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The Causal Hierarchy

Pearl (2000)

I Association (seeing)
Example: What does a symptom tell me about a disease?

I Intervention (doing)
Example: If I take an aspirin, will my headache be cured?

I Counterfactuals (imagining)
Example: was it the aspirin that stopped my headache?

[This is a short introduction to causality. There is a whole course
Methods for Causal Inference if you want to learn more.]
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Outline

I Structural Causal Models
I Interventions
I Causal effects
I Confounding
I Adjustment for direct causes
I Causal identifiability
I Counterfactuals
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Structural Causal Models

I A structural causal model (SCM) M is given by a set of
variables X1, . . . ,Xd and corresponding assignments of the
form

Xi := fi(Pai ,Ui) for i = 1, . . . , d

where Pai is the parents of Xi , and the U’s are jointly
independent noise variables (aka exogenous factors). The fis
are deterministic functions

I The DAG corresponding to the model has one node for each
Xi . This is termed the causal graph corresponding to the
structural causal model

I SCM goes beyond the causal graphical model (CGM) with
factorization

p(X1, . . . ,Xd) =
d∏

i=1
p(Xi |Pai)
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I A causal graphical model is a DGM in which each arc is
interpreted as a direct causal influence between a parent node
and a child node, relative to the other nodes in the network.

I Both SCMs and CGMs can handle interventions, but SCMs
are needed to handle counterfactuals

I Different SCMs can give rise to the same CGM
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Interventions

I Given a SCM M we can take any assignment

X := f (Pa,U)

and replace it by
X := x .

I We denote this as M ′ = M[X := x ] or M ′ = M; do(X := x)
I Graphically, the operation eliminates all incoming edges into

X ; this is called the modified graphical model
I The assignment operator is called the do-operator
I After applying the do-operator, we obtain probabilities for an

event E in the new graph M ′ as pM[X :=x ](E )
I Can also write p(E |do(X := x))

but the do-operator is fundamentally different from
conditioning
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I pM[Xi =xi ](x1, . . . , xd) is defined by the truncated factorization
formula

pM[Xi :=xi ](x1, . . . , xd) =
{∏

j 6=i p(xj |paj) if Xi = xi

0 if Xi 6= xi

I By marginalizing out the other variables, we can see that

pM′(Xi = xi) = 1
pM′(Xi = x ′

i ) = 0 if x ′
i 6= xi
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Intervention as surgery on graphs
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I Intervening on X3 produces the modified graphical model on
the right

PMR 2024 8 / 24



Causal effects

I The causal effect of an action X := x on a variable Y refers
to the distribution of the variable Y in the model
M ′ = M[X := x ]

I Suppose X denotes the presence or absence of an intervention
of treatment (e.g., taking a drug or not)

I Assume Y takes on values of 0 and 1
I The average treatment effect

ATE = EM[X :=1][Y ]− EM[X :=0][Y ]

I Causal effects are population quantities, relating to effects
averaged over the whole population
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Confounding

I In general the causal effect p(Y |do(X := x)) does not
coincide with the conditional p(Y |X = x)

I The difference between interventional statements and
conditional statements in known as confounding

I Classic setup, Z is a common cause of X and Y

Z

X Y

I Example: X is taking a drug or not, Y is recovery (or not),
and Z is a patient’s blood pressure. The blood pressure Z
influences a patient being assigned to the drug, as well as
their chances of recovery Y

I Confounders may be observed, or unobserved
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Adjusting for Direct Causes

p(Y = y |do(X := x)) =
∑

z
p(Y = y |X = x ,Pa = z)p(Pa = z)

I This is called the adjustment formula
I Follows from the modified graphical model

Z

X Y

I Contrast the adjustment formula with conditioning

p(Y = y |X = x) =
∑

z
p(Y = y ,Pa = z |X = x)

=
∑

z
p(Y = y |X = x ,Pa = z)p(Pa = z |X = x)
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Propensity score and inverse probability weighting

p(Y = y |do(X := x)) =
∑

z

p(Y = y |X = x , Pa = z)p(Pa = z)

=
∑

z

p(Y = y |X = x , Pa = z)p(X = x |Pa = z)
p(X = x |Pa = z)p(Pa = z)

=
∑

z

p(X = x , Y = y , Pa = z)
p(X = x |Pa = z)

I The term p(X = x |Pa = z) is known as the propensity score
I It is the propensity (probability) that a unit is assigned to a

particular treatment, given Pa = z , in the observations
I Division by this term gives rise to the name “inverse

probability weighting”
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Example of Adjustment
Success rates for treatment of kidney stones

Overall Small stones Large stones
Treatment a 78% (273/350) 93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

I Overall, treatment b looks to be more effective, but when
broken down for both small and large kidney stones,
treatment a is more effective. What’s going on?

I Note that treatment a tends to be assigned for cases of large
stones, and treatment b for small stones.

I The possibility of higher risks with treatment a may mean
that it is not always used

I This pattern is an example of “Simpson’s paradox” (where a
trend that holds in all subpopulations may not hold at the
population level)

Example 6.37 in Peters, Janzing and Schölkopf, 2017
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I Let X denote the treatment (a or b), Y the outcome (1 for
success, 0 for failure) and Z the size of the stone

I Adjustment formula

p(Y = 1|do(X := a)) =
∑

z
p(Y = 1|X = a,Z = z)p(Z = z)

= 0.93(87 + 270)
700 + 0.73(263 + 80)

700 = 0.832

p(Y = 1|do(X := b)) =
∑

z
p(Y = 1|X = b,Z = z)p(Z = z)

= 0.87(87 + 270)
700 + 0.69(263 + 80)

700 = 0.782

I Average treatment effect

ATE = 0.832− 0.782

I In contrast the risk difference is
p(Y = 1|X = a)− p(Y = 1|X = b) = 0.780− 0.826
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What is Adjustment?

I We wish to evaluate the effect of interventions on X on the
target Y

I How do we take into account other variables Z , which may be
called covariates, or confounders?

I Adjustment means partitioning the population into groups
that are homogeneous relative to Z , assessing the effect of X
on Y in each group, and then averaging the results (as per
the adjustment formula)

I This is exactly what we did in the treatment of kidney stones
example, where Z was the size of the stone

I “Adjust for” and “control for” are commonly used terms
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Don’t adjust for everything!

I In the adjustment formula above, we adjust for the parents of
X

I It is also possible to use other valid adjustment sets, e.g,
Pearl’s “backdoor” and “frontdoor” criteria (details not
required)

I But we should not control for all variables in the graph, e.g.

Z

X Y

Z

X Y

mediator collider
I Note that Z is not a parent of X in these two configurations
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Causal Identifiability

I An intervention distribution p(Y |M; do(X := x)) is
identifiable if it can be computed from the observational
distribution and the graph structure

I Pearl’s do-calculus determines the identifiability for a given
graph and a set of observed variables

I Example: the confounder structure
Z

X Y is
identifiable if we observe X , Y and Z (adjustment formula)

I However, if Z is not observed, it is an unobserved confounder,
and p(Y |M; do(X := x)) is not identifiable
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Randomized Trials

I A do-operation does not have to be a fixed assignment
I In a randomized trial we have the operation do(X := UX )
I E.g. in a drug trial, one might have 3 states: no medication,

placebo, drug of interest, and UX randomly chooses between
these with (say) equal probability

I The randomization over X removes the influence of any other
variable on X , and thus there cannot be any hidden common
cause between X and Y

I This is an experimental manipulation, in contrast to only
using observed data

PMR 2024 18 / 24



Counterfactuals
Example from Hardt and Recht (2022, ch 9)
I We wish to drive to work, and can choose two routes X = 0

and X = 1. We decide randomly, i.e. X := UX ∼ B(1/2)
I On bad traffic days (U = 1), both routes are bad
I On good traffic days (U = 0) the traffic on either route is

good unless there is an accident on the same route
I Accidents occur independently on either route with probability

1/2, so that U0, U1 ∼ B(1/2)
I Our outcome variable is whether the traffic is good (Y = 0)

or bad (Y = 1) on the chosen route
I Outcome Y is determined as

Y := X ·max(U,U1) + (1− X ) max(U,U0)

I Decoding the equation: say X := 1, then Y = 0 only if both
U and U1 are 0, otherwise Y = 1
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I Counterfactual question: suppose we have X := 1 and
observe bad traffic Y = 1. Would we have been better off
taking the alternative route this morning?

I Notation p(Y = 0|X = 1,Y = 1, do(X := 0))
I To answer this, we need to compute

p(U,U0,U1|X = 1,Y = 1)
I As X = 1, we cannot find out anything about U0, thus this

retains its prior distribution U0 ∼ B(1/2)
I As Y = 1, it must be that at least one of U and U1 is equal

to 1, so the posterior for (U,U1) = {(1, 0), (0, 1), (1, 1)}, each
with probability 1/3.

I Hence the posterior prob that U = 1 is 2/3
I For the counterfactual query, Y = 0 if both U0 and U are

zero. This occurs with probability 1
2 ·

1
3 = 1

6
I Interpretation: the evidence made it more likely to be a bad

traffic day (U = 1), and this drops the probability from 1/4
(p(Y = 0|do(X := 0))) to 1/6
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General recipe

Given a SCM M, observations E = e, action X := x and a target
variable Y , the counterfactual p(Y = y |E = e, do(X := x)) is
defined by the three-step procedure

1. Abduction: Condition the joint distribution of the exogenous
variables U = (U1, . . . ,Ud) on the event E = e to obtain
p(U|E = e)

2. Action: Perform the do-intervention X := x in M resulting in
the model M ′ = M[X := x ] and the modified graph

3. Prediction: Compute the target counterfactual using the
noise distribution p(U|E = e) in M ′

This procedure defines what a counterfactual is in a SCM
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What we are not covering

I Backdoor and frontdoor criteria
I Causal inference in practice
I Potential outcomes framework
I Causal discovery
I and lots more ...
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Summary

I Structural Causal Models
I Interventions
I Causal effects
I Confounding
I Adjustment for direct causes
I Causal identifiability
I Counterfactuals
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Further Reading

The material in these slides is covered largely by chapter 9 of
I Patterns, Predictions, and Actions, Moritz Hardt and

Benjamin Recht, Princeton University Press (2022) [available
free online]

Other more advanced texts include
I Causal Inference in Statistics: A Primer, Judea Pearl, Madelyn

Glymour, and Nicholas P. Jewell, Wiley (2016)
I Causality, Judea Pearl, Cambridge University Press (2000).

Second edition in 2009.
I Elements of Causal Inference, Jonas Peters, Dominik Janzing,

and Bernhard Schölkopf, MIT Press (2017)
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