right]$$

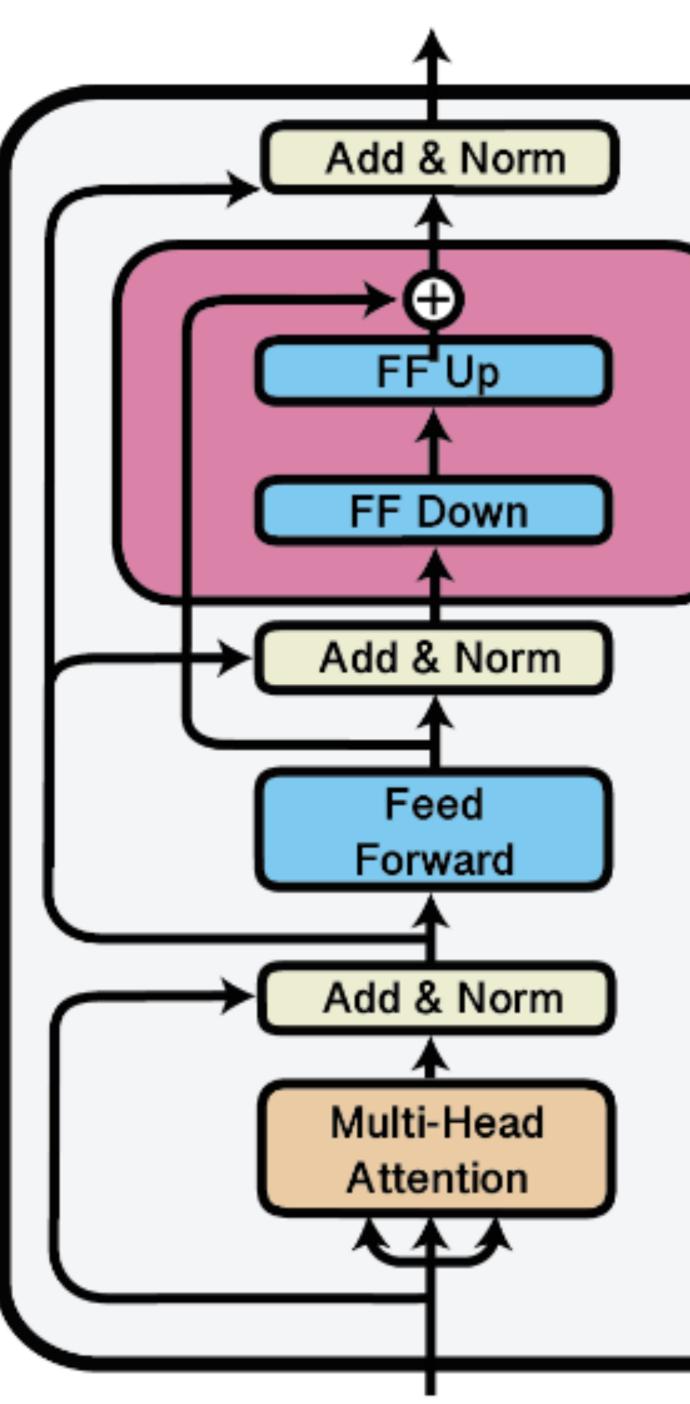


Adapters

- The main purpose of functions f_{ϕ_i} added to a pre-trained model is to adapt it to a new task — these functions are also known as adapters
- In NLP, an adapter in a Transformer layer typically consists of a feed-forward down-projection $W_D \in \mathbb{R}^{k \times d}$, a feed-forward up-projection $W_U \in \mathbb{R}^{d \times k}$, and an activation function σ [Houlsby et al., 2019]

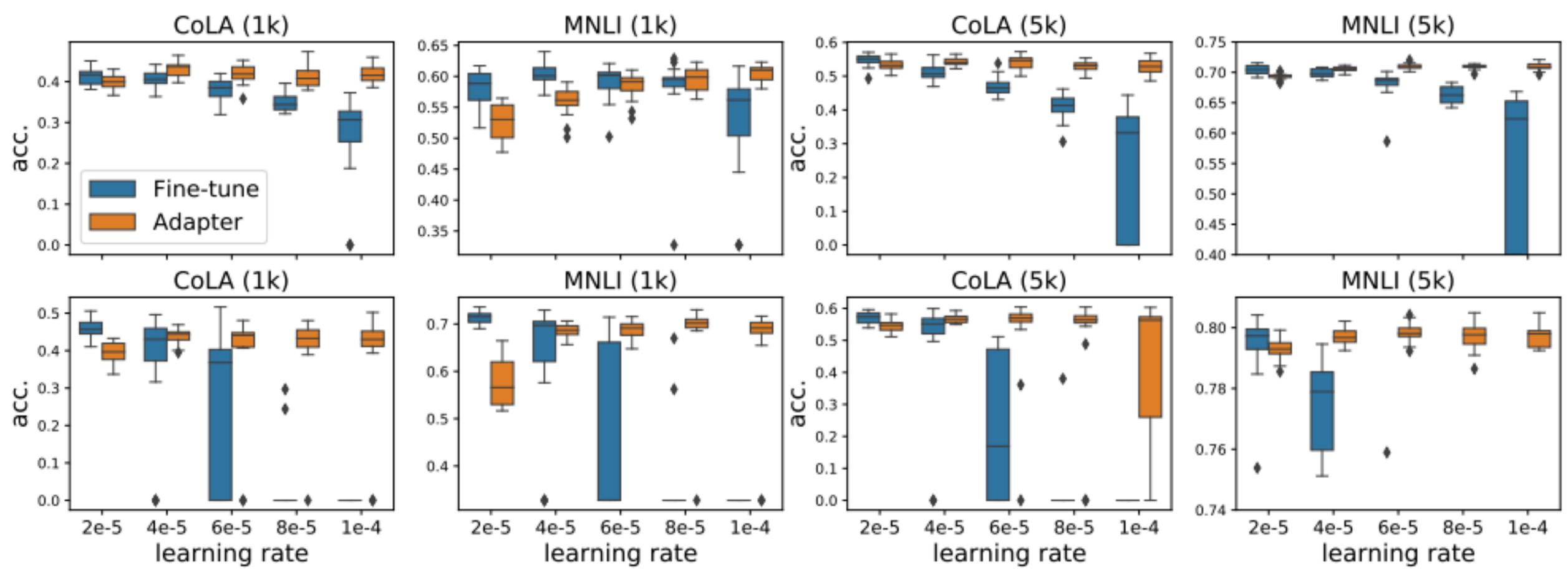
$$f_{\phi_i}(x) = W_D \left[\sigma \left(W_U x \right) \right]$$

Adapter usually placed after multi-head attention and/ or after the feed-forward layer



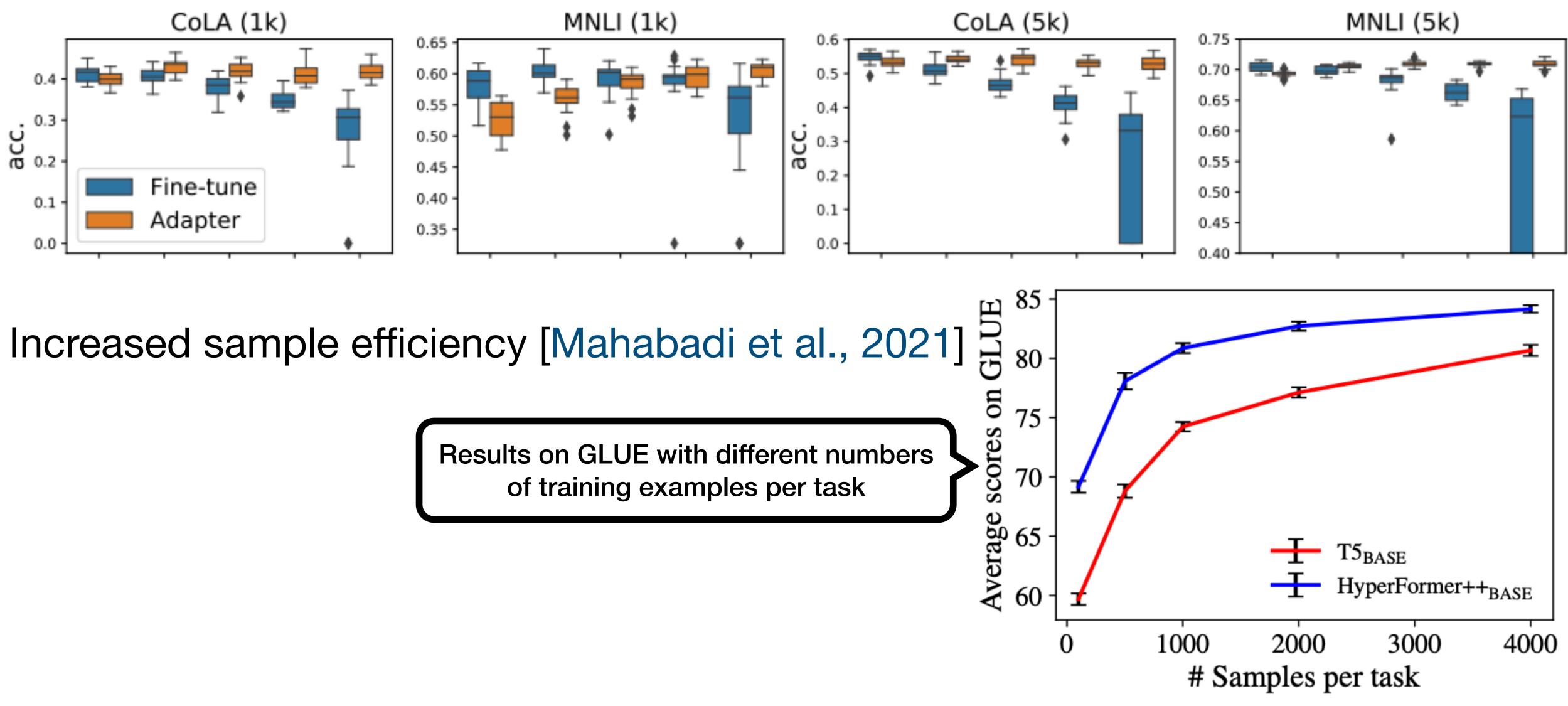
Benefits of Adapters

Increased robustness [He et al., 2021; Han et al., 2021]



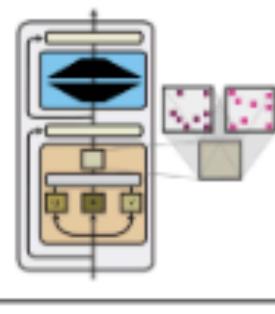
Benefits of Adapters

Increased robustness [He et al., 2021; Han et al., 2021]

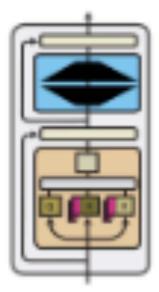


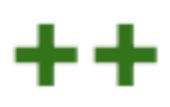
Parameter efficiency

Parameter composition

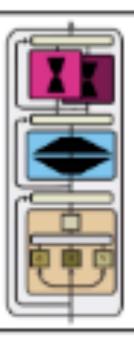


Input composition





Function Composition



Adapters depend on the hidden size

