Exercise 1. Inference for the binary symmetric channel

Let x_{0} be a binary random variable taking on states 0 and 1 with probability $1 / 2$. A binary symmetric channel (BSC) flips an input bit with probability f, and leaves it unflipped with probability $1-f$. Let x_{1} be the result of passing x_{0} through the BSC. Hence we have that $p\left(x_{1}=0 \mid x_{0}=0\right)=p\left(x_{1}=1 \mid x_{0}=1\right)=1-f$. Now suppose that x_{1} is passed through another BSC (also with flip probability f) to yield x_{2}. The graphical model is thus $x_{0} \rightarrow x_{1} \rightarrow x_{2}$.
(a) You observe that $x_{2}=1$. Compute $p\left(x_{0}=1 \mid x_{2}=1\right)$.

