Factor Graphs

Chris Williams (based on slides by Michael U. Gutmann)

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2024

Recap

- Undirected and directed graphical models have complementary properties
- Both encode and (visually) represent statistical independencies (I-maps) and factorisations.

For directed graphs with parent sets pa_i

$$p(x_1,\ldots,x_d) = \prod_{i=1}^d p(x_i|\mathrm{pa}_i)$$

For undirected graphs with maximal clique sets \mathcal{X}_c

$$p(x_1,\ldots,x_d)=\frac{1}{Z}\prod_c\phi_c(\mathcal{X}_c)$$

- 1. What are factor graphs?
- 2. Advantages over directed or undirected graphs?

Program

1. What are factor graphs?

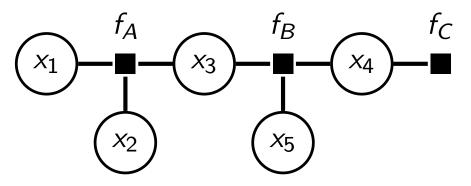
- Definition
- Visualising Gibbs distributions as factor graphs
- Visualising factors that are conditionals

2. Advantages over directed or undirected graphs?

Definition of factor graphs

- A factor graph represents the factorisation of an arbitrary function (not necessarily related to pdfs/pmfs)
- Example: $h(x_1, \ldots, x_5) = f_A(x_1, x_2, x_3) f_B(x_3, x_4, x_5) f_C(x_4)$

Factor graph (FG):

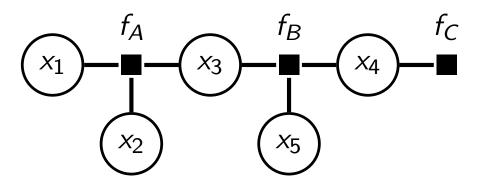


- Two types of nodes: factor and variable nodes
- Convention: squares for factors, circles for variables (other conventions are used too)

Definition of factor graphs

• Example: $h(x_1, \ldots, x_5) = f_A(x_1, x_2, x_3) f_B(x_3, x_4, x_5) f_C(x_4)$

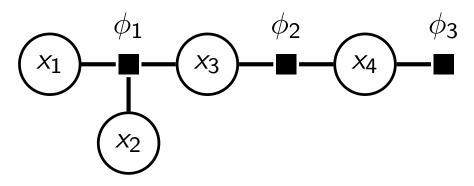
Factor graph (FG):



- Edge between variable x and factor $f \Leftrightarrow x$ is an argument of f
- Variable nodes are always connected to factor nodes; no direct links between factor or variable nodes (FGs are bipartite graphs)
- We can also use directed edges (to indicate conditionals)

Visualising Gibbs distributions as factor graphs

• Example: $p(x_1, x_2, x_3, x_4) = \frac{1}{Z}\phi_1(x_1, x_2, x_3)\phi_2(x_3, x_4)\phi_3(x_4)$



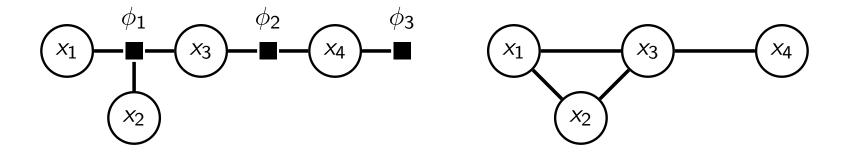
- General case: $p(x_1, \ldots, x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$
 - Factor node for all ϕ_c
 - For all factors ϕ_c :
 - draw an undirected edge between ϕ_c and all $x_i \in \mathcal{X}_c$.
- Can visualise any undirected graphical model as a factor graph.

Visualising Gibbs distributions as factor graphs

Some differences to visualisation with undirected graph:

- Factors ϕ_c are shown, which makes the graphs more informative (see next slide).
- Variables x_i are neighbours if they are connected to the same factor.

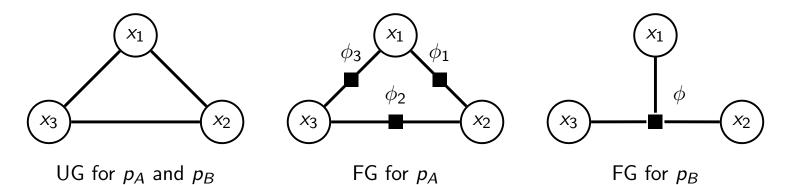
$$p(x_1, x_2, x_3, x_4) = \frac{1}{Z}\phi_1(x_1, x_2, x_3)\phi_2(x_3, x_4)\phi_3(x_4)$$



More informative than undirected graphs

- Mapping from Gibbs distribution to undirected graph is many to one but one-to-one for factor graphs.
- Example

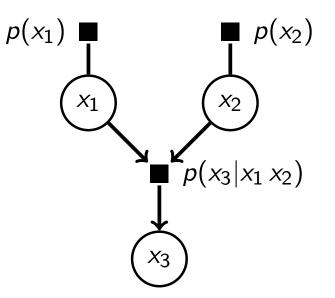
 $p_A(x_1, x_2, x_3) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_1)$ $p_B(x_1, x_2, x_3) \propto \phi(x_1, x_2, x_3)$



Visualising factors that are conditionals

For $p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3|x_1, x_2)$, we may want to include the information that x_3 is conditioned on x_1, x_2

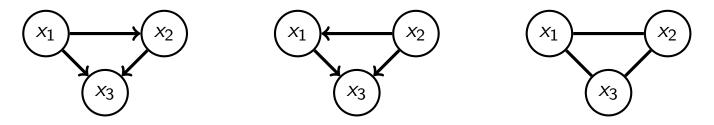
Use arrows as in directed graphs.



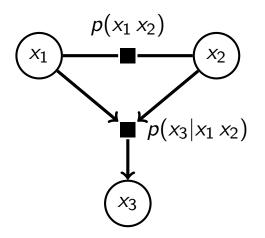
Can visualise any directed graphical model as a factor graph.

Mixed graphs

- Let $p(x_1, x_2, x_3) = p(x_1, x_2)p(x_3|x_1, x_2)$.
- Directed graphs forces ordering of the random variables; undirected graph does not show conditioning on x₁, x₂



Mixed FG to visualise the conditioning for p(x₃|x₁, x₂) without imposing an ordering on x₁ and x₂



1. What are factor graphs?

- 2. Advantages over directed or undirected graphs?
 - Computational advantages
 - Statistical advantages

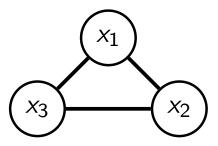
Importance of factorisation

Factorisation was central in the development so far

But directed and undirected graphs are not able to fully represent arbitrary factorisations of pdfs/pmfs.

For example, same graph for

 $p(x_1, x_2, x_3) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_1)$ $p(x_1, x_2, x_3) \propto \phi(x_1, x_2, x_3)$



We should expect that being able to better represent the factorisation has advantages.

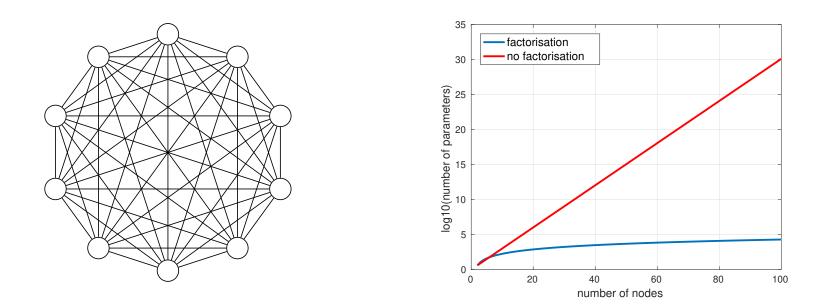
Example of computational advantages

Assume binary random variables x_i .

Same undirected graph but

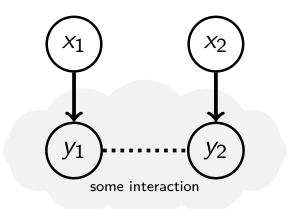
 $p(x_1, \ldots, x_d) \propto \phi(x_1, \ldots, x_d)$ has 2^d free parameters, $p(x_1, \ldots, x_d) \propto \prod_{i < j} \phi_{ij}(x_i, x_j)$ has $\binom{d}{2} 2^2$ free parameters parameters \equiv entries to specify in a table representation

The difference matters for learning and inference when the number of variables is large.



Example of statistical advantages

- Let x_1 and x_2 be two inputs
- x₁ controls variable y₁ x₂ controls y₂
- Variables y₁ and y₂ influence each other



- Model: p(y₁, y₂, x₁, x₂) = p(y₁, y₂|x₁, x₂)p(x₁)p(x₂) (probabilistic modelling: pdf/pmf p(y₁, y₂|x₁, x₂) captures uncertainty about how the x_i affect the y_i and about how the y_i interact)
- Choose $p(y_1, y_2|x_1, x_2)$ such that $p(y_1, y_2, x_1, x_2)$ satisfies
 - ▶ $x_1 \perp \perp x_2$ (independence between control variables)
 - \blacktriangleright $x_1 \perp y_2 \mid y_1, x_2 \quad (y_2 \text{ is only directly influenced by } y_1 \text{ and } x_2)$
 - \blacktriangleright $x_2 \perp \perp y_1 \mid y_2, x_1 \quad (y_1 \text{ is only directly influenced by } y_2 \text{ and } x_1)$

Example of statistical advantages

Three independencies are satisfied if p(y₁, y₂|x₁, x₂) factorises as

 $p(y_1, y_2|x_1, x_2) = p(y_1|x_1)p(y_2|x_2)\phi(y_1, y_2)n(x_1, x_2)$

where $n(x_1, x_2)$ ensures normalisation of $p(y_1, y_2 | x_1, x_2)$

$$n(x_1, x_2) = (\int p(y_1|x_1)p(y_2|x_2)\phi(y_1, y_2) \mathrm{d}y_1 \mathrm{d}y_2)^{-1}$$

(see exercises)

- Directed and undirected graphs cannot represent the independencies induced by factorisation of p(y₁, y₂|x₁, x₂) (see exercises).
- Factor graphs and chain graphs (see e.g. Barber, Section 4.3; Lauritzen, Section 3.2.3, not covered in PMR) can represent them.
- Factor graphs can represent independencies that DAGs or UGs cannot or do not represent (not covered in PMR).

1. What are factor graphs?

- Definition
- Visualising Gibbs distributions as factor graphs
- Visualising factors that are conditionals

2. Advantages over directed or undirected graphs?

- Computational advantages
- Statistical advantages

These slides were produced by Michael Gutmann, made available under Creative Commons licence CC BY 4.0.

©Michael Gutmann, The University of Edinburgh 2018-2024 CC BY 4.0 © (•).