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The Causal Hierarchy

Pearl (2000)

» Association (seeing)
Example: What does a symptom tell me about a disease?

» Intervention (doing)
Example: If | take an aspirin, will my headache be cured?

» Counterfactuals (imagining)
Example: was it the aspirin that stopped my headache?

[This is a short introduction to causality. There is a whole course
Methods for Causal Inference if you want to learn more.]
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Structural Causal Models
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» A structural causal model (SCM) M is given by a set of

variables Xi, ..., Xy and corresponding assignments of the
form

Xi = fi(Pa;, U;) fori=1,...,d

where Pa; is the parents of X;, and the U'’s are jointly
independent noise variables (aka exogenous factors). The f;s
are deterministic functions

The DAG corresponding to the model has one node for each
Xi. This is termed the causal graph corresponding to the
structural causal model

SCM goes beyond the causal graphical model (CGM) with
factorization

p(Xi,..., Xq) = Hp i|Paj)
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» A causal graphical model is a DGM in which each arc is
interpreted as a direct causal influence between a parent node
and a child node, relative to the other nodes in the network.

» Both SCMs and CGMs can handle interventions, but SCMs
are needed to handle counterfactuals

» Different SCMs can give rise to the same CGM
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Interventions

» Given a SCM M we can take any assignment
X = f(Pa, U)

and replace it by
X = x.
» We denote this as M = M[X = x] or M' = M; do(X = x)
» Graphically, the operation eliminates all incoming edges into
X; this is called the modified graphical model
» The assignment operator is called the do-operator

» After applying the do-operator, we obtain probabilities for an
event E in the new graph M’ as pyx.—(E)

» Can also write p(E|do(X = x))
but the do-operator is fundamentally different from
conditioning
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> Prx=x](XL; - - -, Xd) is defined by the truncated factorization

formula

_ T pOxlpag)  if Xi = x
PMIX;i=x] (XL - - Xd) = {o it Xi # X

» By marginalizing out the other variables, we can see that

pM/(X,' — X,')
pv (Xi = x7)

1
0 if x| # x;
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Intervention as surgery on graphs

Season Season

Rain /( Sprinkler  Rain /< Sprinkler= On

Wet Wet

Slippery Slippery
X X

» Intervening on X3 produces the modified graphical model on
the right
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Causal effects
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The causal effect of an action X := x on a variable Y refers
to the distribution of the variable Y in the model
M = M[X = x]

Suppose X denotes the presence or absence of an intervention
of treatment (e.g., taking a drug or not)

Assume Y takes on values of 0 and 1

The average treatment effect

ATE = Eyix=1[Y] — Emx.=oy[ Y]

Causal effects are population quantities, relating to effects
averaged over the whole population
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Confounding
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In general the causal effect p(Y|do(X := x)) does not
coincide with the conditional p(Y|X = x)

The difference between interventional statements and
conditional statements in known as confounding

Classic setup, Z is a common cause of X and Y

Bt

Example: X is taking a drug or not, Y is recovery (or not),
and Z is a patient’s blood pressure. The blood pressure Z
influences a patient being assigned to the drug, as well as
their chances of recovery Y

Confounders may be observed, or unobserved

10 / 24



Adjusting for Direct Causes

p(Y =yldo(X :=x)) = > p(Y = y|X = x, Pa = z)p(Pa = 2)

» This is called the adjustment formula
» Follows from the modified graphical model

Bt

» Contrast the adjustment formula with conditioning

p(Y:y\X:x):Zp(Y:y,Pa:z]X:X)

= 3" p(Y = y|X = x, Pa = 2)p(Pa = z|X = x)
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Propensity score and inverse probability weighting

p(Y =yldo(X =x)) =Y p(Y =y|X =x, Pa=z)p(Pa=2z)

(X = x|Pa=z)
(X = x|Pa = z)

:Zp(Y:y|X:X,Pa:Z)Z p(Pa = z)

_Zp(X:x,Y:y,Pa:z)
B p(X = x|Pa = z)

» The term p(X = x|Pa = z) is known as the propensity score

» |t is the propensity (probability) that a unit is assigned to a
particular treatment, given Pa = z, in the observations

» Division by this term gives rise to the name “inverse
probability weighting”

PMR 2024 12 / 24



Example of Adjustment

Success rates for treatment of kidney stones

Overall Small stones Large stones
Treatment a  78% (273/350) 93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

» QOverall, treatment b looks to be more effective, but when
broken down for both small and large kidney stones,
treatment a is more effective. What's going on?

» Note that treatment a tends to be assigned for cases of large
stones, and treatment b for small stones.

» The possibility of higher risks with treatment a may mean
that it is not always used

» This pattern is an example of “Simpson’s paradox” (where a
trend that holds in all subpopulations may not hold at the
population level)

Example 6.37 in Peters, Janzing and Schélkopf, 2017
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» Let X denote the treatment (a or b), Y the outcome (1 for
success, 0 for failure) and Z the size of the stone

» Adjustment formula
p(Y = 1|do(X = a)) = Zp =1|X =a,Z = 2)p(Z = z)

(87 + 270) (263 + 80)

0.93°—— o — +0.73— 0.83
p(Y =1|do(X = b)) =) p(Y =1X=b,7Z=2)p(Z = z)
(87 + 270) (263 + 80)
0.87"——— +0.69-—- 0.78

» Average treatment effect

ATE = 0.832 — 0.782

» |n contrast the risk difference is
p(Y =1 X=a)—p(Y =1/X=b)=0.780 — 0.826
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What is Adjustment?

» \We wish to evaluate the effect of interventions on X on the
target Y

» How do we take into account other variables Z, which may be
called covariates, or confounders?

» Adjustment means partitioning the population into groups
that are homogeneous relative to Z, assessing the effect of X
on Y in each group, and then averaging the results (as per
the adjustment formula)

» This is exactly what we did in the treatment of kidney stones
example, where Z was the size of the stone

» “Adjust for” and “control for” are commonly used terms
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Don't adjust for everything!
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In the adjustment formula above, we adjust for the parents of
X

It is also possible to use other valid adjustment sets, e.g,
Pearl's “backdoor” and “frontdoor” criteria (details not
required)

But we should not control for all variables in the graph, e.g.

) @A

mediator collider

Note that Z is not a parent of X in these two configurations
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Causal ldentifiability
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An intervention distribution p(Y|M; do(X := x)) is
identifiable if it can be computed from the observational
distribution and the graph structure

Pearl's do-calculus determines the identifiability for a given
graph and a set of observed variables
Jz

Example: the confounder structure <> C> is

identifiable if we observe X, Y and Z (adjustment formula)

However, if Z is not observed, it is an unobserved confounder,

and p(Y|M,; do(X = x)) is not identifiable
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Randomized Trials
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A do-operation does not have to be a fixed assignment
In a randomized trial we have the operation do(X = Ux)

E.g. in a drug trial, one might have 3 states: no medication,
placebo, drug of interest, and Ux randomly chooses between
these with (say) equal probability

The randomization over X removes the influence of any other
variable on X, and thus there cannot be any hidden common
cause between X and Y

This is an experimental manipulation, in contrast to only
using observed data
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Counterfactuals

Example from Hardt and Recht (2022, ch 9)
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We wish to drive to work, and can choose two routes X =0
and X = 1. We decide randomly, i.e. X := Ux ~ B(1/2)

On bad traffic days (U = 1), both routes are bad

On good traffic days (U = 0) the traffic on either route is
good unless there is an accident on the same route

Accidents occur independently on either route with probability
1/2, so that Uy, Ui ~ B(1/2)

Our outcome variable is whether the traffic is good (Y = 0)
or bad (Y = 1) on the chosen route

Qutcome Y is determined as
Y =X -max(U, U;1) + (1 — X)max(U, Up)

Decoding the equation: say X := 1, then Y = 0 only if both
U and Uy are 0, otherwise Y =1
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Counterfactual question: suppose we have X := 1 and
observe bad traffic Y = 1. Would we have been better off
taking the alternative route this morning?

Notation p(Y =0|X =1,Y =1, do(X :=0))

To answer this, we need to compute

p(U, U(), U1’X = 1, Y = 1)

As X =1, we cannot find out anything about Uy, thus this
retains its prior distribution Uy ~ B(1/2)

As Y =1, it must be that at least one of U and Uj is equal
to 1, so the posterior for (U, U;) = {(1,0),(0,1),(1,1)}, each
with probability 1/3.

Hence the posterior prob that U =1 is 2/3

For the counterfactual query, Y = 0 if both Uy and U are

zero. This occurs with probability % : % — %

Interpretation: the evidence made it more likely to be a bad
traffic day (U = 1), and this drops the probability from 1/4
(p(Y = 0|do(X :=10))) to 1/6
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General recipe

Given a SCM M, observations E = e, action X := x and a target
variable Y, the counterfactual p(Y = y|E = e, do(X = x)) is
defined by the three-step procedure

1. Abduction: Condition the joint distribution of the exogenous
variables U = (Ui, ..., Uy) on the event E = e to obtain
p(U|E = e)

2. Action: Perform the do-intervention X := x in M resulting in
the model M’ = M[X = x] and the modified graph

3. Prediction: Compute the target counterfactual using the
noise distribution p(U|E = e) in M’

This procedure defines what a counterfactual is in a SCM
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What we are not covering

Backdoor and frontdoor criteria
Causal inference in practice
Potential outcomes framework

Causal discovery
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and lots more ...
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Summary
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Further Reading

The material in these slides is covered largely by chapter 9 of

» Patterns, Predictions, and Actions, Moritz Hardt and
Benjamin Recht, Princeton University Press (2022) [available
free onling]

Other more advanced texts include

» (Causal Inference in Statistics: A Primer, Judea Pearl, Madelyn
Glymour, and Nicholas P. Jewell, Wiley (2016)

» Causality, Judea Pearl, Cambridge University Press (2000).
Second edition in 2009.

» Elements of Causal Inference, Jonas Peters, Dominik Janzing,
and Bernhard Scholkopf, MIT Press (2017)
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