Factor and Independent Component Analysis

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Spring Semester 2024

Recap

- Model-based learning from data
- Observed data as a sample from an unknown data generating distribution
- Learning using parametric statistical models and Bayesian models,
- Their relation to probabilistic graphical models
- Likelihood function, maximum likelihood estimation, and the mechanics of Bayesian inference
- Classical examples to illustrate the concepts

Applications of factor and independent component analysis

- Factor analysis and independent component analysis are two classical methods for data analysis.
- The origins of factor analysis (FA) are attributed to a 1904 paper by psychologist Charles Spearman. It is used in fields such as
- Psychology, e.g intelligence research
- Marketing
- Wide range of physical and biological sciences
- Independent component analysis (ICA) has mainly been developed in the 90s. It can be used where FA can be used. Popular applications include
- Neuroscience (brain imaging, spike sorting) and theoretical neuroscience
- Telecommunications (de-convolution, blind source separation)
- Finance (finding hidden factors)

Directed graphical model underlying FA and ICA

FA: factor analysis ICA: independent component analysis

- The visibles $\mathbf{v}=\left(v_{1}, \ldots, v_{D}\right)$ are independent from each other given the latents $\mathbf{h}=\left(h_{1}, \ldots, h_{H}\right)$, but generally dependent under the marginal $p(\mathbf{v})$.
- Explains statistical dependencies between (observed) v_{i} through (unobserved) h_{i}.
- Different assumptions on $p(\mathbf{v} \mid \mathbf{h})$ and $p(\mathbf{h})$ lead to different statistical models, and data analysis methods with markedly different properties.

Program

1. Factor analysis
2. Independent component analysis

Program

1. Factor analysis

- Parametric model
- Ambiguities in the model (factor rotation problem)
- Learning the parameters by maximum likelihood estimation
- Probabilistic principal component analysis as special case

2. Independent component analysis

Parametric model for factor analysis

- In factor analysis (FA), all random variables are Gaussian.
- Importantly, the number of latents H is assumed smaller than the number of visibles D.
- Latents: $p(\mathbf{h})=\mathcal{N}(\mathbf{h} ; \mathbf{0}, \mathbf{I})$ (uncorrelated standard normal)
- Conditional $p(\mathbf{v} \mid \mathbf{h} ; \boldsymbol{\theta})$ is Gaussian

$$
p(\mathbf{v} \mid \mathbf{h} ; \boldsymbol{\theta})=\mathcal{N}(\mathbf{v} ; \mathbf{F h}+\mathbf{c}, \boldsymbol{\Psi})
$$

Parameters $\boldsymbol{\theta}$ are

- Vector $\mathbf{c} \in \mathbb{R}^{D}$: sets the mean of \mathbf{v}
- Factor matrix $\mathbf{F}=\left(\mathbf{f}_{1}, \ldots \mathbf{f}_{H}\right): D \times H$ matrix with $D>H$ Columns \mathbf{f}_{i} are called "factors", its elements the "factor loadings".
- $\boldsymbol{\Psi}$: diagonal matrix $\boldsymbol{\Psi}=\operatorname{diag}\left(\Psi_{1}, \ldots, \Psi_{D}\right)$

Tuning parameter: the number of factors H

Parametric model for factor analysis

- $p(\mathbf{v} \mid \mathbf{h} ; \boldsymbol{\theta})=\mathcal{N}(\mathbf{v} ; \mathbf{F h}+\mathbf{c}, \boldsymbol{\Psi})$ is equivalent to

$$
\begin{aligned}
\mathbf{v} & =\mathbf{F h}+\mathbf{c}+\boldsymbol{\epsilon} \\
& =\sum_{i=1}^{H} \mathbf{f}_{i} h_{i}+\mathbf{c}+\boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon} ; 0, \boldsymbol{\Psi})
\end{aligned}
$$

- Data generation: Add $H<D$ factors weighted by h_{i} to the constant vector \mathbf{c}, and corrupt the "signal" $\mathbf{F h}+\mathbf{c}$ by additive Gaussian noise.
- Fh spans a H dimensional subspace of \mathbb{R}^{D}

Interesting structure of the data is contained in a subspace

Example for $D=2, H=1$.

Interesting structure of the data is contained in a subspace

Example for $D=3, H=2$ ("pancake" in the 3D space)

Black points: $\mathbf{F h}+\mathbf{c}$

Red points: $\mathbf{F h}+\mathbf{c}+\boldsymbol{\epsilon}$ (points below the plane not shown)
(Figures courtesy of David Barber)

Basic results that we need

- If \mathbf{x} has density $\mathcal{N}\left(\mathbf{x} ; \boldsymbol{\mu}_{x}, \mathbf{C}_{x}\right), \mathbf{z}$ density $\mathcal{N}\left(\mathbf{z} ; \boldsymbol{\mu}_{z}, \mathbf{C}_{z}\right)$, and $\mathbf{x} \Perp \mathbf{z}$ then $\mathbf{y}=\mathbf{A x}+\mathbf{z}$ has density

$$
\mathcal{N}\left(\mathbf{y} ; \mathbf{A} \mu_{x}+\mu_{z}, \mathbf{A C} \mathbf{C}_{x} \mathbf{A}^{\top}+\mathbf{C}_{z}\right)
$$

(see e.g. Barber Result 8.3)

- An orthonormal (orthogonal) matrix \mathbf{R} is a square matrix for which the transpose \mathbf{R}^{\top} equals the inverse \mathbf{R}^{-1}, i.e.

$$
\mathbf{R}^{\top}=\mathbf{R}^{-1} \quad \text { or } \quad \mathbf{R}^{\top} \mathbf{R}=\mathbf{R} \mathbf{R}^{\top}=\mathbf{I}
$$

(see e.g. Barber Appendix A.1)

- Orthonormal matrices rotate points.

Factor rotation problem

- Using the basic results, we obtain

$$
\begin{aligned}
\mathbf{v} & =\mathbf{F h}+\mathbf{c}+\boldsymbol{\epsilon} \\
& =\mathbf{F}\left(\mathbf{R R}^{\top}\right) \mathbf{h}+\mathbf{c}+\boldsymbol{\epsilon} \\
& =(\mathbf{F} \mathbf{R})\left(\mathbf{R}^{\top} \mathbf{h}\right)+\mathbf{c}+\boldsymbol{\epsilon} \\
& =(\mathbf{F} \mathbf{R}) \tilde{\mathbf{h}}+\mathbf{c}+\boldsymbol{\epsilon}
\end{aligned}
$$

- Since $p(\mathbf{h})=\mathcal{N}(\mathbf{h} ; \mathbf{0}, \mathbf{I})$ and \mathbf{R} is orthonormal, $p(\tilde{\mathbf{h}})=\mathcal{N}(\tilde{\mathbf{h}} ; \mathbf{0}, \mathbf{I})$, and the two models

$$
\mathbf{v}=\mathbf{F h}+\mathbf{c}+\boldsymbol{\epsilon} \quad \mathbf{v}=(\mathbf{F R}) \tilde{\mathbf{h}}+\mathbf{c}+\boldsymbol{\epsilon}
$$

produce data with exactly the same distribution.

Factor rotation problem

- Two estimates $\hat{\mathbf{F}}$ and $\hat{\mathbf{F}} \mathbf{R}$ explain the data equally well.
- Estimation of the factor matrix \mathbf{F} is not unique.
- With the Gaussianity assumption on \mathbf{h}, there is a rotational ambiguity in the factor analysis model.
- The columns of \mathbf{F} and $\mathbf{F R}$ span the same subspace, so that the FA model is best understood to define a subspace of the data space.
- The individual columns of \mathbf{F} (factors) carry little meaning by themselves.
- There are post-processing methods that choose \mathbf{R} after estimation of \mathbf{F} so that the columns of $\mathbf{F R}$ have some desirable properties to aid interpretation, e.g. that they have as many zeros as possible (sparsity).

Likelihood function

- We have seen that the FA model can be written as

$$
\mathbf{v}=\mathbf{F h}+\mathbf{c}+\boldsymbol{\epsilon} \quad \mathbf{h} \sim \mathcal{N}(\mathbf{h} ; \mathbf{0}, \mathbf{I}) \quad \boldsymbol{\epsilon} \sim \mathcal{N}(\boldsymbol{\epsilon} ; \mathbf{0}, \boldsymbol{\Psi})
$$

with $\boldsymbol{\epsilon} \mathbf{h}$

- From the basic results on multivariate Gaussians: \mathbf{v} is Gaussian with mean and variance equal to

$$
\mathbb{E}[\mathbf{v}]=\mathbf{c} \quad \mathbb{V}[\mathbf{v}]=\mathbf{F F}^{\top}+\boldsymbol{\Psi}
$$

- Likelihood is given by likelihood for multivariate Gaussian.
- But due to the form of the covariance matrix of \mathbf{v}, closed form solution is not possible and iterative methods are needed (see e.g. Barber Section 21.2, not examinable).

Probabilistic principal component analysis as special case

- In FA, the variances Ψ_{i} of the additive noise ϵ can be different for each dimension.
- Probabilistic principal component analysis (PPCA) is obtained for

$$
\boldsymbol{\Psi}_{i}=\sigma^{2} \quad \boldsymbol{\Psi}=\sigma^{2} \mathbf{I}
$$

- FA has a richer description of the additive noise than PCA.

Program

1. Factor analysis

- Parametric model
- Ambiguities in the model (factor rotation problem)
- Learning the parameters by maximum likelihood estimation
- Probabilistic principal component analysis as special case

2. Independent component analysis

Program

1. Factor analysis
2. Independent component analysis

- Parametric model
- Ambiguities in the model
- sub-Gaussian and super-Gaussian pdfs
- Learning the parameters by maximum likelihood estimation

Parametric model for independent component analysis

- In ICA, unlike in FA, the latents are assumed to be non-Gaussian. (one latent can be assumed to be Gaussian)
- The latents h_{i} are assumed to be statistically independent

$$
p_{\mathbf{h}}(\mathbf{h})=\prod_{i} p_{h}\left(h_{i}\right)
$$

- Conditional $p(\mathbf{v} \mid \mathbf{h} ; \boldsymbol{\theta})$ is generally Gaussian

$$
p(\mathbf{v} \mid \mathbf{h} ; \boldsymbol{\theta})=\mathcal{N}(\mathbf{v} ; \mathbf{F h}+\mathbf{c}, \boldsymbol{\Psi}) \quad \text { or } \quad \mathbf{v}=\mathbf{F h}+\mathbf{c}+\boldsymbol{\epsilon}
$$

Called "noisy" ICA

- The number of latents H can be larger than D ("overcomplete" case) or smaller ("undercomplete" case).
- We here consider the widely used special case where the noise is zero and $H=D$ ("noise-free square ICA model").

Parametric model for independent component analysis

In ICA, the matrix \mathbf{F} is typically denoted by \mathbf{A} and called the "mixing" matrix. The model is

$$
\mathbf{v}=\mathbf{A} \mathbf{h}
$$

$$
p_{\mathbf{h}}(\mathbf{h})=\prod_{i=1}^{D} p_{h}\left(h_{i}\right)
$$

where the h_{i} are typically assumed to have zero mean and unit variance.

Ambiguities

- Denote the columns of \mathbf{A} by \mathbf{a}_{i}.
- From

$$
\mathbf{v}=\mathbf{A} \mathbf{h}=\sum_{i=1}^{D} \mathbf{a}_{i} h_{i}=\sum_{k=1}^{D} \mathbf{a}_{i_{k}} h_{i_{k}}=\sum_{i=1}^{D}\left(\mathbf{a}_{i} \alpha_{i}\right) \frac{1}{\alpha_{i}} h_{i}
$$

it follows that the ICA model has an ambiguity regarding the ordering of the columns of \mathbf{A} and their scaling.

- The unit variance assumption on the latents fixes the scaling but not the ordering ambiguity.
- Note: for non-Gaussian latents, there is no rotational ambiguity.

Non-Gaussian latents: variables with sub-Gaussian pdfs

- Sub-Gaussian pdf: (assume variables have mean zero) pdf that is less peaked at zero than a Gaussian of the same variance.
- Example: uniform random variable Samples $\left(h_{1}, h_{2}\right) \quad$ Samples $\left(v_{1}, v_{2}\right)$

Horizontal axes: h_{1} and v_{1}. Vertical axes h_{2} and v_{2}. Not in the same scale
(Adapted from Figures 7.5 and 7.6, Independent Component Analysis by Hyvärinen, Karhunen, and Oja).

Non-Gaussian latents: variables with super-Gaussian pdfs

- Super-Gaussian pdf: (assume variables have mean zero) pdf that is more peaked at zero than a Gaussian of the same variance.
- Example: Laplace random variable, where $p\left(h_{i}\right) \propto \exp \left(-\sqrt{2}\left|h_{i}\right|\right)$ Samples $\left(h_{1}, h_{2}\right) \quad$ Samples $\left(v_{1}, v_{2}\right)$

Horizontal axes: h_{1} and v_{1}. Vertical axes h_{2} and v_{2}. Not in the same scale
(Adapted from Figures 7.8 and 7.9, Independent Component Analysis by Hyvärinen, Karhunen, and Oja).

Distribution of the visibles

- The mapping $\mathbf{h} \mapsto \mathbf{v}=\mathbf{A h}$ is deterministic and invertible. By the laws of transformation of random variables

$$
p(\mathbf{v} ; \mathbf{A})=p_{\mathbf{h}}\left(\mathbf{A}^{-1} \mathbf{v}\right)\left|\operatorname{det} \mathbf{A}^{-1}\right|
$$

(see e.g. Barber Result 8.1)

- Denote the inverse of \mathbf{A} by \mathbf{B}

$$
\mathbf{A}^{-1} \mathbf{v}=\mathbf{B} \mathbf{v}=\left(\begin{array}{c}
\mathbf{b}_{1} \mathbf{v} \\
\vdots \\
\mathbf{b}_{D} \mathbf{v}
\end{array}\right)
$$

where the $\mathbf{b}_{1}, \ldots, \mathbf{b}_{D}$ are the row vectors of the matrix \mathbf{B}.

- Given the independence of the latents, we thus have

$$
\begin{aligned}
p(\mathbf{v} ; \mathbf{A}) & =p_{\mathbf{h}}\left(\mathbf{A}^{-1} \mathbf{v}\right)\left|\operatorname{det} \mathbf{A}^{-1}\right|=p_{\mathbf{h}}(\mathbf{B} \mathbf{v})|\operatorname{det} \mathbf{B}| \\
& =\left[\prod_{j=1}^{D} p_{h}\left(\mathbf{b}_{j} \mathbf{v}\right)\right]|\operatorname{det} \mathbf{B}|
\end{aligned}
$$

Likelihood function

- Since the mapping from \mathbf{A} to \mathbf{B} is invertible. We can write the likelihood function in terms of the matrix \mathbf{B},
- Given iid data $\mathcal{D}=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$, we obtain

$$
L(\mathbf{B})=\prod_{i=1}^{n}\left[\prod_{j=1}^{D} p_{h}\left(\mathbf{b}_{j} \mathbf{v}_{i}\right)\right]|\operatorname{det} \mathbf{B}|
$$

- The log-likelihood is given by

$$
\ell(\mathbf{B})=\sum_{i=1}^{n} \sum_{j=1}^{D} \log p_{h}\left(\mathbf{b}_{j} \mathbf{v}_{i}\right)+n \log |\operatorname{det} \mathbf{B}|
$$

- Can be optimised using gradient ascent (slow) or with more powerful methods (see Barber 21.6, not examinable)

The likelihood and the distribution of the latents

$$
\ell(\mathbf{B})=\sum_{i=1}^{n} \sum_{j=1}^{D} \log p_{h}\left(\mathbf{b}_{j} \mathbf{v}_{i}\right)+n \log |\operatorname{det} \mathbf{B}|
$$

- B and hence the mixing \mathbf{A} can be uniquely estimated, up to the scaling and order ambiguity, as long as the p_{h} are non-Gaussian (one latent Gaussian is allowed).
- Non-Gaussianity assumption on the latents solves the "factor rotation" problem in FA.
- The pdf p_{h} of the latents enter the (log) likelihood.
- If not known, they have to be estimated, which is difficult.
- It turns out that learning whether p_{h} is super-Gaussian or sub-Gaussian is enough. (not examinable, Section 9.1.2 of Independent Component Analysis by Hyvärinen, Karhunen, and Oja)

Program recap

1. Factor analysis

- Parametric model
- Ambiguities in the model (factor rotation problem)
- Learning the parameters by maximum likelihood estimation
- Probabilistic principal component analysis as special case

2. Independent component analysis

- Parametric model
- Ambiguities in the model
- sub-Gaussian and super-Gaussian pdfs
- Learning the parameters by maximum likelihood estimation

