Exercise 1. Inference for the binary symmetric channel

Let x_{0} be a binary random variable taking on states 0 and 1 with probability $1 / 2$. A binary symmetric channel (BSC) flips an input bit with probability f, and leaves it unflipped with probability $1-f$. Let x_{1} be the result of passing x_{0} through the BSC. Hence we have that $p\left(x_{1}=0 \mid x_{0}=0\right)=p\left(x_{1}=1 \mid x_{0}=1\right)=1-f$. Now suppose that x_{1} is passed through another BSC (also with flip probability f) to yield x_{2}. The graphical model is thus $x_{0} \rightarrow x_{1} \rightarrow x_{2}$.
(a) You observe that $x_{2}=1$. Compute $p\left(x_{0}=1 \mid x_{2}=1\right)$.

Solution. There are many ways to solve this question. We start from Bayes' theorem

$$
\begin{equation*}
p\left(x_{0}=1 \mid x_{2}=1\right)=\frac{p\left(x_{0}=1, x_{2}=1\right)}{p\left(x_{2}=1\right)}=\frac{\sum_{x_{1}=0,1} p\left(x_{0}=1, x_{1}, x_{2}=1\right)}{p\left(x_{2}=1\right)} \tag{S.1}
\end{equation*}
$$

From the factorization of the grapical model $x_{0} \rightarrow x_{1} \rightarrow x_{2}$ we have

$$
\begin{equation*}
p\left(x_{0}=1, x_{1}, x_{2}=1\right)=p\left(x_{0}=1\right) p\left(x_{1} \mid x_{0}=1\right) p\left(x_{2}=1 \mid x_{1}\right) \tag{S.2}
\end{equation*}
$$

Hence we have that

$$
\begin{equation*}
p\left(x_{0}=1, x_{2}=1\right)=\sum_{x_{1} \in 0,1} p\left(x_{0}=1\right) p\left(x_{1} \mid x_{0}=1\right) p\left(x_{2}=1 \mid x_{1}\right)=\frac{1}{2} f^{2}+\frac{1}{2}(1-f)^{2} \tag{S.3}
\end{equation*}
$$

corresponding to no flips or two flips. See Fig. 1 for an illustration.
To get the denominator $p\left(x_{2}=1\right)$, we have that

$$
\begin{equation*}
p\left(x_{2}=1\right)=\sum_{x_{0}, x_{1} \in 0,1} p\left(x_{0}\right) p\left(x_{1} \mid x_{0}\right) p\left(x_{2}=1 \mid x_{1}\right)=\frac{1}{2} f^{2}+\frac{1}{2}(1-f)^{2}+2 \frac{1}{2} f(1-f)=\frac{1}{2} \tag{1}
\end{equation*}
$$

which might have been expected anyway by symmetry. Thus

$$
\begin{equation*}
p\left(x_{0}=1 \mid x_{2}=1\right)=\frac{p\left(x_{0}=1, x_{2}=1\right)}{p\left(x_{2}=1\right)}=2 \cdot\left[\frac{1}{2} f^{2}+\frac{1}{2}(1-f)^{2}\right]=f^{2}+(1-f)^{2} \tag{2}
\end{equation*}
$$

Figure 1: Lattice diagram with showing the variables to x_{0}, x_{1}, x_{2} taking on the values 0 and 1. The paths shown start at $x_{0}=1$ and end at $x_{2}=1$ (shown shaded).

