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Recap

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

Assume that x, y, z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.
I Issue 1: To specify p(x, y, z), we need to specify

K 3d − 1 = 101500 − 1 non-negative numbers, which is
impossible.
Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?
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Two fundamental assumptions

Consider two assumptions:
1. only a limited number of variables may directly interact with

each other (independence assumptions)
2. for any number of interacting variables, the form of interaction

is limited or restricted (often: parametric family assumptions)
The two assumptions can be used together or separately.
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Program

1. Independence assumptions

2. Assumptions on form of interaction
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Program

1. Independence assumptions
Definition and properties of statistical independence
Factorisation of the pdf and reduction in the number of

directly interacting variables

2. Assumptions on form of interaction
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Statistical independence

I Let x and y be two disjoint subsets of random variables. Then x and
y are independent of each other if and only if (iff)

p(x, y) = p(x)p(y)
for all possible values of x and y; otherwise they are said to be
dependent.

I We say that the joint factorises into a product of p(x) and p(y).
I Equivalent definition by the product rule (or by definition of

conditional probability)
p(x|y) = p(x)

for all values of x and y where p(y) > 0.
I Notation: x ⊥⊥ y
I Variables x1, . . . , xn are independent iff

p(x1, . . . , xn) =
n∏

i=1
p(xi )
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Conditional statistical independence

I The characterisation of statistical independence extends to
conditional pdfs (pmfs) p(x, y|z).

I The condition p(x, y) = p(x)p(y) becomes
p(x, y|z) = p(x|z)p(y|z)

I The equivalent condition p(x|y) = p(x) becomes
p(x|y, z) = p(x|z)

I We say that x and y are conditionally independent given z iff,
for all possible values of x, y, and z with p(z) > 0:

p(x, y|z) = p(x|z)p(y|z) or

p(x|y, z) = p(x|z) (for p(y, z) > 0)
I Notation: x ⊥⊥ y | z
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The impact of independence assumptions

I The key is that the independence assumption leads to a
partial factorisation of the pdf/pmf with factors that involve
fewer variables.

I Reduces the number of directly interacting variables.
I For example, if x, y, z are independent of each other, then

p(x, y, z) = p(x)p(y)p(z)

I Independence assumption forces p(x, y, z) to take on a
particular form.
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The impact of independence assumptions

Assume p(x, y, z) = p(x)p(y)p(z)
I If dim(x) = dim(y) = dim(z) = d , and each element of the

vectors can take K values, factorisation reduces the numbers
that need to be specified (“parameters”) from K 3d − 1 to
3(Kd − 1).

I If all variables were independent: 3d(K − 1) numbers needed.

For example: 101500 − 1 vs. 3(10500 − 1) vs. 1500(10− 1) = 13500

I But full independence (factorisation) assumption is often too
strong and does not hold.
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The impact of independence assumptions

I Conditional independence assumptions are a powerful
middle-ground.

I For p(x) = p(x1, . . . , xd ), we have by the product rule:

p(x) = p(xd |x1, . . . xd−1)p(x1, . . . , xd−1)

I If, for example, xd ⊥⊥ x1, . . . , xd−4 | xd−3, xd−2, xd−1, we have

p(xd |x1, . . . , xd−1) = p(xd |xd−3, xd−2, xd−1)

I If the xi can take K different values:
p(xd |x1, . . . , xd−1) specified by Kd−1 · (K − 1) numbers
p(xd |xd−3, xd−2, xd−1) specified by K 3 · (K − 1) numbers

For d = 500,K = 10: 10499 · 9 ≈ 10500 vs 9000 ≈ 104.
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Program

1. Independence assumptions

2. Assumptions on form of interaction
Parametric model to restrict how a given number of variables

may interact
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Assumption 2: limiting the form of the interaction

I The (conditional) independence assumption limits the number
of variables that may directly interact with each other, e.g.
xd only directly interacted with xd−3, xd−2, xd−1.

I How xd interacts with the three variables, however, was not
restricted.

I Assumption 2: We restrict how a given number of variables
may interact with each other.

I For example, for xi ∈ {0, 1}, we may assume that
p(xd |x1, . . . , xd−1) is specified as

p(xd = 1|x1, . . . , xd−1) = 1
1 + exp

(
−w0 −

∑d−1
i=1 wixi

)
with d free numbers (“parameters”) w0, . . . ,wd−1.

I d vs 2d−1 parameters (for d = 500: 500 vs. 2499 ≈ 10150)
PMR 2024 12 / 18



Gaussian parametric assumption for real-valued variables

I Multivariate Gaussian N(µµµ,Σ)
I Has mean µµµ and covariance Σ
I Σij = Σji = E[(Xi − µi )(Xj − µj)]
I Probability density p(x) for x ∈ Rd

p(x) = 1
(2π)d/2|Σ|1/2 exp

{
−1
2(x−µµµ)T Σ−1(x−µµµ)

}
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Exact inference for Gaussian RVs
Exact inference is possible for the multivariate Gaussian N(µµµ,Σ).
Basic rules:
I Partition variables into two groups, X1 and X2

µµµ =
(
µµµ1
µµµ2

)

Σ =
(

Σ11 Σ12
Σ21 Σ22

)

I Marginal distribution: x1 ∼ N(µµµ1,Σ11)
I Conditional distribution

µµµc
1|2 = µµµ1 + Σ12Σ−1

22 (x2 −µµµ2)
Σc

1|2 = Σ11 − Σ12Σ−1
22 Σ21

I For proof see sec. 2.3.1 of Bishop (2006) (not examinable)
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I We have joint Gaussian for p(x, y, z), and want p(x|yo)
I z can be marginalized out trivially (just ignore the z parts of

the mean and covariance)
I Use the conditional distribution rule to obtain

x|yo ∼ N(µµµc
x|yo

,Σc
x|yo

) with

µµµc
x|y = µµµx + ΣxyΣ−1

yy (yo −µµµy)
Σc

x|y = Σxx − ΣxyΣ−1
yy Σyx

I Assume that x, y, z each are each d dimensional,
I Complexity is dominated by inversion of Σyy in O(d3) time
I If all variables are discretized into K bins, complexity for

computing p(x|yo) is O(Kd ), even for approximate inference
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I Conditional distribution of x2 given x1 = 2 shown in red
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Program recap

We asked: What reasonably weak assumptions can we make to
efficiently represent a probabilistic model?

1. Independence assumptions
Definition and properties of statistical independence
Factorisation of the pdf and reduction in the number of

directly interacting variables

2. Assumptions on form of interaction
Parametric model to restrict how a given number of variables

may interact
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Credits

These slides are modified from ones produced by Michael Gutmann,
made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of
Edinburgh 2018-2024 CC BY 4.0 cb.
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