Exact Inference for Hidden Markov Models

Chris Williams
(based on slides by Michael U. Gutmann)
Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Spring Semester 2024

Recap

- Assuming a factorisation / set of statistical independencies allowed us to efficiently represent the pdf or pmf of random variables
- Factorisation can be exploited for inference
- by using the distributive law
- by re-using already computed quantities
- Inference for general factor graphs (variable elimination)
- Inference for factor trees
- Sum-product and max-product/max-sum message passing

Program

1. Markov models
2. Inference by message passing

Program

1. Markov models

- Markov chains
- Transition distribution
- Hidden Markov models
- Emission distribution
- Mixture of Gaussians as special case
- Linear Dynamical System (LDS)

2. Inference by message passing

Applications of (hidden) Markov models

Markov and hidden Markov models have many applications, e.g.

- speech modelling (speech recognition)
- text modelling (natural language processing)
- gene sequence modelling (bioinformatics)
- spike train modelling (neuroscience)
- object tracking (robotics)

Markov chains

- Chain rule with ordering x_{1}, \ldots, x_{d}

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

- If p satisfies ordered Markov property, the number of variables in the conditioning set can be reduced to a subset
$\pi_{i} \subseteq\left\{x_{1}, \ldots, x_{i-1}\right\}$
- Not all predecessors but only subset π_{i} is "relevant" for x_{i}.
- L-th order Markov chain: $\pi_{i}=\left\{x_{i-L}, \ldots, x_{i-1}\right\}$

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{i-L}, \ldots, x_{i-1}\right)
$$

- 1st order Markov chain: $\pi_{i}=\left\{x_{i-1}\right\}$

$$
p\left(x_{1}, \ldots, x_{d}\right)=\prod_{i=1}^{d} p\left(x_{i} \mid x_{i-1}\right)
$$

Markov chain - DAGs

Chain rule

Second-order Markov chain

First-order Markov chain

Vector-valued Markov chains

- While not explicitly discussed, the graphical models extend to vector-valued variables.
- Chain rule with ordering $\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}$

$$
p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)=\prod_{i=1}^{d} p\left(\mathbf{x}_{i} \mid \mathbf{x}_{1}, \ldots, \mathbf{x}_{i-1}\right)
$$

- 1st order Markov chain:

$$
\begin{aligned}
& p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{d}\right)=\prod_{i=1}^{d} p\left(\mathbf{x}_{i} \mid \mathbf{x}_{i-1}\right) \\
& \mathbf{x}_{1} \longrightarrow \mathrm{x}_{2} \longrightarrow \mathrm{x}_{3} \longrightarrow
\end{aligned}
$$

Modelling time series

- Index i may refer to time t
- For example, 1st order Markov chain of length T :

$$
p\left(x_{1}, \ldots, x_{T}\right)=\prod_{t=1}^{T} p\left(x_{t} \mid x_{t-1}\right)
$$

- Only the last time point x_{t-1} is relevant for x_{t}.

Transition distribution

(Consider 1st order Markov chain.)

- $p\left(x_{i} \mid x_{i-1}\right)$ is called the transition distribution
- For discrete random variables, $p\left(x_{i} \mid x_{i-1}\right)$ is defined by a transition matrix $\mathbf{A}^{(i)}$

$$
p\left(x_{i}=k \mid x_{i-1}=k^{\prime}\right)=A_{k, k^{\prime}}^{(i)} \quad\left(A_{k^{\prime}, k}^{(i)} \text { convention is also used }\right)
$$

- For continuous random variables, $p\left(x_{i} \mid x_{i-1}\right)$ is a conditional pdf, e.g.

$$
p\left(x_{i} \mid x_{i-1}\right)=\frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left(-\frac{\left(x_{i}-f_{i}\left(x_{i-1}\right)\right)^{2}}{2 \sigma_{i}^{2}}\right)
$$

for some function f_{i}

- Homogeneous Markov chain: $p\left(x_{i} \mid x_{i-1}\right)$ does not depend on i, e.g.

$$
\mathbf{A}^{(i)}=\mathbf{A} \quad \text { or } \quad \sigma_{i}=\sigma, \quad f_{i}=f
$$

- Inhomogeneous Markov chain: $p\left(x_{i} \mid x_{i-1}\right)$ does depend on i

Hidden Markov model

DAG:

- 1st order Markov chain on hidden (latent) variables h_{i}.
- Each visible (observed) variable v_{i} only depends on the corresponding hidden variable h_{i}
- Factorisation

$$
p\left(h_{1: d}, v_{1: d}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \prod_{i=2}^{d} p\left(v_{i} \mid h_{i}\right) p\left(h_{i} \mid h_{i-1}\right)
$$

- The visibles are d-connected if hiddens are not observed
- Visibles are d-separated (independent) given the hiddens
- The $h_{i} s$ model/explain all dependencies between the $v_{i} s$

Emission distribution

- $p\left(v_{i} \mid h_{i}\right)$ is called the emission distribution
- Discrete-valued v_{i} and h_{i} : $p\left(v_{i} \mid h_{i}\right)$ can be represented as a matrix
- Discrete-valued v_{i} and continuous-valued h_{i} : $p\left(v_{i} \mid h_{i}\right)$ is a conditional pmf.
- Continuous-valued $v_{i}: p\left(v_{i} \mid h_{i}\right)$ is a density
- As for the transition distribution, the emission distribution $p\left(v_{i} \mid h_{i}\right)$ may depend on i or not.
- If neither the transition nor the emission distribution depend on i, we have a stationary (or homogeneous) hidden Markov model (HMM).

Gaussian emission model with discrete-valued latents

- Special case: $h_{i} \Perp h_{i-1}$, and $\mathbf{v}_{i} \in \mathbb{R}^{m}, h_{i} \in\{1, \ldots, K\}$

$$
\begin{aligned}
p(h=k) & =p_{k} \\
p(\mathbf{v} \mid h=k) & =\frac{1}{\left|\operatorname{det} 2 \pi \boldsymbol{\Sigma}_{k}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{v}-\boldsymbol{\mu}_{k}\right)^{\top} \boldsymbol{\Sigma}_{k}^{-1}\left(\mathbf{v}-\boldsymbol{\mu}_{k}\right)\right)
\end{aligned}
$$

for all h_{i} and \mathbf{v}_{i}.

- DAG

- Corresponds to d iid draws from a Gaussian mixture model with K mixture components
- Mean $\mathbb{E}[\mathbf{v} \mid h=k]=\boldsymbol{\mu}_{k}$
- Covariance matrix $\mathbb{V}[\mathbf{v} \mid h=k]=\boldsymbol{\Sigma}_{k}$

Gaussian emission model with discrete-valued latents

The HMM is a generalisation of the Gaussian mixture model where cluster membership at "time" i (the value of h_{i}) generally depends on cluster membership at "time" $i-1$ (the value of h_{i-1}).

Example for $\mathbf{v}_{i} \in \mathbb{R}^{2}, h_{i} \in\{1,2,3\}$. Left: $p(\mathbf{v} \mid h=k)$. Right: samples
(Bishop, Figure 13.8)

Linear Dynamical System (LDS)

- Continuous-valued hidden and visible state
- Transition model is linear

$$
\mathbf{h}_{t+1}=A \mathbf{h}_{t}+\mathbf{n}_{t+1}^{h}, \quad \mathbf{n}_{t+1}^{h} \sim N\left(0, \Sigma^{h}\right)
$$

- Stable dynamics if all eigenvalues of A have magnitude <1
- Emission model is linear

$$
\mathbf{v}_{t}=C \mathbf{h}_{t}+\mathbf{n}_{t}^{v}, \quad \mathbf{n}_{t}^{v} \sim N\left(0, \Sigma^{v}\right)
$$

- If $p\left(\mathbf{h}_{1}\right)$ is Gaussian, the whole model is jointly Gaussian
- Computation of $p\left(\mathbf{h}_{t} \mid \mathbf{v}_{1: t}\right)$ is the filtering problem: for the LDS, this was solved by Kalman (1960), hence it is termed Kalman filtering
- Uses: navigational and guidance systems

Program

1. Markov models

- Markov chains
- Transition distribution
- Hidden Markov models
- Emission distribution
- Mixture of Gaussians as special case
- Linear Dynamical System (LDS)

2. Inference by message passing

Program

1. Markov models
2. Inference by message passing

- Inference: filtering, prediction, smoothing, Viterbi
- Filtering: Sum-product message passing yields the α-recursion
- Smoothing: Sum-product message passing yields the $\alpha-\beta$ recursion

The classical inference problems

(Considering the index i to refer to time t)
Filtering (Inferring the present) $\quad p\left(h_{t} \mid v_{1: t}\right)$
Smoothing (Inferring the past) $\quad p\left(h_{t} \mid v_{1: u}\right) \quad t<u$
Prediction (Inferring the future) $p\left(h_{t} \mid v_{1: u}\right) \quad t>u$

$$
p\left(v_{t} \mid v_{1: u}\right) \quad t>u
$$

Most likely hidden path

Posterior sampling
(Forward filtering backward sampling)

$$
h_{1: t} \sim p\left(h_{1: t} \mid v_{1: t}\right)
$$

For the HMM, all tasks can be solved via message passing (sum-product or max-sum/max-product algorithm).

The classical inference problems

Figure based on Fig. 1.0-1 of Gelb et al (1974)

Factor graph for hidden Markov model

DAG:

Factor graph:

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: factor graph

- When computing $p\left(h_{t} \mid v_{1: t}\right)$, the $v_{1: t}=\left(v_{1}, \ldots, v_{t}\right)$ are assumed known and are kept fixed (e.g. $t=4$)
- For $s=1, \ldots, t$, the factors $p\left(v_{s} \mid h_{s}\right)$ depend only on h_{s}. Combine them with $p\left(h_{s} \mid h_{s-1}\right)$ and form new factors ϕ_{s}

$$
\phi_{1}\left(h_{1}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right), \quad \phi_{s}\left(h_{s-1}, h_{s}\right)=p\left(v_{s} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right)
$$

- Factor graph

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: messages

Messages needed to compute $p\left(h_{4} \mid v_{1: 4}\right)$:

There is a simplification:

- The message from $p\left(h_{5} \mid h_{4}\right)$ to h_{4} equals 1 !
- Follows from message passing starting at leaves v_{5} and v_{6} since the factors $p(. \mid$.$) are conditionals and sum to one, e.g.$

$$
\sum_{v_{6}} p\left(v_{6} \mid h_{6}\right)=1 \quad \sum_{h_{6}} p\left(h_{6} \mid h_{5}\right)=1
$$

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: reduce to inference on chain

- A message is an effective factor obtained by summing out all variables downstream from where the message is coming from.
- This means that we can replace the factor sub-graph to the right of the last observed variable v_{t} and latent h_{t} (here v_{4} and h_{4}) with the effective factor.
- Effective factor is 1 , so that we can just remove the sub-graph.
- Also can be seen by "marginalising out" the unobserved future
- Reduces problem to message passing on a chain.

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: message passing on the chain

- Initialisation: $\mu_{\phi_{1} \rightarrow h_{1}}\left(h_{1}\right)=\phi_{1}\left(h_{1}\right)$
- Variable node h_{1} copies the message:

$$
\mu_{h_{1} \rightarrow \phi_{2}}\left(h_{1}\right)=\mu_{\phi_{1} \rightarrow h_{1}}\left(h_{1}\right)
$$

- Same for other variable nodes. Let us write the algorithm in terms of $\mu_{\phi_{i} \rightarrow h_{i}}\left(h_{i}\right)$ messages only.
- Message from ϕ_{2} to h_{2} :

$$
\mu_{\phi_{2} \rightarrow h_{2}}\left(h_{2}\right)=\sum_{h_{1}} \phi_{2}\left(h_{1}, h_{2}\right) \mu_{\phi_{1} \rightarrow h_{1}}\left(h_{1}\right)
$$

- Message from ϕ_{s} to h_{s}, for $s=2, \ldots, t$:

$$
\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)=\sum_{h_{s-1}} \phi_{s}\left(h_{s-1}, h_{s}\right) \mu_{\phi_{s-1} \rightarrow h_{s-1}}\left(h_{s-1}\right)
$$

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: message passing on the chain

- The messages $\mu_{\phi_{s} \rightarrow h_{s}}\left(h_{s}\right)$ are traditionally denoted by $\alpha\left(h_{s}\right)$.
- Message passing for filtering becomes:
- Init: $\alpha\left(h_{1}\right)=\phi_{1}\left(h_{1}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right)$
- Update rule for $s=2, \ldots t$:

$$
\begin{aligned}
\alpha\left(h_{s}\right) & =\sum_{h_{s-1}} \phi_{s}\left(h_{s-1}, h_{s}\right) \alpha\left(h_{s-1}\right) \\
& =p\left(v_{s} \mid h_{s}\right) \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right)
\end{aligned}
$$

- Algorithm known as "alpha-recursion".
- Desired probability:

$$
p\left(h_{t} \mid v_{1: t}\right)=\frac{1}{Z_{t}} \alpha\left(h_{t}\right) \quad Z_{t}=\sum_{h_{t}} \alpha\left(h_{t}\right)
$$

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: likelihood

- Joint model for $h_{1: t}$ and $v_{1: t}$

$$
p\left(h_{1: t}, v_{1: t}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \prod_{i=2}^{t} p\left(v_{i} \mid h_{i}\right) p\left(h_{i} \mid h_{i-1}\right)
$$

- Conditional $p\left(h_{1: t} \mid v_{1: t}\right)$ is proportional to the joint

$$
p\left(h_{1: t} \mid v_{1: t}\right) \propto p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \prod_{i=2}^{t} p\left(v_{i} \mid h_{i}\right) p\left(h_{i} \mid h_{i-1}\right)
$$

- Normalising constant Z is the likelihood/marginal $p\left(v_{1: t}\right)$
- From results on message passing: Z_{t} that normalises the marginal is also the normaliser of $p\left(h_{1: t} \mid v_{1: t}\right)$, i.e. $p\left(v_{1: t}\right)$:

$$
Z_{t}=\sum_{h_{t}} \alpha\left(h_{t}\right)=p\left(v_{1: t}\right)
$$

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: interpretation

- We have seen that $p\left(h_{t} \mid v_{1: t}\right) \propto \alpha\left(h_{t}\right)$.

- Consider $p\left(h_{s} \mid v_{1: s}\right)$ with $s<t$ (e.g. $s=2$ and $t=4$)

- Messages to the left of h_{s} are the same as for $p\left(h_{t} \mid v_{1: t}\right)$.
- Messages to the right of h_{s} are all equal to one.

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: interpretation

- This means that the intermediate $\alpha\left(h_{s}\right)$ that we compute when computing $p\left(h_{t} \mid v_{1: t}\right)$ are unnormalised posteriors themselves:

$$
\alpha\left(h_{s}\right) \propto p\left(h_{s} \mid v_{1: s}\right)
$$

Note that we condition on $v_{1: s}$ and not $v_{1: t}$.

- Moreover $p\left(v_{1: s}\right)=\sum_{h(s)} \alpha\left(h_{s}\right)$.
- Hence, the alpha-recursion gives us posteriors $p\left(h_{s} \mid v_{1: s}\right)$ and likelihoods $p\left(v_{1: s}\right)$ for $s=1, \ldots, t$.

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: interpretation

- Proof by induction shows that $\alpha\left(h_{s}\right)=p\left(h_{s}, v_{1: s}\right)$.
- Base case holds by definition: $\alpha\left(h_{1}\right)=p\left(h_{1}\right) p\left(v_{1} \mid h_{1}\right)$.
- Assume it holds for $\alpha\left(h_{s-1}\right)$. Then:

$$
\begin{aligned}
& \alpha\left(h_{s}\right)=\sum_{h_{s-1}} p\left(v_{s} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \\
& \quad \stackrel{\text { (induction hyp) }}{=} \sum_{h_{s-1}} p\left(v_{s} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right) p\left(h_{s-1}, v_{1: s-1}\right) \\
& \quad \stackrel{\text { (Markov prop) }}{=} \sum_{h_{s-1}} p\left(v_{s} \mid h_{s}, h_{s-1}, v_{1: s-1}\right) p\left(h_{s} \mid h_{s-1}, v_{1: s-1}\right) p\left(h_{s-1}, v_{1: s-1}\right) \\
& \quad \stackrel{\text { (product rule) }}{=} \sum_{h_{s-1}} p\left(v_{s} \mid h_{s}, h_{s-1}, v_{1: s-1}\right) p\left(h_{s}, h_{s-1}, v_{1: s-1}\right) \\
& \quad \stackrel{\text { (product rule) }}{=} \sum_{h_{s-1}} p\left(v_{s}, h_{s}, h_{s-1}, v_{1: s-1}\right) \\
& \quad(\text { marginalise) } \\
&= p\left(v_{s}, h_{s}, v_{1: s-1}\right) \\
&= p\left(h_{s}, v_{1: s}\right)
\end{aligned}
$$

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: interpretation

- Update rule as prediction-correction algorithm:

$$
\begin{aligned}
& \alpha\left(h_{s}\right) \stackrel{\text { (prev slide) }}{=} p\left(h_{s}, v_{1: s}\right) \\
& \stackrel{\text { (product rule) }}{=} p\left(v_{s} \mid h_{s}, v_{1: s-1}\right) p\left(h_{s}, v_{1: s-1}\right) \\
& \stackrel{\text { (Markov prop) }}{=} p\left(v_{s} \mid h_{s}\right) p\left(h_{s}, v_{1: s-1}\right) \\
& \propto \underbrace{p\left(v_{s} \mid h_{s}\right)}_{\text {correction }} \underbrace{p\left(h_{s} \mid v_{1: s-1}\right)}_{\text {prediction }}
\end{aligned}
$$

- The correction term updates the predictive distribution $p\left(h_{s} \mid v_{1: s-1}\right)$ to include the new data v_{s}.

Filtering $p\left(h_{t} \mid v_{1: t}\right)$: summary

- Conditioning reduces the factor graph for the HMM to a chain.
- Message passing for filtering:
- Init: $\alpha\left(h_{1}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right)$
- Update rule for $s=2, \ldots t$:

$$
\alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right)
$$

which involves prediction of h_{s} given $v_{1: s-1}$ and correction using new datum v_{s}.

- $\alpha\left(h_{s}\right)=p\left(h_{s}, v_{1: s}\right) \propto p\left(h_{s} \mid v_{1: s}\right)$ and $p\left(v_{1: s}\right)=\sum_{h_{s}} \alpha\left(h_{s}\right)$, for $s=1, \ldots, t$

Smoothing $p\left(h_{t} \mid v_{1: u}\right), t<u$: reduce to inference on chain

- Unlike in filtering where we predict h_{t} from data up to time t, in smoothing we have observations from later time points.
- Messages needed to compute $p\left(h_{t} \mid v_{1: u}\right)($ e.g. $t=2, u=4)$

- As in filtering, we can simplify to a chain

Smoothing $p\left(h_{t} \mid v_{1: u}\right), t<u$: message passing on chain

- Messages \rightarrow from factor leaf ϕ_{1} to h_{t} same as in filtering.
- Messages \leftarrow from variable leaf h_{u} to h_{t} via message passing.
- Init: $\mu_{h_{u} \rightarrow \phi_{u}}\left(h_{u}\right)=1$
- Next message $\mu_{\phi_{u} \rightarrow h_{u-1}}\left(h_{u-1}\right)=\sum_{h_{u}} \phi_{u}\left(h_{u-1}, h_{u}\right)$
- Variable nodes just copy the incoming message. Write the algorithm in terms of $\beta\left(h_{s}\right)=\mu_{\phi_{s+1} \rightarrow h_{s}}\left(h_{s}\right)$ only:

$$
\begin{aligned}
\beta\left(h_{s-1}\right) & =\sum_{h_{s}} \phi_{s}\left(h_{s-1}, h_{s}\right) \beta\left(h_{s}\right) \\
& =\sum_{h_{s}} p\left(v_{s} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right) \beta\left(h_{s}\right)
\end{aligned}
$$

- Gives "alpha-beta recursion" for smoothing.

Smoothing $p\left(h_{t} \mid v_{1: u}\right), t<u$: message passing on chain

- \rightarrow Forwards via alpha-recursion
- Init: $\alpha\left(h_{1}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right)$
- Update rule for $s=2, \ldots t$:

$$
\alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right)
$$

$-\leftarrow$ Backwards via beta-recursion

- Init: $\beta\left(h_{u}\right)=1$
- Update rule for $s=u, \ldots t+1$:

$$
\beta\left(h_{s-1}\right)=\sum_{h_{s}} p\left(v_{s} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right) \beta\left(h_{s}\right)
$$

- Desired probability:

$$
p\left(h_{t} \mid v_{1: u}\right)=\frac{1}{Z_{t}^{u}} \alpha\left(h_{t}\right) \beta\left(h_{t}\right) \quad Z_{t}^{u}=\sum_{h_{t}} \alpha\left(h_{t}\right) \beta\left(h_{t}\right)
$$

Smoothing $p\left(h_{t} \mid v_{1: u}\right), t<u$: interpretation

- We now show that $\beta\left(h_{s}\right)$ equals the probability of the upstream observations given h_{s},

$$
\beta\left(h_{s}\right)=p\left(v_{s+1: u} \mid h_{s}\right) \quad \text { for all } s<u
$$

- First consider $\beta\left(h_{u-1}\right)$:

$$
\begin{aligned}
& \beta\left(h_{u-1}\right)=\sum_{h_{u}} p\left(v_{u} \mid h_{u}\right) p\left(h_{u} \mid h_{u-1}\right) \underbrace{\beta\left(h_{u}\right)}_{1} \\
& \stackrel{\text { (Markov prop) }}{=} \sum_{h_{u}} p\left(v_{u} \mid h_{u}, h_{u-1}\right) p\left(h_{u} \mid h_{u-1}\right) \\
& \quad \stackrel{\text { (product rule) }}{=} \sum_{h_{u}} p\left(v_{u}, h_{u} \mid h_{u-1}\right) \\
& \quad \stackrel{\text { (marginalise) }}{=} p\left(v_{u} \mid h_{u-1}\right)
\end{aligned}
$$

- Hence $\beta\left(h_{s}\right)=p\left(v_{s+1: u} \mid h_{s}\right)$ holds for $s=u-1$. Provides the base case for a proof by induction.

Smoothing $p\left(h_{t} \mid v_{1: u}\right), t<u$: interpretation

Assume $\beta\left(h_{s}\right)=p\left(v_{s+1: u} \mid h_{s}\right)$ holds. Then:

$$
\begin{aligned}
\beta\left(h_{s-1}\right) & =\sum_{h_{s}} p\left(v_{s} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right) \beta\left(h_{s}\right) \\
& \stackrel{\text { (induction hyp) }}{=} \sum_{h_{s}} p\left(v_{s} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right) p\left(v_{s+1: u} \mid h_{s}\right) \\
& \stackrel{\text { (Markov prop) }}{=} \sum_{h_{s}} p\left(v_{s} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right) p\left(v_{s+1: u} \mid h_{s}, v_{s}\right) \\
& \stackrel{\text { (product rule) }}{=} \sum_{h_{s}} p\left(v_{s: u} \mid h_{s}\right) p\left(h_{s} \mid h_{s-1}\right) \\
& \stackrel{\text { (Markov prop) }}{=} \sum_{h_{s}} p\left(v_{s: u} \mid h_{s}, h_{s-1}\right) p\left(h_{s} \mid h_{s-1}\right) \\
& \stackrel{\text { (product rule) }}{=} \sum_{h_{s}} p\left(v_{s: u}, h_{s} \mid h_{s-1}\right) \\
& \stackrel{\text { (marginalise) }}{=} p\left(v_{s: u} \mid h_{s-1}\right)
\end{aligned}
$$

By induction, $\beta\left(h_{s}\right)=p\left(v_{s+1: u} \mid h_{s}\right)$ for all $s<u$.

Doing more with the $\alpha\left(h_{s}\right), \beta\left(h_{s}\right)$

- Due to link to message passing: Knowing all $\alpha\left(h_{s}\right), \beta\left(h_{s}\right) \Longrightarrow$ knowing all marginals and all joints of neighbouring latents given the observed data, which will be needed when estimating the parameters of HMMs (see later).
- We can use the $\alpha\left(h_{s}\right)$ for predictions (see exercises).
- We can use the $\alpha\left(h_{s}\right)$ for sampling posterior trajectories, i.e. to sample from $p\left(h_{1}, \ldots h_{t} \mid v_{1}, \ldots, v_{t}\right)$ (see exercises).
- Algorithms extend to the case of continuous random variables: replace sums with integrals.

Example: Harmonizing Chorales in the Style of J S Bach

- Moray Allan and Chris Williams (NIPS 2004) "Harmonising Chorales by Probabilistic Inference"
- Visible states are the melody (quarter notes)
- Hidden states are the harmony (which chord)
- Trained using labelled melody/harmony data from Bach chorales
- Task: find Viterbi alignment for harmony given melody, or sample from p (harmony|melody.)
- Actually it is a bit more complicated. HMMs used for three subtasks: harmonic skeleton, chord skeleton, ornamentation
https:
//homepages.inf.ed.ac.uk/ckiw/teach/pmr/hmmBach.html

Further reading

Exact inference for Hidden Markov models is well-covered in the standard textbooks, e.g.

- Bishop (2006) secs. 13.2.2, 13.2.3, 13.2.5
- Barber sec. 23.2

Program recap

1. Markov models

- Markov chains
- Transition distribution
- Hidden Markov models
- Emission distribution
- Mixture of Gaussians as special case
- Linear Dynamical System (LDS)

2. Inference by message passing

- Inference: filtering, prediction, smoothing, Viterbi
- Filtering: Sum-product message passing yields the α-recursion
- Smoothing: Sum-product message passing yields the $\alpha-\beta$ recursion

Credits

These slides are modified from ones produced by Michael Gutmann, made available under Creative Commons licence CC BY 4.0.
©Michael Gutmann and Chris Williams, The University of Edinburgh 2018-2024 CC BY 4.0 ©(i).

