Undirected Graphical Models I

Definition and Basic Properties

Chris Williams (based on slides by Michael U. Gutmann)

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2024

Recap

- ► The number of free parameters in probabilistic models increases with the number of random variables involved.
- Making statistical independence assumptions reduces the number of free parameters that need to be specified.
- Starting with the chain rule and an ordering of the random variables, we used statistical independencies to simplify the representation.
- We thus obtained a factorisation in terms of a product of conditional pdfs that we visualised as a DAG.
- In turn, we used DAGs to define sets of distributions ("directed graphical models").
- ➤ We discussed independence properties satisfied by the distributions, d-separation, and the equivalence to the factorisation.

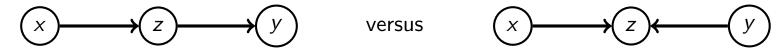
PMR 2024 2 / 29

The directionality in directed graphical models

So far we mainly exploited the property

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow \rho(\mathbf{y}|\mathbf{x},\mathbf{z}) = \rho(\mathbf{y}|\mathbf{z})$$

- ▶ But when working with $p(\mathbf{y}|\mathbf{x},\mathbf{z})$ we impose an ordering or directionality from \mathbf{x} and \mathbf{z} to \mathbf{y} .
- Directionality matters in directed graphical models



- ► In some cases, directionality is natural but in others we do not want to choose one direction over another.
- ► We now discuss how to visualise and represent probability distributions and independencies in a symmetric manner without assuming a directionality or ordering of the variables.

PMR 2024

Program

1. Visualising factorisations with undirected graphs

2. Undirected graphical models

PMR 2024 4 / 29

Program

- 1. Visualising factorisations with undirected graphs
 - Undirected characterisation of statistical independence
 - Gibbs distributions
 - Visualising Gibbs distributions with undirected graphs

2. Undirected graphical models

PMR 2024 5 / 29

Further characterisation of statistical independence

From exercises: For non-negative functions $a(\mathbf{x}, \mathbf{z}), b(\mathbf{y}, \mathbf{z})$:

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = a(\mathbf{x}, \mathbf{z})b(\mathbf{y}, \mathbf{z})$$

- Equivalent to $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{y}|\mathbf{z})p(\mathbf{z})$ but does not assume that the factors are (conditional) pdfs/pmfs.
- ► No directionality or ordering of the variables is imposed.
- ▶ Unconditional version: For non-negative functions $a(\mathbf{x}), b(\mathbf{y})$:

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}) = a(\mathbf{x})b(\mathbf{y})$$

- The important point is the factorisation of $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ into two non-negative factors:
 - if the factors share a variable **z**, then we have conditional independence,
 - if not, we have unconditional independence.

PMR 2024

Further characterisation of statistical independence

▶ Since $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ must sum (integrate) to one, we must have

$$\sum_{\mathbf{x},\mathbf{y},\mathbf{z}} a(\mathbf{x},\mathbf{z}) b(\mathbf{y},\mathbf{z}) = 1$$

Normalisation condition often ensured by re-defining $a(\mathbf{x}, \mathbf{z})b(\mathbf{y}, \mathbf{z})$:

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{1}{Z} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z}) \qquad Z = \sum_{\mathbf{x}, \mathbf{y}, \mathbf{z}} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

- Z: normalisation constant (related to partition function, see later)
- ϕ_i : factors (also called potential functions). Do generally not correspond to (conditional) pdfs/pmfs.

PMR 2024 7 / 29

What does it mean?

$$\mathbf{x} \perp \!\!\!\perp \mathbf{y} \mid \mathbf{z} \Longleftrightarrow p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = \frac{1}{Z} \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

" \Rightarrow " If we want our model to satisfy $\mathbf{x} \perp \!\!\! \perp \mathbf{y} \mid \mathbf{z}$ we should write the pdf (pmf) as

$$p(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z})$$

"

If the pdf (pmf) can be written as $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) \propto \phi_A(\mathbf{x}, \mathbf{z}) \phi_B(\mathbf{y}, \mathbf{z}) \text{ then we have } \mathbf{x} \perp \!\!\!\perp \mathbf{y} \mid \mathbf{z}$

equivalent for unconditional version

PMR 2024 8 / 29

Example

Consider
$$p(x_1, x_2, x_3, x_4) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_4)$$

What independencies does p satisfy?

We can write

$$p(x_1, x_2, x_3, x_4) \propto \underbrace{[\phi_1(x_1, x_2)\phi_2(x_2, x_3)]}_{\tilde{\phi}_1(x_1, x_2, x_3)} [\phi_3(x_4)]$$
$$\propto \tilde{\phi}_1(x_1, x_2, x_3) \phi_3(x_4)$$

so that $x_4 \perp \!\!\! \perp x_1, x_2, x_3$.

ightharpoonup Integrating out x_4 gives

$$p(x_1, x_2, x_3) = \int p(x_1, x_2, x_3, x_4) dx_4 \propto \phi_1(x_1, x_2) \phi_2(x_2, x_3)$$

so that $x_1 \perp \!\!\! \perp x_3 \mid x_2$

PMR 2024 9 / 29

Gibbs distributions

Example is a special case of a class of pdfs/pmfs that factorise as

$$p(x_1,\ldots,x_d)=\frac{1}{Z}\prod_c\phi_c(\mathcal{X}_c)$$

- $\nearrow \mathcal{X}_c \subseteq \{x_1, \ldots, x_d\}$
- ϕ_c are non-negative factors (potential functions) Do generally not correspond to (conditional) pdfs/pmfs. They measure "compatibility", "agreement", or "affinity"
- ightharpoonup Z is a normalising constant so that $p(x_1, \ldots, x_d)$ integrates (sums) to one.
- Known as Gibbs (or Boltzmann) distributions
- $\tilde{p}(x_1,\ldots,x_d)=\prod_c\phi_c(\mathcal{X}_c)$ is said to be an unnormalised model: $\tilde{p}\geq 0$ but does not necessarily integrate (sum) to one.

PMR 2024 10 / 29

Energy-based model

▶ With $\phi_c(\mathcal{X}_c) = \exp(-E_c(\mathcal{X}_c))$, we have equivalently

$$p(x_1,\ldots,x_d)=\frac{1}{Z}\exp\left[-\sum_c E_c(\mathcal{X}_c)\right]$$

 $ightharpoonup \sum_c E_c(\mathcal{X}_c)$ is the energy of the configuration (x_1,\ldots,x_d) . low energy \iff high probability

PMR 2024 11 / 29

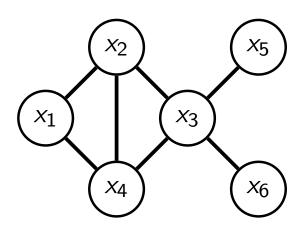
Visualising Gibbs distributions with undirected graphs

$$p(x_1,\ldots,x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$$

- \triangleright Node for each x_i
- For all factors ϕ_c : draw an undirected edge between all x_i and x_i that belong to \mathcal{X}_c
- Results in a fully-connected subgraph for all x_i that are part of the same factor (this subgraph is called a clique).

Example:

Graph for $p(x_1, ..., x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$



PMR 2024 12 / 29

Program

- 1. Visualising factorisations with undirected graphs
 - Undirected characterisation of statistical independence
 - Gibbs distributions
 - Visualising Gibbs distributions with undirected graphs

2. Undirected graphical models

PMR 2024 13 / 29

Program

- 1. Visualising factorisations with undirected graphs
- 2. Undirected graphical models
 - Definition
 - Examples
 - Conditionals, marginals, and change of measure

PMR 2024 14 / 29

Undirected graphical models (UGMs)

- ▶ We started with a factorised pdf/pmf and associated a undirected graph with it. We now go the other way around and start with an undirected graph.
- ▶ Definition An undirected graphical model based on an undirected graph H with d nodes and associated random variables x_i is the set of pdfs/pmfs that factorise as

$$p(x_1,\ldots,x_d)=\frac{1}{Z}\prod_c\phi_c(\mathcal{X}_c)$$

where Z is the normalisation constant, $\phi_c(\mathcal{X}_c) \geq 0$, and the \mathcal{X}_c correspond to the maximal cliques in the graph.

▶ Remark: a pdf/pmf $p(x_1,...,x_d)$ that can be written as above is said to "factorise over the graph H". We also say that it has property F(H) ("F" for factorisation).

PMR 2024 15 / 29

Remarks

- ► An undirected graph defines the pdfs/pmfs in terms of Gibbs distributions.
- The undirected graphical model corresponds to a set of probability distributions. This is because we did not specify any numerical values for the factors $\phi_c(\mathcal{X}_c)$. We only specified which variables the factors take as input.
- Individual pdfs/pmf in the set are typically also called a undirected graphical model.
- Other names for an undirected graphical model: Markov network (MN), Markov random field (MRF)
- The \mathcal{X}_c form maximal cliques in the graph. Maximal clique: a set of fully connected nodes (clique) that is not contained in another clique.

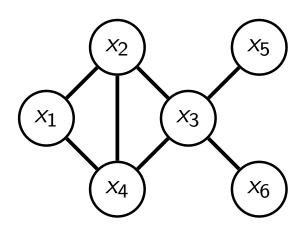
PMR 2024 16 / 29

Why maximal cliques?

➤ The mapping from Gibbs distribution to graph is many to one. We may obtain the same graph for different Gibbs distributions, e.g.

$$p(\mathbf{x}) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$$

$$p(\mathbf{x}) \propto \tilde{\phi}_1(x_1, x_2) \tilde{\phi}_2(x_1, x_4) \tilde{\phi}_3(x_2, x_4) \tilde{\phi}_4(x_2, x_3) \tilde{\phi}_5(x_3, x_4) \tilde{\phi}_6(x_3, x_5) \tilde{\phi}_7(x_3, x_6)$$

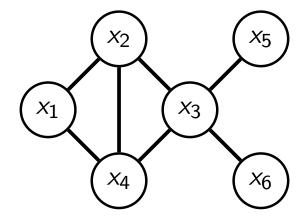


▶ By using maximal cliques, we take a conservative approach and do not make additional assumptions on the factorisation.

PMR 2024 17 / 29

Example

Undirected graph:



Random variables: $\mathbf{x} = (x_1, \dots, x_6)$

Maximal cliques: $\{x_1, x_2, x_4\}, \{x_2, x_3, x_4\}, \{x_3, x_5\}, \{x_3, x_6\}$

Undirected graphical model: set of pdfs/pmfs $p(\mathbf{x})$ that factorise as:

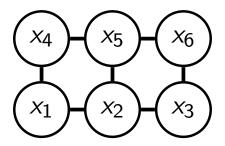
$$p(\mathbf{x}) = \frac{1}{Z} \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$$

$$\propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$$

PMR 2024

Example (pairwise Markov network)

Graph:



Random variables: $\mathbf{x} = (x_1, \dots, x_6)$

Maximal cliques: all neighbours

$$\{x_1, x_2\}$$
 $\{x_2, x_3\}$ $\{x_4, x_5\}$ $\{x_5, x_6\}$ $\{x_1, x_4\}$ $\{x_2, x_5\}$ $\{x_3, x_6\}$

Undirected graphical model: set of pdfs/pmfs $p(\mathbf{x})$ that factorise as:

$$p(\mathbf{x}) \propto \phi_1(x_1, x_2) \phi_2(x_2, x_3) \phi_3(x_4, x_5) \phi_4(x_5, x_6) \phi_5(x_1, x_4) \phi_6(x_2, x_5) \phi_7(x_3, x_6)$$

Example of a pairwise Markov network.

Example: Ising model

- ▶ Variables x_i taken on values in $\{-1, +1\}$ ("spins")
- Laid out on a grid (pairwise Markov network)
- $E(x_i, x_j) = -Jx_ix_j$ if i and j are neighbours, 0 otherwise
- If J > 0 then we get low energy (high probability) when $x_i = x_j$, and higher energy when $x_i \neq x_j$
- ► This is "ferromagnetic" behaviour in physics (spins align)
- Lots of theory in statistical physics, e.g. on phase transitions

PMR 2024 20 / 29

Example: Graphical Gaussian models

► Gaussian pdf $N(x; \mu, \Sigma)$:

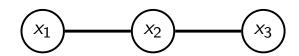
$$ho(\mathbf{x}) \propto \exp\left(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^T \Sigma^{-1}(\mathbf{x}-oldsymbol{\mu})
ight)$$

▶ Set $\Lambda = \Sigma^{-1}$, the *precision matrix*, then

$$p(\mathbf{x}) \propto \exp\left(-\frac{1}{2}\mathbf{x}^T \Lambda \mathbf{x} + \mathbf{h}^T \mathbf{x}\right)$$

with $\mathbf{h} = \Lambda \boldsymbol{\mu}$

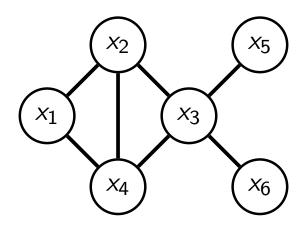
- If $\Lambda_{ij} = \Lambda_{ji} = 0$, then there is no edge between i and j in the graph
- Zeros in Λ define a Graphical Gaussian model, e.g.



PMR 2024

Conditionals

- For DGMs, the factors $k(x_i|pa_i)$ defining $p(\mathbf{x})$ are the conditional pdfs/pmfs of x_i given pa_i under $p(\mathbf{x})$, i.e. $p(x_i|pa_i)$. We do not have such a correspondence for UGMs.
- ▶ But conditioning on random variables corresponds to a simple graph operation: removing their nodes from the graph.
- Example: For $p(x_1, ..., x_6)$ specified by the graph below, what is $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$?



PMR 2024 22 / 29

Conditionals

► The graph specifies the factorisation

$$p(x_1,\ldots,x_6) \propto \phi_1(x_1,x_2,x_4)\phi_2(x_2,x_3,x_4)\phi_3(x_3,x_5)\phi_4(x_3,x_6)$$

• By definition: $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$

$$= \frac{p(x_{1}, x_{2}, x_{3} = \alpha, x_{4}, x_{5}, x_{6})}{\int p(x_{1}, x_{2}, x_{3} = \alpha, x_{4}, x_{5}, x_{6}) dx_{1} dx_{2} dx_{4} dx_{5} dx_{6}}$$

$$= \frac{\phi_{1}(x_{1}, x_{2}, x_{4}) \phi_{2}(x_{2}, \alpha, x_{4}) \phi_{3}(\alpha, x_{5}) \phi_{4}(\alpha, x_{6})}{\int \phi_{1}(x_{1}, x_{2}, x_{4}) \phi_{2}(x_{2}, \alpha, x_{4}) \phi_{3}(\alpha, x_{5}) \phi_{4}(\alpha, x_{6}) dx_{1} dx_{2} dx_{4} dx_{5} dx_{6}}$$

$$= \frac{1}{Z(\alpha)} \phi_{1}(x_{1}, x_{2}, x_{4}) \phi_{2}^{\alpha}(x_{2}, x_{4}) \phi_{3}^{\alpha}(x_{5}) \phi_{4}^{\alpha}(x_{6})$$

- ▶ Gibbs distribution with derived factors ϕ_i^{α} of reduced domain and new normalisation "constant" $Z(\alpha)$
- Note that $Z(\alpha)$ depends on the conditioning value α .

PMR 2024 23 / 29

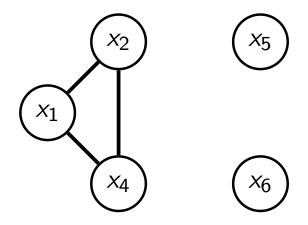
Conditionals

Let $p(x_1, ..., x_6) \propto \phi_1(x_1, x_2, x_4) \phi_2(x_2, x_3, x_4) \phi_3(x_3, x_5) \phi_4(x_3, x_6)$.

ightharpoonup Conditional $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$ is

$$\frac{1}{Z(\alpha)}\phi_1(x_1,x_2,x_4)\phi_2^{\alpha}(x_2,x_4)\phi_3^{\alpha}(x_5)\phi_4^{\alpha}(x_6)$$

 Conditioning on variables removes the corresponding nodes and connecting edges from the undirected graph



PMR 2024 24 / 29

Marginals

- For DGMs, the product of the first j terms in the factorisation, $\prod_{i=1}^{j} k(x_i|pa_i)$, equaled the marginal $p(x_1, \ldots, x_j)$.
- ► UGMs do not have such a general property. But we can exploit the factorisation when computing the marginals.
- ▶ Will be the discussed in the "inference part" of the course.

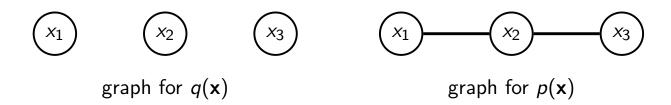
PMR 2024 25 / 29

Change of measure

- ► A way to create new pdf/pmfs is to reweight existing ones, which is a special instance of a "change of measure".
- For example, assume $q(x_1, x_2, x_3) = \prod_i q_i(x_i)$ to be a given pmf. We want to generate a new pmf that assigns higher probabilities to $(x_1, x_2) \in A$, and to $(x_2, x_3) \in B$, for some sets A and B.
- We can thus define the Gibbs distribution

$$p(\mathbf{x}) = \frac{1}{Z} \phi_A(x_1, x_2) \phi_B(x_2, x_3) \prod_{i=1}^3 q_i(x_i)$$

where $\phi_A(x_1, x_2) = 1$ for $(x_1, x_2) \notin A$, $\phi_A(x_1, x_2) > 1$ for $(x_1, x_2) \in A$, and equivalently for ϕ_B .



Change of measure

- Similarly, we can think that an undirected graph defines how a base distribution, e.g. $q(\mathbf{x}) = \prod_i q_i(x_i)$, should be reweighted by factors $\phi_c(\mathcal{X}_c)$, thus defining a change of measure.
- ► Two different ways of defining models: Reweighting for UGMs vs data generation for DGMs.
- Reweighting is clear when computing expectations, e.g.

$$\mathbb{E}_{p}[h] = \sum_{\mathbf{x}} h(\mathbf{x}) p(\mathbf{x})$$

$$= \frac{1}{Z} \sum_{x_1, x_2, x_3} h(x_1, x_2, x_3) \phi_A(x_1, x_2) \phi_B(x_2, x_3) \prod_{i} q_i(x_i)$$

$$= \frac{1}{Z} \mathbb{E}_{\mathbf{q}}[h \phi_A \phi_B]$$

► Since $Z = \sum_{x_1, x_2, x_3} \phi_A(x_1, x_2) \phi_B(x_2, x_3) \prod_i q_i(x_i) = \mathbb{E}_q[\phi_A \phi_B]$

 $\mathbb{E}_{p}[h] = \frac{\mathbb{E}_{q}[h\phi_{A}\phi_{B}]}{\mathbb{E}_{q}[\phi_{A}\phi_{B}]}$ Change of measure

PMR 2024

Program recap

- 1. Visualising factorisations with undirected graphs
 - Undirected characterisation of statistical independence
 - Gibbs distributions
 - Visualising Gibbs distributions with undirected graphs
- 2. Undirected graphical models
 - Definition
 - Examples
 - Conditionals, marginals, and change of measure

PMR 2024 28 / 29

Credits

These slides are modified from ones produced by Michael Gutmann, made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of Edinburgh 2018-2024 CC BY 4.0 **(a)**.

PMR 2024 29 / 29