
Natural Language Understanding,
Generation, and Machine Translation

Pasquale Minervini
p.minervini@ed.ac.uk

March 22nd, 2024

Lecture 27: Parameter-Efficient Fine-Tuning

mailto:p.minervini@ed.ac.uk

Evolution of Pre-Trained Language Models

[Treviso et al., 2022]

Evolution of Pre-Trained Language Models

Transfer Learning in the Era of LLMs

Transfer Learning in the Era of LLMs

In-Context Learning

In-Context Learning — Downsides
Inefficiency: the prompt needs to be processed every time the model
makes a prediction

Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022],
order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]

Lack of clarity regarding what the model learns from the prompt —
even random label can provide non-trivial results [Min et al., 2022]!

In-Context Learning — Downsides
Inefficiency: the prompt needs to be processed every time the model
makes a prediction

Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022],
order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]

Lack of clarity regarding what the model learns from the prompt —
even random label can provide non-trivial results [Min et al., 2022]!

In-Context Learning — Downsides
Inefficiency: the prompt needs to be processed every time the model
makes a prediction

Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022],
order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]

Lack of clarity regarding what the model learns from the prompt —
even random label can provide non-trivial results [Min et al., 2022]!

In-Context Learning — Downsides
Inefficiency: the prompt needs to be processed every time the model
makes a prediction

Poor performance: prompting generally performs worse than fine-
tuning [Brown et al., 2020]

Sensitivity to the wording of the prompt [Webson & Pavlick, 2022],
order of examples — e.g., see [Zhao et al., 2021; Lu et al., 2022]

Lack of clarity regarding what the model learns from the prompt —
even random label can provide non-trivial results [Min et al., 2022]!

Fine-Tuning Parameter-Efficient Fine-Tuning→

Fine-Tuning Parameter-Efficient Fine-Tuning→

Fine-Tuning Parameter-Efficient Fine-Tuning→
Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

• Updating the last layer of the model was common in computer vision

[Donahue et al., 2014]. In NLP, people experimented with static
(frozen) and non-static (trainable) [Kim, 2014]

• ELMo did not fine-tune word embeddings [Peters et al., 2018]

In practice, fine-tuning everything seems to work better in practice —
why go back o fine-tuning only some parameters?

• Fine-tuning everything is impractical with large models

• LLMs nowadays are massively over-parameterised — PEFT matches

full fine-tuning in downstream accuracy

Fine-Tuning Parameter-Efficient Fine-Tuning→
Parameter-Efficient Fine-Tuning (PEFT) is not really a new idea!

• Updating the last layer of the model was common in computer vision

[Donahue et al., 2014]. In NLP, people experimented with static
(frozen) and non-static (trainable) [Kim, 2014]

• ELMo did not fine-tune word embeddings [Peters et al., 2018]

In practice, fine-tuning everything seems to work better in practice —
why go back o fine-tuning only some parameters?

• Fine-tuning everything is impractical with large models

• LLMs nowadays are massively over-parameterised — PEFT matches

full fine-tuning in downstream accuracy

Some Notation
Let be a neural network, which can be decomposed into
a composition of functions , where each function
has parameters with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters can modify a function as follows:

• Parameter composition:

• Input composition:

• Function composition:

Typically, only module parameters are updated while is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g.,
element-wise addition

Concatenation

Some Notation
Let be a neural network, which can be decomposed into
a composition of functions , where each function
has parameters with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters can modify a function as follows:

• Parameter composition:

• Input composition:

• Function composition:

Typically, only module parameters are updated while is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g.,
element-wise addition

Concatenation

Some Notation
Let be a neural network, which can be decomposed into
a composition of functions , where each function
has parameters with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters can modify a function as follows:

• Parameter composition:

• Input composition:

• Function composition:

Typically, only module parameters are updated while is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g.,
element-wise addition

Concatenation

Some Notation
Let be a neural network, which can be decomposed into
a composition of functions , where each function
has parameters with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters can modify a function as follows:

• Parameter composition:

• Input composition:

• Function composition:

Typically, only module parameters are updated while is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g.,
element-wise addition

Concatenation

Composition

Some Notation
Let be a neural network, which can be decomposed into
a composition of functions , where each function
has parameters with .

fθ : 𝒳 ↦ 𝒴
fθ1

⊙ fθ2
⊙ … ⊙ fθn

θi i ∈ {1,…, n}

A module with parameters can modify a function as follows:

• Parameter composition:

• Input composition:

• Function composition:

Typically, only module parameters are updated while is fixed

ϕ fθi

gi = fθi⊕ϕ(x)

gi(x) = fθi ([x, ϕ])
gi(x) = fθi

⊙ fϕ(x)
ϕ θ

Interpolation — e.g.,
element-wise addition

Concatenation

Composition Functions

Parameter
Composition

Input
Composition

Function
Composition

Composition Functions

Parameter
Composition

Input
Composition

Function
Composition

Composition Functions

Parameter
Composition

Input
Composition

Function
Composition

Parameter
Composition

Input
Composition

Function
Composition

Composition Functions

Parameter Composition
Sparse Subnetworks, where module
parameters are enforced to be sparse

Structured Composition, where we
impose a structure on the weights
that we select — e.g., we update the
weights belonging to a pre-defined
group

Low-Rank Composition, where the
module parameters lie in a low-
dimensional space

ϕ

θi

ϕ

Parameter Composition
Sparse Subnetworks, where module
parameters are enforced to be sparse

Structured Composition, where we
impose a structure on the weights
that we select — e.g., we update the
weights belonging to a pre-defined
group

Low-Rank Composition, where the
module parameters lie in a low-
dimensional space

ϕ

θi

ϕ

Parameter Composition
Sparse Subnetworks, where module
parameters are enforced to be sparse

Structured Composition, where we
impose a structure on the weights
that we select — e.g., we update the
weights belonging to a pre-defined
group

Low-Rank Composition, where the
module parameters lie in a low-
dimensional space

ϕ

θi

ϕ

Parameter Composition — Sparse Subnetworks
A common inductive bias on module parameters is sparsity: when we do

 (element-wise product), we mask part of the neural network

Most common sparsity method: pruning — e.g., see [Han et al., 2017]

ϕ
gi = fθi⋅ϕ(x) f

Parameter Composition — Structured Composition

We can impose a structure on the weights that we
select: we only modify the weights that are
associated in a pre-defined group , for example, a
layer, a group of layers, or more fine-grained
components

𝒢

Example: only update bias vectors — BitFit [Ben-
Zaken et al., 2022]

Parameter Composition — Low-Rank Composition
Another useful inductive bias: module parameters should lie in a low-
dimensional space. Li et al., 2018 show that models can be optimised in a low-
dimensional, randomly oriented subspace rather than the full parameter space

ϕ

Low-rank fine-tuning takes the form where — with a dense
matrix of shape , this scales as in time and storage

g = fθ+Pϕ P ∈ ℝD×d

D × d 𝒪(Dd)

Parameter Composition — LoRA
Low-Rank Adaptation — instead of learning a low-rank factorisation via a
random matrix , we can learn the projection matrix directly

LoRA [Hu et al., 2022] learns two matrices

 and that are applied to

the self-attention weights:

P

B ∈ ℝd×r A ∈ ℝr×k

h = [W0 + ΔW] x = [W0 + BA] x

In our notation:

gi = fθi+BiAi
, ∀fi ∈ 𝒢

Update to parameters W0

Parameter Composition — LoRA
Low-Rank Adaptation — instead of learning a low-rank factorisation via a
random matrix , we can learn the projection matrix directly

LoRA [Hu et al., 2022] learns two matrices

 and that are applied to

the self-attention weights:

P

B ∈ ℝd×r A ∈ ℝr×k

h = [W0 + ΔW] x = [W0 + BA] x

In our notation:

gi = fθi+BiAi
, ∀fi ∈ 𝒢

Update to parameters W0

Parameter Composition — LoRA
Low-Rank Adaptation — instead of learning a low-rank factorisation via a
random matrix , we can learn the projection matrix directly

LoRA [Hu et al., 2022] learns two matrices

 and that are applied to

the self-attention weights:

P

B ∈ ℝd×r A ∈ ℝr×k

h = [W0 + ΔW] x = [W0 + BA] x

In our notation:

gi = fθi+BiAi
, ∀fi ∈ 𝒢

Update to parameters W0

Parameter Composition — LoRA
Applying LoRA to a Transformer layer — remember how Transformers work:

We can use LoRA to adapt the weights , , and/or — in the case of
, the updated weights will be:

WQ,i WK,i WV,i
WQ,i

𝖬𝗎𝗅𝗍𝗂𝖧𝖾𝖺𝖽(Q, K, V) = 𝖢𝗈𝗇𝖼𝖺𝗍(𝗁𝖾𝖺𝖽1, …, 𝗁𝖾𝖺𝖽n)WO

𝗐𝗂𝗍𝗁 𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(QWQ,i, KWK,i, VWV,i) 𝖺𝗇𝖽 𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(Q, K, V) = 𝗌𝗈𝖿𝗍𝗆𝖺𝗑 (QK⊤

dk)

W̃Q,i = WQ,i + ΔWQ,i

= WQ,i + BQ,iAQ,i 𝗐𝗂𝗍𝗁 B ∈ ℝd×r, A ∈ ℝr×k

Parameter Composition — LoRA
Applying LoRA to a Transformer layer — remember how Transformers work:

We can use LoRA to adapt the weights , , and/or — in the case of
, the updated weights will be:

WQ,i WK,i WV,i
WQ,i

𝖬𝗎𝗅𝗍𝗂𝖧𝖾𝖺𝖽(Q, K, V) = 𝖢𝗈𝗇𝖼𝖺𝗍(𝗁𝖾𝖺𝖽1, …, 𝗁𝖾𝖺𝖽n)WO

𝗐𝗂𝗍𝗁 𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(QWQ,i, KWK,i, VWV,i) 𝖺𝗇𝖽 𝖠𝗍𝗍𝖾𝗇𝗍𝗂𝗈𝗇(Q, K, V) = 𝗌𝗈𝖿𝗍𝗆𝖺𝗑 (QK⊤

dk)

W̃Q,i = WQ,i + ΔWQ,i

= WQ,i + BQ,iAQ,i 𝗐𝗂𝗍𝗁 B ∈ ℝd×r, A ∈ ℝr×k

Computation Functions — Comparison

Parameter
Composition

Input
Composition

Function
Composition

Composition Functions

Input Composition
Idea — augment the input of the model with a
learnable vector :ϕ

gi(x) = fθi ([ϕi, x])
Input Composition and Prompting — standard
prompting can be seen as finding a discrete text
prompt that, when embedded using the model’s
embedding layer, yields

However, models tend to be sensitive to the
choice of the prompt [Webson and Pavlick, 2022]
and the order of examples [Zhao et al., 2021; Lu et
al., 2022]

ϕi

Input Composition
Idea — augment the input of the model with a
learnable vector :ϕ

gi(x) = fθi ([ϕi, x])
Input Composition and Prompting — standard
prompting can be seen as finding a discrete text
prompt that, when embedded using the model’s
embedding layer, yields

However, models tend to be sensitive to the
choice of the prompt [Webson and Pavlick, 2022]
and the order of examples [Zhao et al., 2021; Lu et
al., 2022]

ϕi

Input Composition
Idea — augment the input of the model with a
learnable vector :ϕ

gi(x) = fθi ([ϕi, x])
Input Composition and Prompting — standard
prompting can be seen as finding a discrete text
prompt that, when embedded using the model’s
embedding layer, yields

However, models tend to be sensitive to the
choice of the prompt [Webson and Pavlick, 2022]
and the order of examples [Zhao et al., 2021; Lu et
al., 2022]

ϕi

Prompt Tuning
Idea — we can directly learn a continuous prompt
which is pre-pended to the input

[Liu et al., 2021; Hambardzumyan

et al., 2021; Lester et al., 2021]

ϕ

Here the module parameters is
typically a matrix consisting of a
sequence of continuous prompt
embeddings

ϕ

[Li and Liang, 2021]

Prompt Tuning
Idea — we can directly learn a continuous prompt
which is pre-pended to the input

[Liu et al., 2021; Hambardzumyan

et al., 2021; Lester et al., 2021]

ϕ

Here the module parameters is
typically a matrix consisting of a
sequence of continuous prompt
embeddings

ϕ

[Li and Liang, 2021]

Prompt Tuning Works Well at Scale
Only using trainable parameters at
the input layer limits its capacity
for adaptation

 Prompt tuning performs
poorly at smaller model sizes
and on harder tasks [Mahabadi
et al., 2021; Liu et al., 2022]

→

Prompt tuning vs. Standard fine-tuning and prompt design
across T5 models of different sizes [Lester et al., 2021]

Multi-Layer Prompt Tuning
Instead of learning the module parameters only at the input layer, we can
learn them at every layer of the model [Li and Jiang, 2021; Liu et al., 2022]

ϕi

In practice, continuous prompts are concatenated with the keys and
values in the self-attention layer [Li and Jiang, 2021]

ϕi

Computation Functions — Comparison

Parameter
Composition

Input
Composition

Function
Composition

Composition Functions

Function Composition
Function composition augments a model’s functions with
new task-specific functions:

gi(x) = fθi
⊙ fϕ(x)

Commonly used in multi-task learning, where we have
multiple task-specific models composed together — e.g.,
see the surveys in [Ruder, 2017; Crawshaw, 2020]

However, here we focus on functions that can be added to
pre-trained models like LLMs 🙂

Adapters
The main purpose of functions added to a pre-trained
model is to adapt it to a new task — these functions are
also known as adapters

fϕi

In NLP, an adapter in a Transformer layer typically
consists of a feed-forward down-projection

, a feed-forward up-projection ,
and an activation function [Houlsby et al., 2019]
WD ∈ ℝk×d WU ∈ ℝd×k

σ

fϕi
(x) = WD [σ (WUx)]

Adapter usually placed after multi-head attention and/
or after the feed-forward layer

Adapters
The main purpose of functions added to a pre-trained
model is to adapt it to a new task — these functions are
also known as adapters

fϕi

In NLP, an adapter in a Transformer layer typically
consists of a feed-forward down-projection

, a feed-forward up-projection ,
and an activation function [Houlsby et al., 2019]
WD ∈ ℝk×d WU ∈ ℝd×k

σ

fϕi
(x) = WD [σ (WUx)]

Adapter usually placed after multi-head attention and/
or after the feed-forward layer

Adapters
The main purpose of functions added to a pre-trained
model is to adapt it to a new task — these functions are
also known as adapters

fϕi

In NLP, an adapter in a Transformer layer typically
consists of a feed-forward down-projection

, a feed-forward up-projection ,
and an activation function [Houlsby et al., 2019]
WD ∈ ℝk×d WU ∈ ℝd×k

σ

fϕi
(x) = WD [σ (WUx)]

Adapter usually placed after multi-head attention and/
or after the feed-forward layer

Benefits of Adapters
Increased robustness [He et al., 2021; Han et al., 2021]

Benefits of Adapters
Increased robustness [He et al., 2021; Han et al., 2021]

Increased sample efficiency [Mahabadi et al., 2021]

Results on GLUE with different numbers
of training examples per task

Computation Functions — Comparison

