Basics of Model-Based Learning

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Spring Semester 2024

Recap

$$
p\left(\mathbf{x} \mid \mathbf{y}_{o}\right)=\frac{\sum_{\mathbf{z}} p\left(\mathbf{x}, \mathbf{y}_{o}, \mathbf{z}\right)}{\sum_{\mathrm{x}, \mathrm{z}} p\left(\mathrm{x}, \mathbf{y}_{o}, \mathbf{z}\right)}
$$

Assume that $\mathbf{x}, \mathbf{y}, \mathbf{z}$ each are $d=500$ dimensional, and that each element of the vectors can take $K=10$ values.

- Issue 1: To specify $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$, we need to specify $K^{3 d}-1=10^{1500}-1$ non-negative numbers, which is impossible.
Topic 1: Representation What reasonably weak assumptions can we make to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$?
- Directed and undirected graphical models, factor graphs
- Factorisation and independencies

Recap

$p\left(x \mid y_{o}\right)=\frac{\sum_{z} p\left(x, y_{o}, z\right)}{\sum_{x, 2}^{p\left(x, y_{o}, z\right)}}$

- Issue 2: The sum in the numerator goes over the order of $K^{d}=10^{500}$ non-negative numbers and the sum in the denominator over the order of $K^{2 d}=10^{1000}$, which is impossible to compute.
Topic 2: Exact inference Can we further exploit the assumptions on $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to efficiently compute the posterior probability or derived quantities?
- Yes! Factorisation can be exploited by using the distributive law and by caching computations.
- Variable elimination and message passing algorithms
- Inference for hidden Markov models

Recap

$p\left(\mathbf{x} \mid \mathbf{y}_{o}\right)=\frac{\sum_{\mathbf{z}} p\left(\mathbf{x}, \mathbf{y}_{o}, \mathbf{z}\right)}{\sum_{\mathrm{x}, \mathrm{z}} p\left(\mathrm{x}, \mathbf{y}_{o}, \mathbf{z}\right)}$

- Issue 3: Where do the non-negative numbers $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ come from?

Topic 3: Learning How can we learn the numbers from data?

Program

1. Basic concepts
2. Learning by maximum likelihood estimation
3. Learning by Bayesian inference

Program

1. Basic concepts

- Observed data as a sample drawn from an unknown data generating distribution
- Probabilistic, statistical, and Bayesian models
- Partition function and unnormalised statistical models
- Learning $=$ parameter estimation or learning $=$ Bayesian inference

2. Learning by maximum likelihood estimation
3. Learning by Bayesian inference

Learning from data

- Use observed data \mathcal{D} to learn about their source
- Enables probabilistic inference, decision making, ...

Data

- We typically assume that the observed data \mathcal{D} correspond to a random sample (draw) from an unknown distribution $p_{*}(\mathcal{D})$

$$
\mathcal{D} \sim p_{*}(\mathcal{D})
$$

- In other words, we consider the data \mathcal{D} to be a realisation (observation) of a random variable with distribution p_{*}.

Data

- Example: You use some transition and emission distribution and generate data from the hidden Markov model. (e.g. via ancestral sampling)

- You know the visibles $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{T}\right) \sim p\left(v_{1}, \ldots, v_{T}\right)$.
- You give the generated visibles to a friend who does not know about the distributions that you used, nor possibly that you used a HMM. For your friend:

$$
\mathcal{D}=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{T}\right) \quad \mathcal{D} \sim p_{*}(\mathcal{D})
$$

Independent and identically distributed (iid) data

- Let $\mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$. If

$$
p_{*}(\mathcal{D})=\prod_{i=1}^{n} p_{*}\left(\mathbf{x}_{i}\right)
$$

then the data (or the corresponding random variables) are said to the iid. \mathcal{D} is also said to be a random sample from p_{*}.

- In other words, the \mathbf{x}_{i} were independently drawn from the same distribution $p_{*}(\mathbf{x})$.
- Example: n time series $\left(v_{1}, v_{2}, v_{3}, \ldots, v_{T}\right)$ each independently generated with the same transition and emission distribution.

Independent and identically distributed (iid) data

- Example: Generate n samples $\left(x_{1}^{(i)}, \ldots, x_{5}^{(i)}\right)$ from

$$
p\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=p\left(x_{1}\right) p\left(x_{2}\right) p\left(x_{3} \mid x_{1}, x_{2}\right) p\left(x_{4} \mid x_{3}\right) p\left(x_{5} \mid x_{2}\right)
$$

with known conditionals, using e.g. ancestral sampling.

- You collect the n observed values of x_{4}, i.e.

$$
x_{4}^{(1)}, \ldots, x_{4}^{(n)}
$$

and give them to a friend who does not know how you generated
 the data but that they are iid.

- For your friend, the $x_{4}^{(i)}$ are data points $x_{i} \sim p_{*}$.
- Remark: if the subscript index is occupied, we often use superscripts to enumerate the data points.

Using models to learn from data

- Set up a model with properties that the unknown data source might have.
- The potential properties are the parameters $\boldsymbol{\theta}$ of the model.
- Model may include independence assumptions.
- Learning: Assess which $\boldsymbol{\theta}$ are in line with the observed data \mathcal{D}.

Models

- The term "model" has multiple meanings, see e.g. https://en.wikipedia.org/wiki/Model
- In our course:
- probabilistic model
- statistical model
- Bayesian model
- See Section 3 in the background document Introduction to Probabilistic Modelling
- Note: the three types are often confounded, and often just called probabilistic or statistical model, or just "model".

Probabilistic model

Example from the first lecture: cognitive impairment test

- Sensitivity of 0.8 and specificity of 0.95 (Scharre, 2010)
- Probabilistic model for presence of impairment $(x=1)$ and detection by the test $(y=1)$:

$$
\begin{aligned}
\mathbb{P}(x=1) & =0.11 \quad \text { (prior) } \\
\mathbb{P}(y=1 \mid x=1) & =0.8 \quad(\text { sensitivity }) \\
\mathbb{P}(y=0 \mid x=0) & =0.95 \quad \text { (specificity) }
\end{aligned}
$$

8. Drawing test

Draw a large face of a clock and place in the numbers
Position the hands for 5 minutes after 11 o'clock
(Example from sagetest.osu.edu)

- From first lecture:

A probabilistic model is an abstraction of reality that uses probability theory to quantify the chance of uncertain events.

Probabilistic model

- More technically: probabilistic model \equiv probability distribution (pmf/pdf).
- Probabilistic model was written in terms of the probability \mathbb{P}. In terms of the pmf it is

$$
\begin{aligned}
p_{x}(1) & =0.11 \\
p_{y \mid x}(1 \mid 1) & =0.8 \\
p_{y \mid x}(0 \mid 0) & =0.95
\end{aligned}
$$

- Commonly written as

$$
\begin{aligned}
p(x=1) & =0.11 \\
p(y=1 \mid x=1) & =0.8 \\
p(y=0 \mid x=0) & =0.95
\end{aligned}
$$

where the notation for probability measure \mathbb{P} and pmf p are confounded.

Statistical model

- If we substitute the numbers with parameters, we obtain a (parametric) statistical model

$$
\begin{array}{r}
p(x=1)=\theta_{1} \\
p(y=1 \mid x=1)=\theta_{2} \\
p(y=0 \mid x=0)=\theta_{3}
\end{array}
$$

- For each value of the θ_{i}, we obtain a different pmf. Dependency highlighted by writing

$$
\begin{aligned}
p\left(x=1 ; \theta_{1}\right) & =\theta_{1} \\
p\left(y=1 \mid x=1 ; \theta_{2}\right) & =\theta_{2} \\
p\left(y=0 \mid x=0 ; \theta_{3}\right) & =\theta_{3}
\end{aligned}
$$

- Or: $p(x, y ; \boldsymbol{\theta})$ where $\boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \theta_{3}\right)$ is a vector of parameters.
- A statistical model corresponds to a set of probabilistic models, here indexed by the parameters $\boldsymbol{\theta}:\{p(\mathbf{x} ; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$

Bayesian model

- In Bayesian models, we combine statistical models with a (prior) probability distribution on the parameters $\boldsymbol{\theta}$.
- Each member of the family $\{p(\mathbf{x} ; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$ is considered a conditional pmf/pdf of \mathbf{x} given $\boldsymbol{\theta}$
- Use conditioning notation $p(\mathbf{x} \mid \boldsymbol{\theta})$
- The conditional $p(\mathbf{x} \mid \boldsymbol{\theta})$ and the pmf/pdf $p(\boldsymbol{\theta})$ for the (prior) distribution of $\boldsymbol{\theta}$ together specify the joint pmf/pdf via the product rule

$$
p(\mathbf{x}, \boldsymbol{\theta})=p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})
$$

- Bayesian model for $\mathbf{x}=$ probabilistic model for $(\mathbf{x}, \boldsymbol{\theta})$.
- The prior may be parameterised, e.g. $p(\boldsymbol{\theta} ; \boldsymbol{\alpha})$. The parameters $\boldsymbol{\alpha}$ are called "hyperparameters".

Graphical models as statistical models

- Directed or undirected graphical models are sets of probability distributions, e.g. all p that factorise as

$$
p(\mathbf{x})=\prod_{i} k_{i}\left(x_{i} \mid \mathrm{pa}_{i}\right) \quad \text { or } \quad p(\mathbf{x}) \propto \prod_{i} \phi_{i}\left(\mathcal{X}_{i}\right)
$$

They are thus statistical models.

- If we consider parametric families for $k_{i}\left(x_{i} \mid \mathrm{pa}_{i}\right)$ and $\phi_{i}\left(\mathcal{X}_{i}\right)$, they correspond to parametric statistical models

$$
p(\mathbf{x} ; \boldsymbol{\theta})=\prod_{i} k_{i}\left(x_{i} \mid \mathrm{pa}_{i} ; \boldsymbol{\theta}_{i}\right) \quad \text { or } \quad p(\mathbf{x} ; \boldsymbol{\theta}) \propto \prod_{i} \phi_{i}\left(\mathcal{X}_{i} ; \boldsymbol{\theta}_{i}\right)
$$

where $\boldsymbol{\theta}=\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \ldots\right)$.
(on the next slides: will use again that $k_{i}\left(x_{i} \mid \mathrm{pa}_{i}\right)=p\left(x_{i} \mid \mathrm{pa}_{i}\right)$)

Cancer-asbestos-smoking example (Barber Figure 9.4)

- Very simple toy example about the relationship between lung Cancer, Asbestos exposure, and Smoking

DAG:

Factorisation:
$p(c, a, s)=p(c \mid a, s) p(a) p(s)$

Parametric models: (for binary vars)

$$
\begin{aligned}
& p\left(a=1 ; \theta_{a}\right)=\theta_{a} \\
& p\left(s=1 ; \theta_{s}\right)=\theta_{s}
\end{aligned}
$$

$p\left(c=1 \mid a, s ; \boldsymbol{\theta}_{c}\right)$	a	s
θ_{c}^{1}	0	0
θ_{c}^{2}	1	0
θ_{c}^{3}	0	1
θ_{c}^{4}	1	1
All parameters are ≥ 0		

- Factorisation + parametric models for the factors gives the parametric statistical model

$$
p(c, a, s ; \boldsymbol{\theta})=p\left(c \mid a, s ; \boldsymbol{\theta}_{c}\right) p\left(a ; \theta_{a}\right) p\left(s ; \theta_{s}\right) \quad \boldsymbol{\theta}=\left(\theta_{a}, \theta_{s}, \boldsymbol{\theta}_{c}\right)
$$

Cancer-asbestos-smoking example

- The model specification $p\left(a=1 ; \theta_{a}\right)=\theta_{a}$ is equivalent to

$$
\begin{aligned}
p\left(a ; \theta_{a}\right) & =\left(\theta_{a}\right)^{a}\left(1-\theta_{a}\right)^{1-a} \\
& =\theta_{a}^{\mathbb{1}(a=1)}\left(1-\theta_{a}\right)^{11(a=0)}
\end{aligned}
$$

Note: $\left(\theta_{a}\right)^{a}$ means parameter θ_{a} to the power of a.

- a is a Bernoulli random variable with "success" probability θ_{a}.
- Equivalently for s.

Cancer-asbestos-smoking example

- Table parameterisation $p\left(c \mid a, s ; \boldsymbol{\theta}_{c}\right)$, with $\boldsymbol{\theta}_{c}=\left(\theta_{c}^{1}, \ldots, \theta_{c}^{4}\right)$, can be written more compactly in similar form.
- Enumerate the states of the parents of c so that

$$
\mathrm{pa}_{c}=1 \Leftrightarrow(a=0, s=0) \quad \ldots \quad \mathrm{pa}_{c}=4 \Leftrightarrow(a=1, s=1)
$$

- We then have

$$
\begin{aligned}
p\left(c \mid a, s ; \boldsymbol{\theta}_{c}\right) & =\prod_{j=1}^{4}\left[\left(\theta_{c}^{j}\right)^{c}\left(1-\theta_{c}^{j}\right)^{1-c}\right]^{\mathbb{1}\left(\mathrm{pa}_{c}=j\right)} \\
& =\prod_{j=1}^{4}\left(\theta_{c}^{j}\right)^{\mathbb{1}\left(c=1, \mathrm{pa}_{c}=j\right)}\left(1-\theta_{c}^{j}\right)^{\mathbb{1}\left(c=0, \mathrm{pa}_{c}=j\right)}
\end{aligned}
$$

Product over the possible states of the parents and the possible states of c.

- Equivalent to the table but more convenient to manipulate.

Cancer-asbestos-smoking example

- Working with the table representation does not shrink the set of probabilistic models.
- Set of $p(c, a, s)$ defined by the DAG $=$ parametric family $\{p(c, a, s ; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$, where $\boldsymbol{\theta}$ are the parameters in the table.
- Other parametric models are possible too:
- As before but some parameters are tied, e.g. $\theta_{c}^{2}=\theta_{c}^{3}$
- $p(c=1 \mid a, s)=\sigma\left(w_{0}+w_{1} a+w_{2} s\right)$ where $\sigma()$ is the sigmoid function $\sigma(u)=1 /(1+\exp (-u))$.

In both cases, the parameterisation limits the space of possible probabilistic models.
(see slides Basic Assumptions for Efficient Model Representation)

Cancer-asbestos-smoking example

- We can turn the table-based parametric model into a Bayesian model by assigning a (prior) probability distribution to $\boldsymbol{\theta}$
- Often: we assume independence of the parameters so that the prior pdf/pmf factorises, e.g.

$$
p(\boldsymbol{\theta})=p\left(\theta_{a}\right) p\left(\theta_{s}\right) \prod_{j=1}^{4} p\left(\theta_{c}^{j}\right)
$$

- With correspondence $p(\mathbf{x} ; \boldsymbol{\theta})=p(\mathbf{x} \mid \boldsymbol{\theta})$, the Bayesian model is

$$
\begin{aligned}
p(\mathbf{x}, \boldsymbol{\theta})= & p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \\
= & \theta_{a}^{\mathbb{1}(a=1)}\left(1-\theta_{a}\right)^{\mathbb{1}(a=0)} p\left(\theta_{a}\right) \theta_{s}^{\mathbb{1}(s=1)}\left(1-\theta_{s}\right)^{\mathbb{1}(s=0)} p\left(\theta_{s}\right) \\
& \prod_{j=1}^{4}\left(\theta_{c}^{j}\right)^{\mathbb{1}\left(c=1, \mathrm{pa}_{c}=j\right)}\left(1-\theta_{c}^{j}\right)^{\mathbb{1}\left(c=0, \mathrm{pa}_{c}=j\right)} \prod_{j=1}^{4} p\left(\theta_{c}^{j}\right)
\end{aligned}
$$

- Note the factorisation.

Program

1. Basic concepts

- Observed data as a sample drawn from an unknown data generating distribution
- Probabilistic, statistical, and Bayesian models
- Partition function and unnormalised statistical models
- Learning $=$ parameter estimation or learning $=$ Bayesian inference

2. Learning by maximum likelihood estimation
3. Learning by Bayesian inference

Partition function

- pdfs/pmfs integrate/sum to one.
- Parameterised Gibbs distributions

$$
p(\mathbf{x} ; \boldsymbol{\theta}) \propto \prod_{i} \phi_{i}\left(\mathcal{X}_{i} ; \boldsymbol{\theta}_{i}\right)
$$

do typically not integrate/sum one.

- For normalisation, we can divide the unnormalised model $\tilde{p}(\mathbf{x} ; \boldsymbol{\theta})=\prod_{i} \phi_{i}\left(\mathcal{X}_{i} ; \boldsymbol{\theta}_{i}\right)$ by the partition function $Z(\boldsymbol{\theta})$,

$$
Z(\boldsymbol{\theta})=\int \tilde{p}(\mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \mathbf{x} \quad \text { or } \quad Z(\boldsymbol{\theta})=\sum_{\mathbf{x}} \tilde{p}(\mathbf{x} ; \boldsymbol{\theta})
$$

- By construction,

$$
p(\mathbf{x} ; \boldsymbol{\theta})=\frac{\tilde{p}(\mathbf{x} ; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})}
$$

sums/integrates to one for all values of $\boldsymbol{\theta}$.

Unnormalised statistical models

- If each element of $\{p(\mathbf{x} ; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$ integrates/sums to one

$$
\int p(\mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \mathbf{x}=1 \quad \text { or } \quad \sum_{\mathbf{x}} p(\mathbf{x} ; \boldsymbol{\theta})=1
$$

for all $\boldsymbol{\theta}$, we say that the statistical model is normalised.

- If not, the statistical model is unnormalised.
- Undirected graphical models generally correspond to unnormalised models.
- But: partition function $Z(\boldsymbol{\theta})$ may be hard to evaluate, which is an issue for likelihood-based learning.

Reading off the partition function from a normalised model

- Consider $\tilde{p}(\mathbf{x} ; \boldsymbol{\theta})=\exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right)$ where $\mathbf{x} \in \mathbb{R}^{m}$ and $\boldsymbol{\Sigma}$ is symmetric.
- Parameters $\boldsymbol{\theta}$ are the lower (or upper) triangular part of $\boldsymbol{\Sigma}$ including the diagonal.
- Corresponds to an unnormalised Gaussian.
- Partition function can be computed in closed form

$$
Z(\boldsymbol{\theta})=|\operatorname{det} 2 \pi \boldsymbol{\Sigma}|^{1 / 2} \quad p(\mathbf{x} ; \boldsymbol{\theta})=\frac{1}{|\operatorname{det} 2 \pi \boldsymbol{\Sigma}|^{1 / 2}} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \boldsymbol{\Sigma}^{-1} \mathbf{x}\right)
$$

- This also means that given a normalised model $p(\mathbf{x} ; \boldsymbol{\theta})$, you can read off the partition function as the inverse of the part that does not depend on \mathbf{x}, i.e. you can split a normalised $p(\mathbf{x} ; \boldsymbol{\theta})$ into an unnormalised model and the partition function:

$$
p(\mathbf{x} ; \boldsymbol{\theta}) \longrightarrow p(\mathbf{x} ; \boldsymbol{\theta})=\frac{\tilde{p}(\mathbf{x} ; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})}
$$

The domain matters

- Consider $\tilde{p}(\mathbf{x} ; \boldsymbol{\theta})=\exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right)$ where $\mathbf{x} \in\{0,1\}^{m}$ and \mathbf{A} is symmetric.
- Parameters $\boldsymbol{\theta}$ are the lower (or upper) triangular part of \mathbf{A} including the diagonal.
- Model is known as Ising model or Boltzmann machine.
- Difference to previous slide:
- Notation/parameterisation: \mathbf{A} vs $\boldsymbol{\Sigma}^{-1}$ (does not matter)
- $\mathbf{x} \in\{0,1\}^{m}$ vs $\mathbf{x} \in \mathbb{R}^{m}$ (does matter!)
- Partition function defined via sum rather than integral

$$
Z(\boldsymbol{\theta})=\sum_{\mathbf{x} \in\{0,1\}^{m}} \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}\right)
$$

- There is no analytical closed-form expression for $Z(\boldsymbol{\theta})$. Expensive to compute if m is large.

Learning

We consider two approaches to learning:

1. Learning with statistical models $=$ parameter estimation (or: estimation of the model)
2. Learning with Bayesian models $=$ Bayesian inference

Learning with statistical models $=$ parameter estimation

- We use use data to pick one element $p(\mathbf{x} ; \hat{\boldsymbol{\theta}})$ from the set of probabilistic models $\{p(\mathbf{x} ; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$.

$$
\{p(\mathbf{x} ; \boldsymbol{\theta})\}_{\boldsymbol{\theta}} \quad \xrightarrow{\text { data } \mathcal{D}} \quad p(\mathbf{x} ; \hat{\boldsymbol{\theta}})
$$

- In other words, we use data to select the estimate $\hat{\boldsymbol{\theta}}$ from the possible values of the parameters $\boldsymbol{\theta}$.
- Using data to pick a value of $\boldsymbol{\theta}$ corresponds to a mapping (function) from data to parameters. The mapping is called an estimator.
- Overloading of notation for the estimate and estimator:
- $\hat{\boldsymbol{\theta}}$ as selected parameter value is the estimate of $\boldsymbol{\theta}$.
- $\hat{\boldsymbol{\theta}}$ as mapping $\hat{\boldsymbol{\theta}}(\mathcal{D})$ is the estimator of $\boldsymbol{\theta}$.

This overloading of notation is often done. For example, when writing $y=x^{2}+1, y$ can be considered to be the output of the function (\equiv estimate) or the function $y(x)$ itself (\equiv estimator).

Learning with Bayesian models $=$ Bayesian inference

- We use data to determine the plausibility (posterior pdf/pmf) of all possible values of the parameters $\boldsymbol{\theta}$.

$$
p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \quad \xrightarrow{\text { data } \mathcal{D}} \quad p(\boldsymbol{\theta} \mid \mathcal{D})
$$

- Instead of picking one value from the set of possible values of $\boldsymbol{\theta}$, we here assess all of them.
- Reduces learning to inference.
- "Inverts" the data generating process

DAGs:

Predictive distribution

- Given data \mathcal{D}, we would like to predict the next value \mathbf{x}.
- If we take the parameter estimation approach, the predictive distribution is $p(\mathbf{x} ; \hat{\boldsymbol{\theta}})$.
- In the Bayesian inference approach, we compute

$$
\begin{array}{rlrl}
p(\mathbf{x} \mid \mathcal{D}) & =\int p(\mathbf{x}, \boldsymbol{\theta} \mid \mathcal{D}) \mathrm{d} \boldsymbol{\theta} & \text { Visualisation as a DAG: } \\
& =\int p(\mathbf{x} \mid \boldsymbol{\theta}, \mathcal{D}) p(\boldsymbol{\theta} \mid \mathcal{D}) \mathrm{d} \boldsymbol{\theta} \\
& =\int p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta} \mid \mathcal{D}) \mathrm{d} \boldsymbol{\theta} &
\end{array}
$$

Average of predictions $p(\mathbf{x} \mid \boldsymbol{\theta})$, weighted by $p(\boldsymbol{\theta} \mid \mathcal{D})$.

Some methods for parameter estimation

- There is a multitude of methods to estimate the parameters.
- Many correspond to solving an optimisation problem, e.g. $\hat{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta}} J(\boldsymbol{\theta}, \mathcal{D})$ for some objective function J. Called M -estimation in the statistics literature.
- Maximum likelihood estimation (MLE) is popular (see next).
- Moment matching: identify the parameter configuration where the moments under the model are equal to the moments computed from the data (empirical moments).
- Maximum-a-posteriori estimation means estimating $\boldsymbol{\theta}$ by computing the maximiser of the posterior $\hat{\boldsymbol{\theta}}=\operatorname{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathcal{D})$.
- Score matching or noise-contrastive estimation are example methods suitable for unnormalised models (Gibbs distributions).

Program

1. Basic concepts

- Observed data as a sample drawn from an unknown data generating distribution
- Probabilistic, statistical, and Bayesian models
- Partition function and unnormalised statistical models
- Learning $=$ parameter estimation or learning $=$ Bayesian inference

2. Learning by maximum likelihood estimation
3. Learning by Bayesian inference

Program

1. Basic concepts
2. Learning by maximum likelihood estimation

- The likelihood function and the maximum likelihood estimate
- MLE for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables
- Maximum likelihood estimation is a form of moment matching
- The likelihood function is informative and more than just an objective function to optimise

3. Learning by Bayesian inference

The likelihood function $L(\boldsymbol{\theta})$

- Measures agreement between $\boldsymbol{\theta}$ and the observed data \mathcal{D}
- Probability that sampling from the model with parameter value $\boldsymbol{\theta}$ generates data like \mathcal{D}.
- Exact match for discrete random variables

The likelihood function $L(\boldsymbol{\theta})$

- Measures agreement between $\boldsymbol{\theta}$ and the observed data \mathcal{D}
- Probability that sampling from the model with parameter value $\boldsymbol{\theta}$ generates data like \mathcal{D}.
- Small neighbourhood for continuous random variables

The likelihood function $L(\boldsymbol{\theta})$

- Probability that the model generates data like \mathcal{D} for parameter value $\boldsymbol{\theta}$,

$$
L(\boldsymbol{\theta})=p(\mathcal{D} ; \boldsymbol{\theta})
$$

where $p(\mathcal{D} ; \boldsymbol{\theta})$ is the parameterised model pdf/pmf.

- The likelihood function indicates the likelihood of the parameter values, and not of the data.
- For iid data $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$

$$
L(\boldsymbol{\theta})=p(\mathcal{D} ; \boldsymbol{\theta})=p\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} ; \boldsymbol{\theta}\right)=\prod_{i=1}^{n} p\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)
$$

- Log-likelihood function $\ell(\boldsymbol{\theta})=\log L(\boldsymbol{\theta})$. For iid data:

$$
\ell(\boldsymbol{\theta})=\sum_{i=1}^{n} \log p\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)
$$

Maximum likelihood estimate

- The maximum likelihood estimate (MLE) is

$$
\hat{\boldsymbol{\theta}}=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ell(\boldsymbol{\theta})=\underset{\boldsymbol{\theta}}{\operatorname{argmax}} L(\boldsymbol{\theta})
$$

- Numerical methods are usually needed for the optimisation.
- We typically only find local optima (sub-optimal but often useful)
- In simple cases, closed form solution possible.

Gaussian example

- Model

$$
p(x ; \boldsymbol{\theta})=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) \quad \boldsymbol{\theta}=\left(\mu, \sigma^{2}\right) \quad x \in \mathbb{R}
$$

- Data \mathcal{D} : n iid observations x_{1}, \ldots, x_{n}
- Log-likelihood function

$$
\begin{aligned}
\ell(\boldsymbol{\theta}) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \boldsymbol{\theta}\right) \\
& =-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)
\end{aligned}
$$

- Maximum likelihood estimates (see exercises)

$$
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2}
$$

Bernoulli example

- Model

$$
p(x ; \theta)=\theta^{x}(1-\theta)^{1-x}=\theta^{\mathbb{1}(x=1)}(1-\theta)^{\mathbb{1}(x=0)}
$$

with $\theta \in[0,1], x \in\{0,1\}$

- Equivalent to $p(x=1 ; \theta)=\theta$, or the table

$p(x ; \theta)$	x
$1-\theta$	0
θ	1

- Data \mathcal{D} : n iid observations x_{1}, \ldots, x_{n}
- Log-likelihood function

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} \log p\left(x_{i} ; \theta\right) \\
& =\sum_{i=1}^{n} x_{i} \log (\theta)+\left(1-x_{i}\right) \log (1-\theta)
\end{aligned}
$$

Bernoulli example

Log-likelihood function:

$$
\begin{aligned}
\ell(\theta) & =\sum_{i=1}^{n} x_{i} \log (\theta)+\left(1-x_{i}\right) \log (1-\theta) \\
& =n_{x=1} \log (\theta)+n_{x=0} \log (1-\theta)
\end{aligned}
$$

where $n_{x=1}$ is the number of times $x_{i}=1$, i.e.

$$
n_{x=1}=\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n} \mathbb{1}\left(x_{i}=1\right)
$$

and $n_{x=0}=n-n_{x=1}$ is the number of times $x_{i}=0$, i.e.

$$
n_{x=0}=\sum_{i=1}^{n}\left(1-x_{i}\right)=\sum_{i=1}^{n} \mathbb{1}\left(x_{i}=0\right)
$$

Bernoulli example

- Optimisation problem:

$$
\hat{\theta}=\underset{\theta \in[0,1]}{\operatorname{argmax}} n_{x=1} \log (\theta)+n_{x=0} \log (1-\theta)
$$

constraint optimisation problem

- Reformulation as unconstrained optimisation problem: Write

$$
\eta=g(\theta)=\log \left[\frac{\theta}{1-\theta}\right] \quad \theta=g^{-1}(\eta)=\frac{\exp (\eta)}{1+\exp (\eta)}
$$

Note: $\eta \in \mathbb{R}$

- With $\log (\theta)=\eta-\log (1+\exp (\eta)), \log (1-\theta)=-\log (1+\exp (\eta))$ and $n_{x=1}+n_{x=0}=n$, we have

$$
\hat{\eta}=\underset{\eta}{\operatorname{argmax}} n_{x=1} \eta-n \log (1+\exp (\eta))
$$

- Because $g(\theta)$ is an invertible function, $\hat{\theta}=g^{-1}(\hat{\eta})$.

Bernoulli example

- Taking the derivative with respect to η gives necessary condition:

$$
n_{x=1}-n \frac{\exp (\eta)}{1+\exp (\eta)}=0 \quad \frac{n_{x=1}}{n}=\frac{\exp (\eta)}{1+\exp (\eta)}
$$

Second derivative is negative for all η so that the maximiser $\hat{\eta}$ satisfies

$$
\frac{n_{x=1}}{n}=\frac{\exp (\hat{\eta})}{1+\exp (\hat{\eta})}
$$

Hence:

$$
\hat{\theta}=g^{-1}(\hat{\eta})=\frac{\exp (\hat{\eta})}{1+\exp (\hat{\eta})}=\frac{n_{x=1}}{n}
$$

- Corresponds to counting: $n_{x=1} / n$ is the fraction of ones in the observed data $x_{1}, \ldots x_{n}$.
- Note: same result could here have been obtained by differentiating $\ell(\theta)$ with respect to θ.

Invariance of the MLE to re-parameterisation

- We re-parameterised the likelihood function using $\eta=\log (\theta /(1-\theta))$.
- This generalises: for $\boldsymbol{\eta}=g(\boldsymbol{\theta})$, where g is invertible, we can optimise $J(\boldsymbol{\eta})$

$$
J(\boldsymbol{\eta})=\ell\left(g^{-1}(\boldsymbol{\eta})\right)
$$

instead of $\ell(\boldsymbol{\theta})$.

- Reason: when $\boldsymbol{\eta}$ and $\boldsymbol{\theta}$ are in a one-to-one relationship:

$$
\begin{aligned}
\max _{\boldsymbol{\eta}} J(\boldsymbol{\eta}) & =\max _{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) \\
\underset{\boldsymbol{\theta}}{\operatorname{argmax}} \ell(\boldsymbol{\theta}) & =g^{-1}(\underset{\boldsymbol{\eta}}{\operatorname{argmax}} J(\boldsymbol{\eta}))
\end{aligned}
$$

- Sometimes simplifies the optimisation.

Cancer-asbestos-smoking example

- Statistical model

$$
p(c, a, s ; \boldsymbol{\theta})=p\left(c \mid a, s ; \theta_{c}^{1}, \ldots, \theta_{c}^{4}\right) p\left(a ; \theta_{a}\right) p\left(s ; \theta_{s}\right)
$$

with $p\left(a=1 ; \theta_{a}\right)=\theta_{a} \quad p\left(s=1 ; \theta_{s}\right)=\theta_{s}$ and

$\left.p\left(c=1 \mid a, s ; \theta_{c}^{1}, \ldots, \theta_{c}^{4}\right)\right)$	a	s
θ_{c}^{1}	0	0
θ_{c}^{2}	1	0
θ_{c}^{3}	0	1
θ_{c}^{4}	1	1

- Data \mathcal{D} :: n iid observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, where $\mathbf{x}_{i}=\left(a_{i}, s_{i}, c_{i}\right)$
- MLE of the parameters is again given by the fraction of occurrences. (see exercises)

Maximum likelihood as moment matching

- Likelihood of $\boldsymbol{\theta}$: Probability that sampling from the model with parameter value $\boldsymbol{\theta}$ generates data like observed data \mathcal{D}.
- MLE: parameter configuration for which the probability to generate similar data is highest.
- Alternative interpretation: parameter configuration for which some specific moments under the model are equal to the empirical moments (moments computer from the data).
- With

$$
p(\mathbf{x} ; \boldsymbol{\theta})=\frac{\tilde{p}(\mathbf{x} ; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})}
$$

we show on the next slides that the MLE $\hat{\boldsymbol{\theta}}$ satisfies:

$$
\underbrace{\int \mathbf{m}(\mathbf{x} ; \hat{\boldsymbol{\theta}}) p(\mathbf{x} ; \hat{\boldsymbol{\theta}}) \mathrm{d} \mathbf{x}}_{\text {expected moment wrt } p(\mathbf{x} ; \hat{\boldsymbol{\theta}})}=\underbrace{\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}\left(\mathbf{x}_{i} ; \hat{\boldsymbol{\theta}}\right)}_{\text {empirical moment }}
$$

with "moments" $\mathbf{m}(\mathbf{x} ; \boldsymbol{\theta})=\nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{x} ; \boldsymbol{\theta})$

Maximum likelihood as moment matching

- Gaussian example: $\log \tilde{p}\left(x ; \mu, \sigma^{2}\right)=-\frac{(x-\mu)^{2}}{2 \sigma^{2}}$
- Derivatives

$$
\frac{\partial}{\partial \mu} \log \tilde{p}\left(x ; \mu, \sigma^{2}\right)=\frac{x-\mu}{\sigma^{2}} \quad \frac{\partial}{\partial \sigma} \log \tilde{p}\left(x ; \mu, \sigma^{2}\right)=\frac{(x-\mu)^{2}}{\sigma^{3}}
$$

- Moment matching equations:

$$
\begin{aligned}
\mathbb{E}_{p(x ; \hat{\mu}, \hat{\sigma})}\left[\frac{x-\hat{\mu}}{\hat{\sigma}^{2}}\right] & =\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}-\hat{\mu}}{\hat{\sigma}^{2}} \\
\mathbb{E}_{p(x ; \hat{\mu}, \hat{\sigma})}\left[\frac{(x-\hat{\mu})^{2}}{\hat{\sigma}^{3}}\right] & =\frac{1}{n} \sum_{i=1}^{n} \frac{\left(x_{i}-\hat{\mu}\right)^{2}}{\hat{\sigma}^{3}}
\end{aligned}
$$

- Two equations for two unknowns ($\hat{\mu}$ and $\hat{\sigma}^{2}$).

Maximum likelihood as moment matching

Left-hand side of the first equation:

$$
\begin{align*}
\mathbb{E}_{p(x ; \hat{\mu}, \hat{\sigma})}\left[\frac{x-\hat{\mu}}{\hat{\sigma}^{2}}\right] & =\frac{1}{\hat{\sigma}^{2}}\left(\mathbb{E}_{p(x ; \hat{\mu}, \hat{\sigma})}[x-\hat{\mu}]\right) \tag{1}\\
& =\frac{1}{\hat{\sigma}^{2}}\left(\mathbb{E}_{p(x ; \hat{\mu}, \hat{\sigma})}[x]-\hat{\mu}\right) \tag{2}\\
& =\frac{1}{\hat{\sigma}^{2}}(\hat{\mu}-\hat{\mu}) \tag{3}\\
& =0 \tag{4}
\end{align*}
$$

First equation becomes:

$$
\begin{equation*}
0=\frac{1}{n} \sum_{i=1}^{n} \frac{x_{i}-\hat{\mu}}{\hat{\sigma}^{2}} \tag{5}
\end{equation*}
$$

Solving for $\hat{\mu}$ gives

$$
\begin{equation*}
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \tag{6}
\end{equation*}
$$

which is the maximum likelihood estimate for μ.

Maximum likelihood as moment matching

Left-hand side of the second equation:

$$
\begin{align*}
\mathbb{E}_{p(x ; \hat{\mu}, \hat{\sigma})}\left[\frac{(x-\hat{\mu})^{2}}{\hat{\sigma}^{3}}\right] & =\frac{1}{\hat{\sigma}^{3}} \mathbb{E}_{p(x ; \hat{\mu}, \hat{\sigma})}\left[(x-\hat{\mu})^{2}\right] \tag{7}\\
& =\frac{\hat{\sigma}^{2}}{\hat{\sigma}^{3}} \tag{8}\\
& =\frac{1}{\hat{\sigma}} \tag{9}
\end{align*}
$$

Second equation becomes:

$$
\begin{equation*}
\frac{1}{\hat{\sigma}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\left(x_{i}-\hat{\mu}\right)^{2}}{\hat{\sigma}^{3}} \tag{10}
\end{equation*}
$$

Solving for $\hat{\sigma}^{2}$ gives

$$
\begin{equation*}
\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2} \tag{11}
\end{equation*}
$$

which is the maximum likelihood estimate for σ^{2}.

Maximum likelihood as moment matching (proof, not examinable)

A necessary condition for the MLE $\hat{\boldsymbol{\theta}}$ to satisfy is

$$
\left.\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta})\right|_{\hat{\boldsymbol{\theta}}}=0
$$

We can write the gradient of the log-likelihood function as follows

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) & =\nabla_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log p\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right) \\
& =\nabla_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log \frac{\tilde{p}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)}{Z(\boldsymbol{\theta})} \\
& =\nabla_{\boldsymbol{\theta}} \sum_{i=1}^{n} \log \tilde{p}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)-\nabla_{\boldsymbol{\theta}} n \log Z(\boldsymbol{\theta}) \\
& =\sum_{i=1}^{n} \nabla_{\boldsymbol{\theta}} \log \tilde{p}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)-n \nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta}) \\
& =\sum_{i=1}^{n} \mathbf{m}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)-n \nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta})
\end{aligned}
$$

Maximum likelihood as moment matching (proof, not examinable)

The gradient $\nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta})$ is

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta}) & =\frac{1}{Z(\boldsymbol{\theta})} \nabla_{\boldsymbol{\theta}} Z(\boldsymbol{\theta}) \\
& =\frac{1}{Z(\boldsymbol{\theta})} \nabla_{\boldsymbol{\theta}} \int \tilde{p}(\mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \mathbf{x} \\
& =\frac{\int \nabla_{\boldsymbol{\theta}} \tilde{p}(\mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \mathbf{x}}{Z(\boldsymbol{\theta})}
\end{aligned}
$$

Since $(\log f(x))^{\prime}=\frac{f^{\prime}(x)}{f(x)}$ we also have $f^{\prime}(x)=(\log f(x))^{\prime} f(x)$ so that

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta}) & =\frac{\int \nabla_{\boldsymbol{\theta}}[\log \tilde{p}(\mathbf{x} ; \boldsymbol{\theta})] \tilde{p}(\mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \mathbf{x}}{Z(\boldsymbol{\theta})} \\
& =\int \nabla_{\boldsymbol{\theta}}[\log \tilde{p}(\mathbf{x} ; \boldsymbol{\theta})] p(\mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \mathbf{x} \\
& =\int \mathbf{m}(\mathbf{x} ; \boldsymbol{\theta}) p(\mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \mathbf{x}
\end{aligned}
$$

Maximum likelihood as moment matching (proof, not examinable)

The gradient of the log-likelihood function $\ell(\boldsymbol{\theta})$ thus is

$$
\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta})=\sum_{i=1}^{n} \mathbf{m}\left(\mathbf{x}_{i} ; \boldsymbol{\theta}\right)-n \int \mathbf{m}(\mathbf{x} ; \boldsymbol{\theta}) p(\mathbf{x} ; \boldsymbol{\theta}) \mathrm{d} \mathbf{x}
$$

The necessary condition that the gradient is zero at the MLE $\hat{\boldsymbol{\theta}}$ yields the desired result:

$$
\int \mathbf{m}(\mathbf{x} ; \hat{\boldsymbol{\theta}}) p(\mathbf{x} ; \hat{\boldsymbol{\theta}}) \mathrm{d} \mathbf{x}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}\left(\mathbf{x}_{i} ; \hat{\boldsymbol{\theta}}\right)
$$

Since the integral is the expectation of $\mathbf{m}(\mathbf{x} ; \hat{\boldsymbol{\theta}})$ with respect to $p(\mathbf{x} ; \hat{\boldsymbol{\theta}})$ we can write the above equation as

$$
\mathbb{E}_{p(\mathrm{x} ; \hat{\boldsymbol{\theta}})}[\mathbf{m}(\mathbf{x} ; \hat{\boldsymbol{\theta}})]=\frac{1}{n} \sum_{i=1}^{n} \mathbf{m}\left(\mathbf{x}_{i} ; \hat{\boldsymbol{\theta}}\right)
$$

What we miss with maximum likelihood estimation

- The likelihood function indicates to which extent various parameter values are congruent with the observed data.
- Establishes an ordering of relative preferences for different parameter values, i.e. $\boldsymbol{\theta}_{1}$ is preferred over $\boldsymbol{\theta}_{2}$ if $L\left(\boldsymbol{\theta}_{1}\right)>L\left(\boldsymbol{\theta}_{2}\right)$.
- Max. lik. estimation ignores information contained in the data.
- Example: Likelihood for Bernoulli model with $\mathcal{D}=(0,0,0,0,0,0,0,1,1,1, \ldots)$ generated with parameter value $1 / 3$ (green line)

(a) $n=2$ observations

(b) $n=5$ observations

(c) $n=10$ observations

What we miss with maximum likelihood estimation

- A compromise between considering the whole (log) likelihood function and only its maximum is the computation of the curvature (Hessian) at the maximum.
- strong curvature: max lik estimate clearly to be preferred
- shallow curvature: several other parameter values are nearly equally in line with the data.

Program

1. Basic concepts
2. Learning by maximum likelihood estimation

- The likelihood function and the maximum likelihood estimate
- MLE for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables
- Maximum likelihood estimation is a form of moment matching
- The likelihood function is informative and more than just an objective function to optimise

3. Learning by Bayesian inference

Program

1. Basic concepts
2. Learning by maximum likelihood estimation
3. Learning by Bayesian inference

- Bayesian approach reduces learning to probabilistic inference
- Different views of the posterior distribution
- Conjugate priors
- Posterior for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables

Reduces learning to probabilistic inference

- We use data to determine the plausibility (posterior pdf/pmf) of all possible values of the parameters $\boldsymbol{\theta}$.

$$
p(\mathbf{x} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \quad \xrightarrow{\text { data }} \mathcal{D} \quad p(\boldsymbol{\theta} \mid \mathcal{D})
$$

- Same framework for learning and inference.
- In some cases, closed-form solutions can be obtained (e.g. for conjugate priors).
- In some cases, exact inference methods that we discussed earlier can be used.
- If closed form solutions are not possible and exact inference is computationally too costly, we have to resort to approximate inference via e.g. sampling or variational methods.

The posterior combines likelihood function and prior

- Bayesian inference takes the whole likelihood function into account

$$
\begin{aligned}
p(\boldsymbol{\theta} \mid \mathcal{D}) & =\frac{p(\boldsymbol{\theta}, \mathcal{D})}{p(\mathcal{D})} \\
& =\frac{p(\mathcal{D} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathcal{D})} \\
& \propto p(\mathcal{D} \mid \boldsymbol{\theta}) p(\boldsymbol{\theta}) \\
& \propto L(\boldsymbol{\theta}) p(\boldsymbol{\theta})
\end{aligned}
$$

- $L(\boldsymbol{\theta})$ defines a change of measure from $p(\boldsymbol{\theta})$ to $p(\boldsymbol{\theta} \mid \mathcal{D})$.
- For iid data $\mathcal{D}=\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{n}\right)$

$$
p(\boldsymbol{\theta} \mid \mathcal{D}) \propto\left[\prod_{i=1}^{n} p\left(\mathbf{x}_{i} \mid \boldsymbol{\theta}\right)\right] p(\boldsymbol{\theta})
$$

- For large n, likelihood dominates: $\operatorname{argmax}_{\boldsymbol{\theta}} p(\boldsymbol{\theta} \mid \mathcal{D}) \approx$ MLE (assuming the prior is non-zero at the MLE)

The posterior distribution is a conditional

$$
p(\boldsymbol{\theta} \mid \mathcal{D})=\frac{p(\boldsymbol{\theta}, \mathcal{D})}{p(\mathcal{D})}
$$

- For simplicity, consider discrete-valued data so that

$$
p(\boldsymbol{\theta} \mid \mathcal{D})=p(\boldsymbol{\theta} \mid \mathbf{x}=\mathcal{D})=\frac{p(\boldsymbol{\theta}, \mathbf{x}=\mathcal{D})}{p(\mathcal{D})}
$$

- Assume we can sample tuples $\left(\boldsymbol{\theta}^{(i)}, \mathbf{x}^{(i)}\right)$ from the joint $p(\boldsymbol{\theta}, \mathbf{x})$

$$
\boldsymbol{\theta}^{(i)} \sim p(\boldsymbol{\theta}) \quad \mathbf{x}^{(i)} \sim p\left(\mathbf{x} \mid \boldsymbol{\theta}^{(i)}\right)
$$

- Conditioning on $\mathbf{x}=\mathcal{D}$ then corresponds to only retaining those samples $\left(\boldsymbol{\theta}^{(i)}, \mathbf{x}^{(i)}\right)$ where $\mathbf{x}^{(i)}=\mathcal{D}$.
- Samples from the posterior = samples from the prior that produce data equal to the observed one.
- Remark: This view of Bayesian inference forms the basis of a class of approximate methods known as approximate Bayesian computation.

Conjugate priors

- Assume the prior is part of a parametric family with hyperparameters $\boldsymbol{\alpha}$, i.e. the prior is an element of $\{p(\boldsymbol{\theta} ; \boldsymbol{\alpha})\}_{\boldsymbol{\alpha}}$, so that

$$
p(\boldsymbol{\theta})=p\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}_{0}\right)
$$

for some fixed $\boldsymbol{\alpha}_{0}$.

- If the posterior $p(\boldsymbol{\theta} \mid \mathcal{D})$ is part of the same family as the prior,
- the prior and posterior are called conjugate distributions
- the prior is said to be a conjugate prior for $p(\mathbf{x} \mid \boldsymbol{\theta})$ or for the likelihood function.
- Learning then corresponds to updating the hyperparameters.

$$
\alpha_{0} \quad \stackrel{\text { data }}{ } \mathcal{D} \quad \boldsymbol{\alpha}(\mathcal{D})
$$

- Models $p(\mathbf{x} \mid \boldsymbol{\theta})$ that a part of the exponential family always have a conjugate prior (see Barber 8.5).

Gaussian example (posterior of the mean for known variance)

(for more general cases, see optional reading)

- Denote pdf of a Gaussian random variable x with mean μ and variance σ^{2} by $\mathcal{N}\left(x ; \mu, \sigma^{2}\right)$.
- Bayesian model

$$
p(x \mid \theta)=\mathcal{N}\left(x \mid \theta, \sigma^{2}\right) \quad p\left(\theta ; \boldsymbol{\alpha}_{0}\right)=\mathcal{N}\left(\theta ; \mu_{0}, \sigma_{0}^{2}\right)
$$

Hyperparameters $\boldsymbol{\alpha}_{0}=\left(\mu_{0}, \sigma_{0}^{2}\right)$

- Data \mathcal{D} : n iid observations x_{1}, \ldots, x_{n}
- Posterior for θ (see exercises)

$$
\begin{aligned}
p(\theta \mid \mathcal{D}) & =\mathcal{N}\left(\theta ; \mu_{n}, \sigma_{n}^{2}\right) \\
\mu_{n} & =\frac{\sigma_{0}^{2}}{\sigma_{0}^{2}+\sigma^{2} / n} \bar{x}+\frac{\sigma^{2} / n}{\sigma_{0}^{2}+\sigma^{2} / n} \mu_{0} \quad \frac{1}{\sigma_{n}^{2}}=\frac{1}{\sigma^{2} / n}+\frac{1}{\sigma_{0}^{2}}
\end{aligned}
$$

where $\bar{x}=1 / n \sum_{i} x_{i}$ is the sample average (the MLE).

Gaussian example (posterior of the mean for known variance)

$$
\mu_{n}=\frac{\sigma_{0}^{2}}{\sigma_{0}^{2}+\sigma^{2} / n} \bar{x}+\frac{\sigma^{2} / n}{\sigma_{0}^{2}+\sigma^{2} / n} \mu_{0}
$$

- Introduce

$$
\begin{equation*}
w_{n}=\frac{\sigma_{0}^{2}}{\sigma_{0}^{2}+\sigma^{2} / n} \tag{12}
\end{equation*}
$$

For $n=0, w_{n} \rightarrow 0$. For $n \rightarrow \infty, w_{n} \rightarrow 1$

- Moreover:

$$
\begin{equation*}
\frac{\sigma^{2} / n}{\sigma_{0}^{2}+\sigma^{2} / n}=1-w_{n} \tag{13}
\end{equation*}
$$

- Hence

$$
\begin{equation*}
\mu_{n}=w_{n} \bar{x}+\left(1-w_{n}\right) \mu_{0} \tag{14}
\end{equation*}
$$

As the number of data points increases, μ_{n} travels from prior mean μ_{0} to the MLE \bar{x} along a straight line.

- The posterior mean of θ linearly interpolates between prior mean μ_{0} and MLE \hat{x}.

Bernoulli example

- Recall: Beta distribution with parameters α, β

$$
\mathcal{B}(f ; \alpha, \beta) \propto f^{\alpha-1}(1-f)^{\beta-1} \quad f \in[0,1]
$$

see the background document Introduction to Probabilistic Modelling

- Bayesian model

$$
p(x \mid \theta)=\theta^{x}(1-\theta)^{1-x} \quad p\left(\theta ; \boldsymbol{\alpha}_{0}\right)=\mathcal{B}\left(\theta ; \alpha_{0}, \beta_{0}\right)
$$

where $x \in\{0,1\}, \theta \in[0,1]$, and $\boldsymbol{\alpha}_{0}=\left(\alpha_{0}, \beta_{0}\right)$

- Data \mathcal{D} : n iid observations x_{1}, \ldots, x_{n}
- Posterior for θ (see exercises)

$$
\begin{aligned}
p(\theta \mid \mathcal{D}) & =\mathcal{B}\left(\theta ; \alpha_{n}, \beta_{n}\right) \\
\alpha_{n} & =\alpha_{0}+n_{x=1} \quad \beta_{n}=\beta_{0}+n_{x=0}
\end{aligned}
$$

where $n_{x=1}$ were the number of ones and $n_{x=0}$ the number of zeros in the data.

Examples of the beta distribution $\mathcal{B}(f ; \alpha, \beta)$

Expected value: $\frac{\alpha}{\alpha+\beta}, \quad$ Variance: $\frac{\alpha}{\alpha+\beta} \frac{\beta}{\alpha+\beta} \frac{1}{\alpha+\beta+1}$

(a) $\mathcal{B}(f ; 0.5,0.5)$

(c) $\mathcal{B}(f ; 3,2)$

(b) $\mathcal{B}(f ; 1,1)$

(d) $\mathcal{B}(f ; 15,10)$

Bernoulli example

- Bernoulli model with $\mathcal{D}=(0,0,0,0,0,0,0,1,1,1, \ldots)$ generated with parameter value $1 / 3$ (green line)
- Posterior in blue, $\mathcal{B}(2,2)$ prior in black
- Compare with earlier likelihood plots. Note the "pull" towards the prior when n is small.

(a) $n=2$ observations

(b) $n=5$ observations

(c) $n=10$ observations

Cancer-asbestos-smoking example

- Bayesian model

$$
\begin{aligned}
p(c, a, s \mid \theta)= & p\left(c \mid a, s, \theta_{c}^{1}, \ldots, \theta_{c}^{4}\right) p\left(a \mid \theta_{a}\right) p\left(s \mid \theta_{s}\right) \\
= & \prod_{j=1}^{4}\left(\theta_{c}^{j}\right)^{\mathbb{1}\left(c=1, \mathrm{pa}_{c}=j\right)}\left(1-\theta_{c}^{j}\right)^{\mathbb{1}\left(c=0, \mathrm{pa}_{c}=j\right)} \\
& \theta_{a}^{\mathbb{1}(a=1)}\left(1-\theta_{a}\right)^{\mathbb{1}(a=0)} \theta_{s}^{\mathbb{1}(s=1)}\left(1-\theta_{s}\right)^{\mathbb{1}(s=0)}
\end{aligned}
$$

- Assume the prior factorises (independence assumptions):

$$
\begin{aligned}
p\left(\theta_{a}, \theta_{s}, \theta_{c}^{1}, \ldots, \theta_{c}^{4} ; \alpha_{0}\right)= & \prod_{j} \mathcal{B}\left(\theta_{c}^{j} ; \alpha_{c, 0}^{j}, \beta_{c, 0}^{j}\right) \\
& \mathcal{B}\left(\theta_{a} ; \alpha_{a, 0}, \beta_{a, 0}\right) \mathcal{B}\left(\theta_{s} ; \alpha_{s, 0}, \beta_{s, 0}\right)
\end{aligned}
$$

- Data $\mathcal{D}: n$ iid observations $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$, where $\mathbf{x}_{i}=\left(a_{i}, s_{i}, c_{i}\right)$
- The parameters are independent under the posterior and follow a beta distribution (see exercises)

Program recap

1. Basic concepts

- Observed data as a sample drawn from an unknown data generating distribution
- Probabilistic, statistical, and Bayesian models
- Partition function and unnormalised statistical models
- Learning $=$ parameter estimation or learning $=$ Bayesian inference

2. Learning by maximum likelihood estimation

- The likelihood function and the maximum likelihood estimate
- MLE for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables
- Maximum likelihood estimation is a form of moment matching
- The likelihood function is informative and more than just an objective function to optimise

3. Learning by Bayesian inference

- Bayesian approach reduces learning to probabilistic inference
- Different views of the posterior distribution
- Conjugate priors
- Posterior for Gaussian, Bernoulli, and fully observed directed graphical models of discrete random variables

