# Decision Theory 

Chris Williams

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2024

## Motivation

- Given tests x that have been made, the probability that a patient has cancer is determined as 0.4 . Should their surgeon operate or not?
- You own a bakery, and have a probabilistic prediction for the demand for loaves tomorrow. How many loaves should you bake tomorrow morning?
- Decision theory tells us how to take actions rationally in the face of uncertainty


## Outline

- Loss
- Risk
- Discrete-valued actions
- Real-valued actions
- Probabilistic inference allows us to update our beliefs about hidden quantities $H$ given evidence $\mathbf{X}=\mathbf{x}$
- However, we often need to turn our beliefs into actions
- Q: How can we decide which action is best?
- A: Decision theory

Discussion largely based on Murphy PML1 (2022), sec 5.1

- An agent has a set of possible actions $\mathcal{A}$ to choose from
- E.g. a clinician may suspect that a patient has a tumour, and can either operate, or do nothing
- Operating on a patient if they don't have a tumour exposes them to possible harms (e.g., infections)
- Each action has costs and benefits, which depend on the underlying state of nature $h \in \mathcal{H}$
- Loss function $\ell(h, a)$ specifies the loss incurred when taking action a when the state of nature is $h$


## Risk

- Given observations $\mathbf{x}$, we obtain $p(h \mid \mathbf{x})$
- Risk

$$
R(a \mid \mathbf{x})=\sum_{h} \ell(h, a) p(h \mid \mathbf{x})
$$

(with sum replaced by an integral when necessary)

- Optimal policy

$$
\pi^{*}(\mathbf{x})=\underset{a}{\operatorname{argmin}} R(a \mid \mathbf{x})
$$

- Loss and utility: Basically same thing with opposite sign, $U(h, a)=-\ell(h, a)$
- Maximize expected utility, minimize expected loss


## Example: should you cancel the concert?

- You are organizing an outdoor concert on Saturday
- On Thursday the weather forecast $x$ for Saturday indicates a $60 \%$ chance of rain
- Losses are as follows

$$
\begin{aligned}
\ell(\text { fair }, \text { go ahead })=-1 & \ell(\text { rain }, \text { go ahead })=2 \\
\ell(\text { fair }, \text { cancel })=3 & \ell(\text { rain }, \text { cancel })=0
\end{aligned}
$$

- Calculate the minimum risk strategy. Should you cancel the concert?

$$
\begin{aligned}
R(\text { go ahead } \mid \mathbf{x}) & = \\
R(\text { cancel } \mid \mathbf{x}) & =
\end{aligned}
$$

## Example: to operate or not?

- Patients have state of nature $h_{1}=$ healthy, $h_{2}=$ tumour.
- Actions are $a_{1}=$ discharge the patient, $a_{2}=$ operate
- Assume $\ell_{11}=\ell_{22}=0, \ell_{12}=1$ and $\ell_{21}=10$, i.e. it is 10 times worse to discharge the patient when they have a tumour than to operate when they do not
- Risks

$$
\begin{aligned}
& R\left(a_{1} \mid \mathbf{x}\right)=\ell_{11} P\left(h_{1} \mid \mathbf{x}\right)+\ell_{21} P\left(h_{2} \mid \mathbf{x}\right)=\ell_{21} P\left(h_{2} \mid \mathbf{x}\right) \\
& R\left(a_{2} \mid \mathbf{x}\right)=\ell_{12} P\left(h_{1} \mid \mathbf{x}\right)+\ell_{22} P\left(h_{2} \mid \mathbf{x}\right)=\ell_{12} P\left(h_{1} \mid \mathbf{x}\right)
\end{aligned}
$$

- Choose action $a_{1}$ when $R\left(a_{1} \mid \mathbf{x}\right)<R\left(a_{2} \mid \mathbf{x}\right)$, i.e. when

$$
\ell_{21} P\left(h_{2} \mid \mathbf{x}\right)<\ell_{12} P\left(h_{1} \mid \mathbf{x}\right)
$$

or

$$
\frac{P\left(h_{1} \mid \mathbf{x}\right)}{P\left(h_{2} \mid \mathbf{x}\right)}>\frac{\ell_{21}}{\ell_{12}}=10
$$

- If $\ell_{21}=\ell_{12}$ then threshold is 1 ; in our case we require stronger evidence in favour of $h_{1}$ (healthy) in order to discharge the patient


## Real-valued actions

- L2 loss $\ell(h, a)=(h-a)^{2}$
- Risk

$$
R(a \mid \mathbf{x})=\mathbb{E}\left[(h-a)^{2} \mid \mathbf{x}\right]=\mathbb{E}\left[h^{2} \mid \mathbf{x}\right]-2 a \mathbb{E}[h \mid \mathbf{x}]+a^{2}
$$

- Minimize wrt a

$$
\frac{\partial}{\partial a} R(a \mid \mathbf{x})=-2 \mathbb{E}[h \mid \mathbf{x}]+2 a=0
$$

- Solution

$$
\pi^{*}(\mathbf{x})=\mathbb{E}[h \mid \mathbf{x}]
$$

i.e., to pick the posterior mean

- For L1 loss $\ell(h, a)=|h-a|$, solution is the posterior median


## The Utility of Money

- A utility curve assigns numeric values to various possible outcomes
- In general, most people's utility function tends to be concave for positive amounts of money
- Thus the incremental value of additional money decreases as wealth grows
- Empirical psychological studies show that people's utility functions often grow logarithmically in the amount of monetary gain

Source: Koller and Friedman (2009), sec 22.2.1

## Summary

- Optimal action minimizes the risk (expected loss)
- In general losses are cost-sensitive $\ell(h, a)$
- To minimize L2 loss, predict the posterior mean
- Not covered: sequential decision problems
©Chris Williams, The University of Edinburgh 2018-2024 CC BY 4.0 (c)(1).

