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Course Administration

I Welcome!
I Course website: https://opencourse.inf.ed.ac.uk/pmr/
I Lecture recordings via Learn
I Lectures
I Tutorials
I Labs
I Quizzes on Gradescope
I No assignments
I Piazza
I Resources
I Maths background (MLPR resources)
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Variability

I Variability is part of nature
I Data for 3 species of iris, from Ronald Fisher (1936)
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Variability

I Our handwriting is unique
I Variability leads to uncertainty: e.g. 1 vs 7 or 4 vs 9

Josef Steppan - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=64810040
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Variability

I Variability leads to uncertainty
I Reading handwritten text in a

foreign language
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Example: Screening and diagnostic tests

I Early warning test for Alzheimer’s disease (Scharre, 2010, 2014)

I Detects “mild cognitive impairment”

I Takes 10–15 minutes
I Freely available
I Assume a 70 year old man

tests positive.
I Should he be concerned?

(Example from sagetest.osu.edu)
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Accuracy of the test

I Sensitivity of 0.8 and specificity of 0.95 (Scharre, 2010)

I 80% correct for people with impairment

with impairment (x=1)

impairment
detected (y=1)

no impairment
detected (y=0)

0.2

0.8
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Accuracy of the test

I Sensitivity of 0.8 and specificity of 0.95 (Scharre, 2010)

I 95% correct for people w/o impairment

w/o impairment (x=0)

impairment
detected (y=1)

no impairment
detected (y=0)

0.95

0.05
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Variability implies uncertainty

I People of the same group do not have the same test results
I Test outcome is subject to variability
I The data are noisy

I Variability leads to uncertainty
I Positive test ≡ true positive ?
I Positive test ≡ false positive ?

I What can we safely conclude from a positive test result?
I How should we analyse such kind of ambiguous data?
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Probabilistic approach

I The test outcomes y can be described with probabilities

sensitivity = 0.8 ⇔ P(y = 1|x = 1) = 0.8
⇔ P(y = 0|x = 1) = 0.2

specificity = 0.95 ⇔ P(y = 0|x = 0) = 0.95
⇔ P(y = 1|x = 0) = 0.05

I P(y |x): model of the test specified in terms of (conditional)
probabilities

I x ∈ {0, 1}: quantity of interest (cognitive impairment or not)
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Prior information

Among people like the patient, P(x = 1) = 5/45 ≈ 11% have a
cognitive impairment (plausible range: 3% – 22%, Geda, 2014)

Without impairment

With impairment
p(x=1)

p(x=0)
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Probabilistic model

I Reality:
I properties/characteristics of the group of people like the

patient
I properties/characteristics of the test

I Probabilistic model:
I P(x = 1)
I P(y = 1|x = 1) or P(y = 0|x = 1)

P(y = 1|x = 0) or P(y = 0|x = 0)
Fully specified by three numbers.

I A probabilistic model is an abstraction of reality that uses
probability theory to quantify the chance of uncertain events.
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If we tested the whole population

Without impairment

With impairment
p(x=1)

p(x=0)
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If we tested the whole population
Fraction of people who are impaired and have positive tests:
P(x = 1, y = 1) = P(y = 1|x = 1)P(x = 1) = 4/45 (product rule)

Without impairment

With impairment
p(x=1)

p(x=0)
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If we tested the whole population
Fraction of people who are not impaired but have positive tests:
P(x = 0, y = 1) = P(y = 1|x = 0)P(x = 0) = 2/45 (product rule)

Without impairment

With impairment
p(x=1)

p(x=0)
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If we tested the whole population
Fraction of people where the test is positive:
P(y = 1) = P(x = 1, y = 1)+P(x = 0, y = 1) = 6/45 (sum rule)

Without impairment

With impairment
p(x=1)

p(x=0)
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Putting everything together

I Among those with a positive test, fraction with impairment:

P(x = 1|y = 1) = P(y = 1|x = 1)P(x = 1)
P(y = 1) = 4

6 = 2
3

I Fraction without impairment:

P(x = 0|y = 1) = P(y = 1|x = 0)P(x = 0)
P(y = 1) = 2

6 = 1
3

I Equations are examples of “Bayes’ rule”.
I Positive test increased probability of cognitive impairment

from 11% (prior belief) to 67%, or from 6% to 51%.
I 51% ≈ coin flip
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Probabilistic reasoning

I Probabilistic reasoning ≡ probabilistic inference:
Computing the probability of an event that we have not or
cannot observe from an event that we can observe
I Unobserved/uncertain event, e.g. cognitive impairment x = 1
I Observed event ≡ evidence ≡ data, e.g. test result y = 1

I “The prior”: probability for the uncertain event before having
seen evidence, e.g. P(x = 1)

I “The posterior”: probability for the uncertain event after
having seen evidence, e.g. P(x = 1|y = 1)

I The posterior is computed from the prior and the evidence via
Bayes’ rule.
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Key rules of probability
(1) Product rule:

P(x = 1, y = 1) = P(y = 1|x = 1)P(x = 1)
= P(x = 1|y = 1)P(y = 1)

(2) Sum rule:

P(y = 1) = P(x = 1, y = 1) + P(x = 0, y = 1)

Bayes’ rule (conditioning) as consequence of the product rule

P(x = 1|y = 1) = P(x = 1, y = 1)
P(y = 1) = P(y = 1|x = 1)P(x = 1)

P(y = 1)

Denominator from sum rule, or sum rule and product rule

P(y = 1) = P(y = 1|x = 1)P(x = 1) + P(y = 1|x = 0)P(x = 0)
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Key rules or probability

I The rules generalise to the case of multivariate random
variables (discrete or continuous)

I Consider the conditional joint probability density function
(pdf) or probability mass function (pmf) of x, y: p(x, y)

(1) Product rule:

p(x, y) = p(x|y)p(y)
= p(y|x)p(x)

(2) Sum rule:

p(y) =
{∑

x p(x, y) for discrete r.v.∫
p(x, y)dx for continuous r.v.
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Probabilistic modelling and reasoning

I Probabilistic modelling:
I Identify the quantities that relate to the aspects of reality that

you wish to capture with your model.
I Consider them to be random variables, e.g. x, y, z, with a joint

pdf (pmf) p(x, y, z).
I Probabilistic reasoning:

I Assume you know that y ∈ E (measurement, evidence)
I Probabilistic reasoning about x then consists in computing

p(x|y ∈ E)

or related quantities like argmaxx p(x|y ∈ E) or posterior
expectations of some function g of x, e.g.

E [g(x) | y ∈ E ] =
∫

g(u)p(u|y ∈ E)du
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Solution via product and sum rule (discrete-valued
variables)

Assume that all variables are discrete valued, that E = {yo}, and
that we know p(x, y, z). We would like to know p(x|yo).
I Product rule: p(x|yo) = p(x,yo)

p(yo)
I Sum rule: p(x, yo) = ∑

z p(x, yo, z)
I Sum rule: p(yo) = ∑

x p(x, yo) = ∑
x,z p(x, yo, z)

I Result:
p(x|yo) =

∑
z p(x, yo, z)∑

x,z p(x, yo, z)
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Roadmap for PMR

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

Assume that x, y, z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.

I Issue 1: To specify p(x, y, z), we need to specify
K 3d − 1 = 101500 − 1 non-negative numbers, which is
impossible.
Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?
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Roadmap for PMR

I Issue 2: The sum in the numerator goes over the order of
Kd = 10500 non-negative numbers and the sum in the
denominator over the order of K 2d = 101000, which is
impossible to compute.
Topic 2: Exact inference Can we further exploit the
assumptions on p(x, y, z) to efficiently compute the posterior
probability or derived quantities?
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Gauge

Fuel

Turn Over

Battery

Start

Heckerman (1995)

P(f=empty) = 0.05P(b=bad) = 0.02

P(t=no|b=bad) = 0.98
P(t=no|b=good) = 0.03

P(g=empty|b=good, f=not empty) = 0.04
P(g=empty| b=good, f=empty) = 0.97
P(g=empty| b=bad, f=not empty) = 0.10
P(g=empty|b=bad, f=empty) = 0.99

P(s=no|t=yes, f=not empty) = 0.01
P(s=no|t=yes, f=empty) = 0.92
P(s=no| t = no, f=not empty) = 1.0
P(s=no| t = no, f = empty) = 1.0

diseases

symptoms

Directed graphical model QMR-DT network

z z z

x x x

z

x N

N
A A

1 2 3

321

. .

Ising model (statistical physics) Hidden Markov model
(Undirected graphical model) used for speech recognition etc.
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Roadmap for PMR

I Issue 3: Where do the non-negative numbers p(x, y, z) come
from?
Topic 3: Learning How can we learn the numbers from data?

I Issue 4: For some models, exact inference and learning is too
costly even after fully exploiting the assumptions made.
Topic 4: Approximate inference and learning
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Credits

These slides are modified from ones produced by Michael Gutmann,
made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of
Edinburgh 2018-2024 CC BY 4.0 cb.
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