Natural Language Understanding,
Generation, and Machine Translation

Lecture 27: Parameter-Efficient Fine-Tuning

Pasquale Minervini

p.minervini@ed.ac.uk
March 22nd, 2024

mailto:p.minervini@ed.ac.uk

Evolution of Pre-Trained Language Models

12 | ~
1071 MT-NLG .

- — P PalLM

4 101 | PanGu-Alpha -

=

5] i)

* i T5-11B & Turing-NLG)

- 10'° | Megatron-LM -

N

5 i i

©

E

s 10° | E
10° [ELMo -

| |
2018 2019 2020 2021 2022 2023
Year [Treviso et al., 2022]

Evolution of Pre-Trained Language Models

Transfer Learning in the Era of LLMs

e With increasing model size, e [he standard transfer learning
fine-tuning becomes increasingly formula breaks down
expensive

word2vec
Pretrainin Fove Fine-tunin
9 skip-thought 9 _(lassification

N\ InferSent sequence labeling
_________.’ ELMo —e > question answering
| ULMFIT
GPT

BERT
T5

Transfer Learning in the Era of LLMs

e With increasing model size, e The standard transfer learning
fine-tuning becomes increasingly formpla breaks do

expensive
word2vec
o o GloVe N
Pretraining skip-thought Fine-tu AT
N\ InferSent ce labeling

-y ELMoO tion answering
ULMFIT
GPT
BERT

T5

128

OT-120¢
6-120C
8-120¢
L-T20C
9-120C
S-1208
t-120¢
€ 120C
-1208
1-120¢
¢1-0c0c
11-020¢
0T-020¢
6-020cC
8-020¢7
£-020¢
9-020¢
G-020¢
7-020¢
€-020c
¢-020¢
1-020c
¢l-610C
T1-610¢
Or-610C
6-610C
8-610¢
L-610C
9-610C
G-610C
7-610C
€-610C
Z-6102
1-610C
¢1-810C
TT-810C
OL-810C
6-810¢
8-810Z
L-8T0C
9-810¢
G-810¢
7-810C
€-810¢
¢-810¢
1-810¢C

In-Context Learning

140
120
100
80
60
40
20
0

Date

In-Context Learning — Downsides

Inefficiency: the prompt needs to be processed every time the model
makes a prediction

In-Context Learning — Downsides

Inefficiency: the prompt needs to be processed every time the model
makes a prediction

Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]

In-Context Learning — Downsides

Inefficiency: the prompt needs to be processed every time the model
makes a prediction

Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022],
order of examples — e.qg., see [Zhao et al., 2021; Lu et al., 2022]

In-Context Learning — Downsides

Inefficiency: the prompt needs to be processed every time the model
makes a prediction

Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022],
order of examples — e.qg., see [Zhao et al., 2021; Lu et al., 2022]

Lack of clarity regarding what the model learns from the prompt —
even random label can provide non-trivial results [Min et al., 2022]!

Fine-Tuning — Parameter-Efficient Fine-Tuning

Parameter-
Pretraining RERT efficient classification

A BART Fine-tuning _ sequence labeling
- ERNIE —_— question answering
GPT-3
PaLM

OQO
DA

Fine-Tuning — Parameter-Efficient Fine-Tuning

4

Full Fine-tuning Parameter-efficient Fine-tuning
Update all model parameters Update a small subset of model parameters

Fine-Tuning — Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

* Updating the last layer of the model was common in computer vision
IDonahue et al., 2014]. In NLP, people experimented with static
(frozen) and non-static (trainable) [Kim, 2014]

 ELMo did not fine-tune word embeddings [Peters et al., 2018]

Fine-Tuning — Parameter-Efficient Fine-Tuning

Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

* Updating the last layer of the model was common in computer vision
IDonahue et al., 2014]. In NLP, people experimented with static
(frozen) and non-static (trainable) [Kim, 2014]

 ELMo did not fine-tune word embeddings [Peters et al., 2018]
In practice, fine-tuning everything seems to work better in practice —
why go back o fine-tuning only some parameters?

* Fine-tuning everything is impractical with large models

|| Ms nowadays are massively over-parameterised — PEFI matches
full fine-tuning in downstream accuracy

Some Notation

Let f, : & — ¥ be a neural network, which can be decomposed into
a composition of functions fy © f, O ... O fy , where each function

has parameters 0, withi € { 1,...,n}.

A module with parameters ¢ can modify a function f, as follows:

Some Notation

Let f, : & — ¥ be a neural network, which can be decomposed into
a composition of functions fy © f, O ... O fy , where each function

has parameters 0, withi € { 1,...,n}.

A module with parameters ¢ can modify a function f, as follows:

. Parameter composition: g =]Cei@¢()(:)

Interpolation — e.g.,
element-wise addition

Some Notation

Let f, : & — ¥ be a neural network, which can be decomposed into
a composition of functions fy © f, O ... O fy , where each function

has parameters 0, withi € { 1,...,n}.

A module with parameters ¢ can modify a function f, as follows:

. Parameter composition: g =]Cei@¢()(:)
.g = Int lation — e.g.,
. Input composition: g;(x) = fy ([x, ¢])

Some Notation

Let f, : & — ¥ be a neural network, which can be decomposed into
a composition of functions fy © f, O ... O fy , where each function

has parameters 0, withi € { 1,...,n}.

A module with parameters ¢ can modify a function f, as follows:

. Parameter composition: g =]Cei@¢()(:)
.g = Int lation — e.g.,
. Input composition: g;(x) = fy ([x, ¢])

. Function composition: 8/(x) = fo O f4(X)

Some Notation

Let f, : & — ¥ be a neural network, which can be decomposed into
a composition of functions fy © f, O ... O fy , where each function

has parameters 0, withi € { 1,...,n}.

A module with parameters ¢ can modify a function f, as follows:

. Parameter composition: g =]Cei@¢()(:)
. Input composition: g;(x) = fy ([x, ¢])
. Function composition: 8/(x) = fo O f4(X)

Typically, only module parameters ¢ are updated while @ is fixed

Composition Functions

Parameter
Composition

Composition Functions

Parameter Input
Composition Composition

Parameter Input Function
Composition Composition Composition

Parameter
Composition Composition Composition

Parameter Composition

Sparse Subnetworks, where module
parameters ¢ are enforced to be sparse

Parameter Composition

Sparse Subnetworks, where module
parameters ¢ are enforced to be sparse

Structured Composition, where we

impose a structure on the weights 6.
that we select — e.g., we update the
weights belonging to a pre-defined

group

Parameter Composition

Sparse Subnetworks, where module
parameters ¢ are enforced to be sparse

Structured Composition, where we

impose a structure on the weights 6.

that we select — e.g., we update the
weights belonging to a pre-defined

group

Low-Rank Composition, where the

module parameters ¢ lie in a low-
dimensional space

Parameter Composition — Sparse Subnetworks

A common inductive bias on module parameters ¢ is sparsity: when we do
g =fy. ¢(x) (element-wise product), we mask part of the neural network f

Most common sparsity method: pruning — e.g., see [Han et al., 2017]

m Initial training m Re-training m Re-training

y,) O -___
R A=
\,./
Pruning Pruning
O O

L. >
v

One-shot pruning

Y

lterative pruning

Parameter Composition — Structured Composmon

BitFit

: LayerNorm | b \
We can impose a structure on the weights that we 1
select: we only modify the weights that are ;) Y .
associated in a pre-defined group &, for example, a | 2x Feed-Forward | b [
layer, a group of layers, or more fine-grained : - .
components LayerNorm | b

S
Example: only update bias vectors — BitFit [Ben- § i)
Zaken et al., 2022] Feed-Formard [b]

Multi-Headed Attention | b

.................................

Parameter Composition — Low-Rank Composition

Another useful inductive bias: module parameters ¢ should lie in a low-

dimensional space. Li et al., 2018 show that models can be optimised in a low-
dimensional, randomly oriented subspace rather than the full parameter space

Low-rank fine-tuning takes the form g = f, py Where P € RPX4 _ with a dense
matrix of shape D X d, this scales as O(Dd) in time and storage

Standard fine-tuning:)
D) _ p(D) D) ™. gD) D) _ p(D) d
0P =6y + 0P 0; P =g,") 4+ PoY
"-_0(1)) —

A random D X d

projection matrix

g D — 3 Everything but 9(?) is fixed. Only) = 3
— d dimensions are optimized.

Parameter Composition — LoRA

Low-Rank Adaptation — instead of learning a low-rank factorisation via a

random matrix P, we can learn the projection matrix directly
LoRA [Hu et al., 2022] learns two matrices .
.

B € R and A € R™* that are applied to

the self-attention weights: _ @ %

Pretrained
Weights

Parameter Composition — LoRA

Low-Rank Adaptation — instead of learning a low-rank factorisation via a

random matrix P, we can learn the projection matrix directly
LoRA [Hu et al., 2022] learns two matrices

B € R and A € R™* that are applied to

h | |
the self-attention weights: . &I \%
"= [WO M AW] T [Wo T BA] A Pretrained

Update to parameters W, Weights

Parameter Composition — LoRA

Low-Rank Adaptation — instead of learning a low-rank factorisation via a

random matrix P, we can learn the projection matrix directly
LoRA [Hu et al., 2022] learns two matrices

B € R and A € R™* that are applied to

h | |
the self-attention weights: _ &’ %
h=|W,+AW|x = |W,+ BA| x S

Update to parameters W, Weights

In our notation:

8 =Jo+Ba, Vi €Y

Parameter Composition — LoRA

Applying LoRA to a Transformer layer — remember how Transformers work:
MultiHead(Q, K, V) = Concat(head,, ..., head,)W,,

.
with Attention(and Attention(Q, K, V) = softmax (f%c

)

Parameter Composition — LoRA

Applying LoRA to a Transformer layer — remember how Transformers work:
MultiHead(Q, K, V) = Concat(head,, ..., head,)W,,

.
with Attention(and Attention(Q, K, V) = softmax (f%c)

We can use LoRA to adapt the weights W, ;, Wi ;, and/or Wy,; — in the case of

Wo.i» the updated weights will be:

WQ,i — WQ,i + AWQ,i
= W, + By Ap; with B € R*, A € R™

Computation Functions — Comparison

Parameter Training Inference

efficiency efficiency efficiency reFlormance
2]
@ Methods such Prun.mg Does not E.g.,.LoRA
Parameter |\="0 |kl as LoRA requires Ionaass the achieves
composition [= require < 3% of re-training . strong
. . model size
parameters iterations performance

- - 1] +

Parameter Function
Composition Composition Composition

Input Composition

Idea — augment the input of the model with a
learnable vector ¢:

800 =1, ([#])

Input Composition

Idea — augment the input of the model with a
learnable vector ¢:

g:(x) = fel. ([¢i’ x])

Input Composition and Prompting — standard
prompting can be seen as finding a discrete text
prompt that, when embedded using the model’s

embedding layer, yields ¢

Input Composition

Idea — augment the input of the model with a
learnable vector ¢:

g;(x) =fel. ([¢i, x])

Input Composition and Prompting — standard
prompting can be seen as finding a discrete text
prompt that, when embedded using the model’s

embedding layer, yields ¢

However, models tend to be sensitive to the
choice of the prompt [Webson and Pavlick, 2022]
and the order of examples [Zhao et al., 2021; Lu et
al., 2022]

Prompt Tuning

Idea — we can directly learn a continuous prompt ¢

which is pre-pended to the input Fine-tuning
IlLiu et al., 2021; Hambardzumyan - Transformer (Transiation)
et al., 2021; Lester et al., 2021] © Transformer (Summarization)

T et

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Prompt Tuning

Idea — we can directly learn a continuous prompt ¢

which Is pre-pended to the input

Fine-tuning

IlLiu et al., 2021; Hambardzumyan

Transformer (Translation)
| M — | |

et al., 2021; Lester et al., 2021]

Transformer (Summarization)
[.. - L1 L1 |

Here the module parameters ¢ is

typically a matrix consisting of a
sequence of continuous prompt ”(Ts;g;,g;pog,t,‘l

(Summarization)
) . .

5 C-Prompt
(Table-to-text)

embeddings C-Prompt L

k —

Transformer (Table-to-text)

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Prompt tuning

J

Transformer (Pretrained)

[lLi and Liang, 2021]

name Starbucks type coffee shop [SEP] Starbucks serves coffee
input (table-to-text) Output (table-to-text)

Prompt Tuning Works Well at Scale

100
—=Ml- Prompt Design

Only using trainable parameters at Model Tuning

the input layer limits its capacity =~ 20~ TomPriuning .
for adaptation g /

O 2

5 o0

O
— Prompt tuning performs g /9 / _/
poorly at smaller model sizes & /" /-\./
and on harder tasks [Mahabadi 60 x Ve
et al., 2021; Liu et al., 2022] /"""

50 L

108 10° 1010 10
Model Parameters
Prompt tuning vs. Standard fine-tuning and prompt design

across T5 models of different sizes [Lester et al., 2021]

Multi-Layer Prompt Tuning

Instead of learning the module parameters ¢. only at the input layer, we can
learn them at every layer of the model |[Li and Jiang, 2021; Liu et al., 2022]

In practice, continuous prompts ¢, are concatenated with the keys and
values in the self-attention layer [Li and Jiang, 2021]

—________ PromptEncoder Optional) o -ESESEEE. (" Reparameterization (Optional) - CPURZAOR___
[CLS] Amazing mo*vie ; : : IMASK} 0 v [CI;S] Ama:zing mo:/ie ! :
e([C*LS]) e(Amfzing) e(m(*)ive) eg!) }:0 }z,,; e([M}}SK]) E i * * Ee([C+LS]) e(Am:zing) e(m(:ivc) e&!) E

4 il ™\ ! " Layerl Prompts .. , N |
S N SISO - W S| Loyer2 Prompts P

_ T :) E Laycr.\i .P‘rompls \: ___________ : ‘ J. E

|
|

Prompt tuning Multi-layer prompt tuning

Computation Functions — Comparison

Parameter
efficiency

Training Inference
efficiency efficiency

Performance

Parameter
composition

r

ed L

==

- ++

==

=
i
-

—

J

»

~{ i]‘
ol b |
L@ 1

Only add a Requires
Input 4 Extend the model’s context large models
" = small number .
composition window to perform
of parameters well

++

Parameter Input
Composition Composition Composition

Function Composition

Function composition augments a model’s functions with
new task-specific functions:

g(x) = fel. © f4(x)

Commonly used in multi-task learning, where we have
multiple task-specific models composed together — e.qg.,
see the surveys in [Ruder, 2017; Crawshaw, 2020]

However, here we focus on functions that can be added to
pre-trained models like LLMs

Adapters

The main purpose of functions f¢i added to a pre-trained

Add & Norm

model is to adapt it to a new task — these functions are — FRUp
also known as adapters

&
FF Down
=I Add & Norm

Feed
Forward

Add & Norm

Multi-Head
Attention

Adapters

The main purpose of functions f¢i added to a pre-trained

Add & Norm

>
model is to adapt it to a new task — these functions are

also known as adapters

In NLP, an adapter in a Transformer layer typically el

consists of a feed-forward down-projection —
W, & R4 4 feed-forward up-projection Wy, € Rk,
and an activation function o [Houlsby et al., 2019] Feed
Forward
f¢.(x) — WD [0 (WUX)] Add & Norm
Multi-Head

Attention
A A 4

Adapters

The main purpose of functions f¢i added to a pre-trained

Add & Norm

>
model is to adapt it to a new task — these functions are

also known as adapters

In NLP, an adapter in a Transformer layer typically el

consists of a feed-forward down-projection —
W, & R4 4 feed-forward up-projection Wy, € Rk,
and an activation function o [Houlsby et al., 2019] Feed
Forward
f¢.(x) — WD [0 (WUX)] Add & Norm
Multi-Head

Adapter usually placed after multi-head attention and/ Attention
or after the feed-forward layer ¥

Benefits of Adapters

Increased robustness [He et al., 2021; Han et al., 2021}

aCcC.

aCcC.

MNLI (1k)
0.65 -
0.4 4 0.60 - + ﬁ ﬁ
0.55 - *‘ i ;
0.34
0.50 - S
0.2% : 0.45 -
01 B Fine-tune s
I Adapter 03¢
0.0 - ' ' ' L ' ' ‘¢ ¢
ColLA (1k) MNLI (1k)
0.5 - + é i
0.7 -
0.4 4 ? i ; ? ’ *
0.6
0.3 4 & 4
0.2 - ' 0.5 1
0.14 0.4
0.0 - I ¢ —¢ —¢ o —¢ —
2e5 4eS 6e5 8e5 le-4 2e5 4e5 GeS 8eS le-4

learning rate

learning rate

acc.

acc.

0.6

0.5 4
0.4 4
0.3
0.2 4
0.1-
0.0 -

0.6 -
0.5+
0.4 +
0.3 1
0.2 4
0.1-
0.0 -

ColLA (5k)

'?*-I-.I.-I'{'_'I' + =

.

4

ColLA (5k)

- g * =

¢ ¢

i 0—0

2e5 4e5 6e5 BeS lé-d

learning rate

0.75

0.70 +
0.65 -
0.60 1
0.55+
0.50 -
0.45 -

0.40

0.80 -

0.78 1

0.76 -

0.74

MNLI (5k)

MNLI (Sk)

W ¢ T ®

¢

2e-5 4e-5 6e-5 B8e-5
learning rate

le-4

Benefits of Adapters

Increased robustness [He et al., 2021; Han et al., 2021}
ColLA (1k) MNLI (1k) ColLA (5k) MNLI (5k)

0.65 A 0.6 0.75

0.4 - 0.60 4 0.5~ﬁ — 0% T % 070 "N ‘ i‘
.0.3‘% *% ?% ié éé 0-5SqT§ +? ﬁ % *% 0.4 - é é + o.ss«i" = 2 -T

0.3 - B 0.601
B Fine-tune

0.55 4
0.50 -

0.1 + 0.40 - 0.1 -
Adapter 93¢ | 0.45 -
0.0 - 4 ¢ ' ¢ 0.0 1 0.40
o 85-
Increased sample efficiency [Mahabadi et al., 2021] 3 4.
=
° 75
Results on GLUE with different numbers § &
of training examples per task Q 70~
D)
B0 A& -
g 05 —+— TSgase
E 60 - —}— HyperFormer++g 5 gk

0 1000 2000 3000 4000
Samples per task

Computation Functions — Comparison

Parameter Training Inference
efficiency efficiency efficiency

Performance

r

Parameter §

composition

-+ - T -

\

r

L
[
o

: ++ - - -

Function %
P —

—

—

o] h- .
—_— idden size . . :
frozen params operations fine-tuning

composition
Does not New Match or
Adapters . .
depend on the require functions outperform
Composition [~ gradients of Increase # of standard

- - - ++

