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Recap

I We have seen that we can visualise factorised pdfs/pmfs p(x)
without imposing an ordering or directionality of interaction
between the random variables by using an undirected graph.

I When we defined the graph for a pdf/pmf p(x) the numerical
values of the factors did not matter; we only used its
arguments (inputs).

I This led us to defining a set of probability distributions based
on an undirected graph, i.e. an undirected graphical model.
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Motivating the graph separation criterion
I Given an undirected graph H, we defined the undirected

graphical model (UGM) to be the set of pdfs/pmfs that
factorise as

p(x1, . . . , xd) = 1
Z

∏
c
φc(Xc), φc ≥ 0

where the Xc correspond to the maximal cliques in the graph.
I We have seen that conditioning on variables corresponds to

removing them from the graph (and redefining some factors).
I Combine this with x ⊥⊥ y | z⇐⇒ p(x, y, z) ∝ φA(x, z)φB(y, z)
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Motivating the graph separation criterion

I Example:

p(x1, . . . , x6) ∝ φ1(x1, x2, x4)φ2(x2, x3, x4)︸ ︷︷ ︸
φA(x1,x2,x4,x3)

φ3(x3, x5)φ4(x3, x6)︸ ︷︷ ︸
φB(x5,x6,x3)

I We thus have (x1, x2, x4) ⊥⊥ (x5, x6) | x3
I Removing x3 from the graph blocks all trails between x5 and

x6, and to all other variables.
I Let us build on this link between conditioning, blocking of

trails in the graph, factorisation, and independencies.
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Graph separation

Let X ,Y ,Z be three disjoint set of nodes in an undirected graph.
I Definition X and Y are separated by Z if every trail from any

node in X to any node in Y passes through at least one node
of Z .

I In other words:
I all trails from X to Y are blocked by Z
I removing Z from the graph leaves X and Y disconnected.
I Nodes are valves; open by default but closed when part of Z .
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Z
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Example

In the previous example:
I x3 separates (x1, x2, x4) from (x5, x6)
I x3 separates x5 from x6.
I However, it does e.g. not separate x2 from x4.
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Deriving the graph separation criterion
Without loss of generality, consider the graph below and assume
that p(x1, . . . , xd) ∝ ∏

c φc(Xc), with Xc ⊂ {x1, . . . , xd}, factorises
over it.

Do we have x1, x2 ⊥⊥ y1, y2 | z1, z2, z3?
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Deriving the graph separation criterion
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Deriving the graph separation criterion
I With z = (z1, z2, z3), all variables belong to one of x, y, z, or u.
I We thus have p(x1, . . . , xd) = p(x, y, z,u) and we can group

the factors φc together so that

p(x, y, z,u) ∝ φ1(x, z)φ2(y, z)φ3(u, z)
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Deriving the graph separation criterion

I Integrating (summing) out u gives

p(x, y, z) =
∑

u
p(x, y, z,u) (1)

∝
∑

u
φ1(x, z)φ2(y, z)φ3(u, z) (2)

(distributive law) ∝ φ1(x, z)φ2(y, z)
∑

u
φ3(u, z) (3)

∝ φ1(x, z)φ2(y, z)φ̃(z) (4)
∝ φA(x, z)φB(y, z) (5)

I And p(x, y, z) ∝ φA(x, z)φB(y, z) means x ⊥⊥ y | z
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Deriving the graph separation criterion

We have shown that if x and y are separated by z, then x ⊥⊥ y | z.
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Deriving the graph separation criterion

So do we have x1, x2 ⊥⊥ y1, y2 | z1, z2, z3?
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Deriving the graph separation criterion

I From exercises: x ⊥⊥ {y ,w} | z implies x ⊥⊥ y | z
I Hence x ⊥⊥ y | z1, z2, z3 implies x1, x2 ⊥⊥ y1, y2 | z1, z2, z3.
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Graph separation and conditional independence

Theorem:
Let H be an undirected graph and X ,Y ,Z three disjoint subsets of
its nodes. If X and Y are separated by Z , then X ⊥⊥ Y | Z for all
probability distributions that factorise over the graph.

Important because:
1. the theorem allows us to read out (conditional)

independencies from the undirected graph
2. no restriction on the sets X ,Y ,Z
3. the independencies detected by graph separation are “true

positives” (“soundness” of the independence assertions made
by the graph separation criterion).
(not a “if and only if” statement. Consider e.g. the example that we used
to illustrate that d-connected variables may be independent)
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Global Markov property Mg(H)

I Distributions p(x) are said to satisfy the global Markov
property with respect to the undirected graph H, or Mg(H), if
for any triple X ,Y ,Z of disjoint subsets of nodes such that Z
separates X and Y in H, we have X ⊥⊥ Y | Z .

I Global Markov property because we do not restrict the sets
X ,Y ,Z .

I The theorem says that F (H) =⇒ Mg(H).
I Undirected analogue to d-separation and the directed global

Markov property.
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What if two sets of nodes are not graph separated?

Theorem: If X and Y are not separated by Z in the undirected
graph H then X 6⊥⊥ Y | Z in some probability distributions that
factorise over H.

Optional, for those interested: A proof sketch can be found in Section 4.3.1.2
of Probabilistic Graphical Models by Koller and Friedman.

Remarks:
I The theorem implies that for some distributions, we may have

X ⊥⊥ Y | Z even though X and Y are not separated by Z .
The separation criterion is not “complete” (“recall-rate” is not
guaranteed to be 100%).

I Same caveat as for d-separation.
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Example

Undirected graph:
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All models defined by the undirected graph satisfy:

x1 ⊥⊥ {x3, x5, x6} | x2, x4 x2 ⊥⊥ x6 | x3 x5 ⊥⊥ x6 | x3
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Example: Markov chain

Undirected graph:

x1 x2 x3 x4 x5

All models defined by the undirected graph satisfy:

x1, . . . xi−1 ⊥⊥ xi+1, . . . , x5 | xi

for 1 < i < 5
(past and future are independent given the present)
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Example: pairwise Markov network

Undirected graph:

x1 x2 x3

x4 x5 x6

All models defined by the undirected graph satisfy:

x1, x4 ⊥⊥ x3, x6 | x2, x5

x1 ⊥⊥ x5, x6, x3 | x4, x2 x1 ⊥⊥ x6 | x2, x3, x4, x5
(Last two are examples of the “local Markov property” and the “pairwise Markov
property” relative to the undirected graph.)
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Local Markov property
Denote the set of all nodes by X and the neighbours of a node α
by ne(α).
I A probability distribution is said to satisfy the local Markov

property Ml(H) relative to an undirected graph H if
α ⊥⊥ X \ (α ∪ ne(α)) | ne(α) for all nodes α ∈ X

I If p satisfies the global Markov property, then it satisfies the
local Markov property. This is because ne(α) blocks all trails
to remaining nodes.

α

PMR 2024 24 / 34



Pairwise Markov property
Denote the set of all nodes by X .
I A probability distribution is said to satisfy the pairwise Markov

property Mp(H) relative to an undirected graph H if

α ⊥⊥ β | X \ {α, β} for all non-neighbouring α, β ∈ X

I If p satisfies the local Markov property, then it satisfies the
pairwise Markov property.

α

β
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Summary

Consider an undirected graph H and the undirected graphical
model defined by it.

p satisfies F (H) (it factorises over H)
⇓

p satisfies the global Markov property Mg(H)
⇓

p satisfies the local Markov property Ml(H)
⇓

p satisfies the pairwise Markov property Mp(H)
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Do we have an equivalence?

I In directed graphical models, we had an equivalence of
I factorisation,
I ordered Markov property,
I local directed Markov property, and
I global directed Markov property.

I Do we have a similar equivalence for undirected graphical
models?

Yes, under some mild condition

PMR 2024 27 / 34



From pairwise to global Markov property and factorisation

I Theorem: Assume p(x) > 0 for all x in its domain (excludes
deterministic relationships). If p satisfies the pairwise Markov
property with respect to an undirected graph H then p
factorises over H.

(For a proof and weaker conditions, see e.g. Lauritzen, 1996, Section 3.2.)

I Hence: equivalence of factorisation and the global, local, and
pairwise Markov properties for positive distributions.

I Equivalence known as Hammersely-Clifford theorem.
I Important e.g. for learning because prior knowledge may come

in form of conditional independencies (the graph), which we
can incorporate by specifying models that factorise
accordingly.
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Summary of the equivalences

For a undirected graph H with nodes (random variables) xi and maximal
cliques Xc , we have the following equivalences:

p(x) satisfies F (H) p(x1, . . . , xd) = 1
Z

∏
c φc(Xc), φc(Xc) > 0

m
p(x) satisfies Mp(H) α ⊥⊥ β | {x1, . . . , xd} \ {α, β} for all non-neighbouring α, β

m
p(x) satisfies Ml(H) α ⊥⊥ {x1, . . . , xd} \ (α ∪ ne(α)) | ne(α) for all nodes α

m
p(x) satisfies Mg (H) all independencies asserted by graph separation

F : factorisation property, Ml : pairwise MP, Ml : local MP, Mg : global MP
(MP: Markov property)

Broadly speaking, the graph serves two related purposes:
1. it tells us how distributions factorise
2. it represents the independence assumptions made
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Markov blanket
What is the minimal set of variables such that knowing their values
makes x independent from the rest?

From local Markov property: MB(x) = ne(x):

x ⊥⊥ {all variables \ (x ∪ ne(x))} | ne(x)
(Same set of nodes that we get by connecting x to all other variables in
factors φc that contain x , see visualisation of Gibbs distributions).)

x
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What can we do with the equivalences?

I The main things that we have covered:
I If we know the factorisation of a p(x), we can build a graph H

such that p(x) satisfies F (H) and then use the graph to
determine independencies that p(x) satisfies.

I Relatedly, if we know the Markov blanket for each variable, we
can build an undirected graph H such that p(x) satisfies
Ml(H).

I We can start with the graph and check which independencies
it implies, and, when happy, define a set of pdfs/pdfs that all
satisfy the specified independencies.

I What we haven’t covered:
I How to determine an undirected graph from an arbitrary set of

independencies.
I How to learn an undirected graph from samples from p(x)

(structure learning).
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Further Reading

General material on UGMs and their independencies is covered in:
I Bishop (2006) sec. 8.3
I Barber (2012) sec. 4.2
I ... and many other sources
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Credits

These slides are modified from ones produced by Michael Gutmann,
made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann and Chris Williams, The University of
Edinburgh 2018-2024 CC BY 4.0 cb.
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