Intractable Likelihood Functions

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2024

Recap

$$p(\mathbf{x}|\mathbf{y}_o) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}$$

Assume that $\mathbf{x}, \mathbf{y}, \mathbf{z}$ each are d = 500 dimensional, and that each element of the vectors can take K = 10 values.

- ▶ Topic 1: Representation We discussed reasonable weak assumptions to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.
- ► Topic 2: Exact inference We have seen that the same assumptions allow us, under certain conditions, to efficiently compute the posterior probability or derived quantities.

Recap

$$p(\mathbf{x}|\mathbf{y}_o) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}$$

- ► Topic 3: Learning How can we learn the non-negative numbers $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ from data?
 - Probabilistic, statistical, and Bayesian models
 - Learning by parameter estimation and learning by Bayesian inference
 - Basic models to illustrate the concepts.
 - ► Models for factor and independent component analysis, and their estimation by maximising the likelihood.
- lssue 4: For some models, exact inference and learning is too costly even after fully exploiting the factorisation (independence assumptions) that were made to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$.

Topic 4: Approximate inference and learning

Recap

Examples we have seen where inference and learning is too costly:

- Computing marginals when we cannot exploit the factorisation.
- During variable elimination, we may generate new factors that depend on many variables.
- Even if we can compute $p(\mathbf{x}|\mathbf{y}_o)$, if \mathbf{x} is high-dimensional, we will generally not be able to compute expectations such as

$$\mathbb{E}\left[g(\mathbf{x})\mid\mathbf{y}_o\right] = \int g(\mathbf{x})p(\mathbf{x}|\mathbf{y}_o)\mathrm{d}\mathbf{x}$$

for some function g.

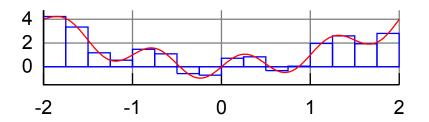
- ▶ Solving optimisation problems such as $\operatorname{argmax}_{\theta} \ell(\theta)$ can be computationally costly.
- ▶ Here: focus on computational issues when evaluating $\ell(\theta)$ that are caused by high-dimensional integrals (sums).

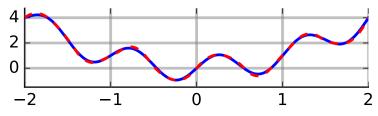
4 / 29

Computing integrals

$$\int_{\mathbf{x}\in\mathcal{S}}f(\mathbf{x})\mathrm{d}\mathbf{x}\qquad S\subseteq\mathbb{R}^d$$

- ► In some cases, closed form solutions possible.
- If x is low-dimensional $(d \le 2 \text{ or } \le 3)$, highly accurate numerical methods exist (with e.g. Simpson's rule),





see https://en.wikipedia.org/wiki/Numerical_integration.

- Curse of dimensionality: Solutions feasible in low dimensions become quickly computationally prohibitive as the dimension d increases.
- ► We then say that evaluating the integral (sum) is computationally "intractable".

- 1. Intractable likelihoods due to unobserved variables
- 2. Intractable likelihoods due to intractable partition functions
- 3. Combined case of unobserved variables and intractable partition functions

- 1. Intractable likelihoods due to unobserved variables
 - Unobserved variables
 - The likelihood function is implicitly defined via an integral
 - The gradient of the log-likelihood can be computed by solving an inference problem
- 2. Intractable likelihoods due to intractable partition functions
- 3. Combined case of unobserved variables and intractable partition functions

Unobserved variables

- ightharpoonup Observed data $\mathcal D$ correspond to observations of some random variables.
- Our model may contain random variables for which we do not have observations, i.e. "unobserved variables".
- Conceptually, we can distinguish between
 - hidden/latent variables: random variables that are important for the model description but for which we (normally) never observe data (see e.g. HMM, factor analysis)
 - variables for which data are missing: these are random variables that are (normally) observed but for which \mathcal{D} does not contain observations for some reason (e.g. some people refuse to answer in polls, malfunction of the measurement device, etc.)

The likelihood in presence of unobserved variables

- ightharpoonup Likelihood function is (proportional to the) probability that the model generates data like the observed one for parameter heta
- ▶ We thus need to know the distribution of the variables for which we have data (e.g. the "visibles" v)
- ▶ If the model is defined in terms of the visibles and unobserved variables **u**, we have to marginalise out the unobserved variables (sum rule) to obtain the distribution of the visibles

$$p(\mathbf{v}; \boldsymbol{\theta}) = \int_{\mathbf{u}} p(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) d\mathbf{u}$$

(replace with sum in case of discrete variables)

Likelihood function is implicitly defined via an integral

$$L(\boldsymbol{\theta}) = p(\mathcal{D}; \boldsymbol{\theta}) = \int_{\mathbf{u}} p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u},$$

which is generally intractable.

9 / 29

Evaluating the likelihood by solving an inference problem

The problem of computing the integral

$$p(\mathbf{v}; \boldsymbol{\theta}) = \int_{\mathbf{u}} p(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) d\mathbf{u}$$

corresponds to a marginal inference problem.

- Even if an analytical solution is not possible, we can sometimes exploit the properties of the model (independencies!) to numerically compute the marginal efficiently (e.g. by message passing).
- ► For each likelihood evaluation, we then have to solve a marginal inference problem.
- Example: In HMMs the likelihood of θ can be computed using the alpha recursion (see before). Note that this only provides the value of $L(\theta)$ at a specific value of θ , and not the whole function.

Evaluating the gradient by solving an inference problem

► The likelihood is often maximised by gradient ascent

$$oldsymbol{ heta}' = oldsymbol{ heta} + \epsilon
abla_{oldsymbol{ heta}} \ell(oldsymbol{ heta})$$

where ϵ denotes the step-size.

For a model $p(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta})$ with data \mathcal{D} for \mathbf{v} , the gradient $\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta})$ can be expressed as

$$abla_{ heta}\ell(heta) = \mathbb{E}_{\mathbf{u} \sim p(\mathbf{u}|\mathcal{D}; oldsymbol{ heta})} \left[
abla_{oldsymbol{ heta}} \log p(\mathbf{u}, \mathcal{D}; oldsymbol{ heta})
ight]$$

Note: the expectation is taken with respect to $p(\mathbf{u}|\mathcal{D}; \boldsymbol{\theta})$. (see later slides for a proof)

Evaluating the gradient by solving an inference problem

$$\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{u} \sim p(\mathbf{u}|\mathcal{D};\boldsymbol{\theta})} \left[\nabla_{\boldsymbol{\theta}} \log p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) \right]$$

Interpretation:

- $\nabla_{\theta} \log p(\mathbf{u}, \mathcal{D}; \theta)$ is the gradient of the log-likelihood if we had observed the data $(\mathbf{u}, \mathcal{D})$ (gradient after "filling-in" data).
- $p(\mathbf{u}|\mathcal{D}; \boldsymbol{\theta})$ indicates which values of \mathbf{u} are plausible given \mathcal{D} (and when using parameter value $\boldsymbol{\theta}$).
- $\nabla_{\theta}\ell(\theta)$ is a weighted average of gradients for filled-in data where the weight indicates the plausibility of the values that are used to fill-in the missing data.

Proof (not examinable)

The key to the proof of

$$\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{u} \sim p(\mathbf{u}|\mathcal{D};\boldsymbol{\theta})} \left[\nabla_{\boldsymbol{\theta}} \log p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) \right]$$

is that $f'(x) = \log f(x)'f(x)$ for some function f(x).

$$\nabla_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \log \int_{\mathbf{u}} p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}$$

$$= \frac{1}{\int_{\mathbf{u}} p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}} \int_{\mathbf{u}} \nabla_{\boldsymbol{\theta}} p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}$$

$$= \frac{\int_{\mathbf{u}} \nabla_{\boldsymbol{\theta}} p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}}{p(\mathcal{D}; \boldsymbol{\theta})}$$

$$= \frac{\int_{\mathbf{u}} \left[\nabla_{\boldsymbol{\theta}} \log p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta})\right] p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}}{p(\mathcal{D}; \boldsymbol{\theta})}$$

$$= \int_{\mathbf{u}} \left[\nabla_{\boldsymbol{\theta}} \log p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta})\right] p(\mathbf{u}|\mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}$$

$$= \int_{\mathbf{u}} \left[\nabla_{\boldsymbol{\theta}} \log p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta})\right] p(\mathbf{u}|\mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}$$

$$= \mathbb{E}_{\mathbf{u} \sim p(\mathbf{u}|\mathcal{D}; \boldsymbol{\theta})} \left[\nabla_{\boldsymbol{\theta}} \log p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta})\right]$$

where we have used that $p(\mathbf{u}|\mathcal{D};\boldsymbol{\theta}) = p(\mathbf{u},\mathcal{D};\boldsymbol{\theta})/p(\mathcal{D};\boldsymbol{\theta})$.

How helpful is the connection to inference?

- ► The (log) likelihood and its gradient can be computed by solving an inference problem.
- This is helpful if the inference problems can be solved relatively efficiently.
- Allows one to use approximate inference methods (e.g. sampling) for likelihood-based learning.

- 1. Intractable likelihoods due to unobserved variables
 - Unobserved variables
 - The likelihood function is implicitly defined via an integral
 - The gradient of the log-likelihood can be computed by solving an inference problem
- 2. Intractable likelihoods due to intractable partition functions
- 3. Combined case of unobserved variables and intractable partition functions

- 1. Intractable likelihoods due to unobserved variables
- 2. Intractable likelihoods due to intractable partition functions
 - Unnormalised models and the partition function
 - The likelihood function is implicitly defined via an integral
 - The gradient of the log-likelihood can be computed by solving an inference problem
- 3. Combined case of unobserved variables and intractable partition functions

Unnormalised (energy-based) statistical models

▶ Unnormalised statistical models: statistical models where some elements $\tilde{p}(\mathbf{x}; \theta)$ do not integrate/sum to one

$$\int \tilde{p}(\mathbf{x};\boldsymbol{\theta}) d\mathbf{x} = Z(\boldsymbol{\theta}) \neq 1$$

Partition function $Z(\theta)$ can be used to normalise unnormalised models via

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{\tilde{p}(\mathbf{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})}$$

▶ But $Z(\theta)$ is only implicitly defined via an integral: to evaluate Z at θ , we have so compute an integral.

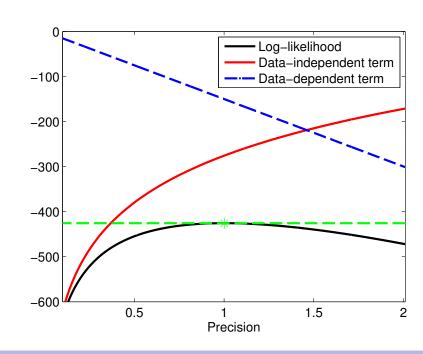
The partition function is part of the likelihood function

► Consider
$$p(x; \theta) = \frac{\tilde{p}(x; \theta)}{Z(\theta)} = \frac{\exp\left(-\theta \frac{x^2}{2}\right)}{\sqrt{2\pi/\theta}}$$

▶ Log-likelihood function for precision $\theta \ge 0$

$$\ell(\theta) = -n \log \sqrt{\frac{2\pi}{\theta}} - \theta \sum_{i=1}^{n} \frac{x_i^2}{2}$$

- Data-dependent and independent terms balance each other.
- ▶ Ignoring $Z(\theta)$ leads to a meaningless solution.
- Errors in approximations of $Z(\theta)$ lead to errors in MLE.



The partition function is part of the likelihood function

- Assume you want to learn the parameters for an unnormalised statistical model $\tilde{p}(\mathbf{x}; \boldsymbol{\theta})$ by maximising the likelihood.
- For the likelihood function, we need the normalised statistical model $p(\mathbf{x}; \boldsymbol{\theta})$

$$p(\mathbf{x}; \boldsymbol{\theta}) = \frac{\tilde{p}(\mathbf{x}; \boldsymbol{\theta})}{Z(\boldsymbol{\theta})}$$
 $Z(\boldsymbol{\theta}) = \int \tilde{p}(\mathbf{x}; \boldsymbol{\theta}) d\mathbf{x}$

Partition function enters the log-likelihood function

$$\ell(\theta) = \sum_{i=1}^{n} \log p(\mathbf{x}_i; \theta)$$

$$= \sum_{i=1}^{n} \log \tilde{p}(\mathbf{x}_i; \theta) - n \log Z(\theta)$$

► If the partition function is expensive to evaluate, evaluating and maximising the likelihood function is expensive.

The partition function in Bayesian inference

- ➤ Since the likelihood function is needed in Bayesian inference, intractable partition functions are also an issue here.
- ► The posterior is

$$egin{aligned}
ho(m{ heta};\mathcal{D}) &\propto L(m{ heta})
ho(m{ heta}) \ &\propto rac{ ilde{
ho}(\mathcal{D};m{ heta})}{Z(m{ heta})}
ho(m{ heta}) \end{aligned}$$

- Requires the partition function.
- ▶ If the partition function is expensive to evaluate, likelihood-based learning (MLE or Bayesian inference) is expensive.

Evaluating $\nabla_{\theta}\ell(\theta)$ by solving an inference problem

► When we interpreted MLE as moment matching, we found that (see Basics of Model-Based Learning)

$$\nabla_{\theta} \ell(\theta) = \sum_{i=1}^{n} \mathbf{m}(\mathbf{x}_{i}; \theta) - n \int \mathbf{m}(\mathbf{x}; \theta) p(\mathbf{x}; \theta) d\mathbf{x}$$

$$\propto \frac{1}{n} \sum_{i=1}^{n} \mathbf{m}(\mathbf{x}_{i}; \theta) - \mathbb{E}_{p(\mathbf{x}; \theta)} [\mathbf{m}(\mathbf{x}; \theta)]$$

with $\mathbf{m}(\mathbf{x}; \boldsymbol{\theta}) = \nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{x}; \boldsymbol{\theta})$

- ► Gradient ascent on $\ell(\theta)$ is possible if the expected value $\mathbb{E}_{p(\mathbf{x};\theta)}[\mathbf{m}(\mathbf{x};\theta)]$ can be computed.
- Problem of computing the partition function becomes a problem of computing the expected value with respect to $p(\mathbf{x}; \theta)$.

- 1. Intractable likelihoods due to unobserved variables
- 2. Intractable likelihoods due to intractable partition functions
 - Unnormalised models and the partition function
 - The likelihood function is implicitly defined via an integral
 - The gradient of the log-likelihood can be computed by solving an inference problem
- 3. Combined case of unobserved variables and intractable partition functions

- 1. Intractable likelihoods due to unobserved variables
- 2. Intractable likelihoods due to intractable partition functions
- 3. Combined case of unobserved variables and intractable partition functions
 - Restricted Boltzmann machine example
 - The likelihood function is implicitly defined via an integral
 - The gradient of the log-likelihood can be computed by solving two inference problems

Unnormalised models with unobserved variables

In some cases, we both have unobserved variables and intractable partition functions.

Example: Restricted Boltzmann machines (see exercises)

▶ Unnormalised statistical model (binary $v_i, h_i \in \{0, 1\}$)

$$p(\mathbf{v}, \mathbf{h}; \mathbf{W}, \mathbf{a}, \mathbf{b}) \propto \exp\left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h} + \mathbf{a}^{\top} \mathbf{v} + \mathbf{b}^{\top} \mathbf{h}\right)$$

Partition function (see exercises)

$$Z(\mathbf{W}, \mathbf{a}, \mathbf{b}) = \sum_{\mathbf{v}, \mathbf{h}} \exp\left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h} + \mathbf{a}^{\top} \mathbf{v} + \mathbf{b}^{\top} \mathbf{h}\right)$$
$$= \sum_{\mathbf{v}} \exp\left(\sum_{i} a_{i} v_{i}\right) \prod_{i=1}^{\dim(\mathbf{h})} \left[1 + \exp\left(\sum_{i} v_{i} W_{ij} + b_{j}\right)\right]$$

Pecomes quickly very expensive to compute as the dimension of \mathbf{v} , i.e. the number of visibles, increases.

Unobserved variables and intractable partition functions

Assume we have data $\mathcal D$ about the visibles $\mathbf v$ and the statistical model is specified as

$$p(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) \propto \tilde{p}(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) \quad \int_{\mathbf{u}, \mathbf{v}} \tilde{p}(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) \mathrm{d}\mathbf{u} \mathrm{d}\mathbf{v} = Z(\boldsymbol{\theta}) \neq 1$$

Log-likelihood features two generally intractable integrals

$$\ell(\boldsymbol{\theta}) = \log \left[\int_{\mathbf{u}} \tilde{p}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u} \right] - \log \left[\int_{\mathbf{u}, \mathbf{v}} \tilde{p}(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) d\mathbf{u} d\mathbf{v} \right]$$

Unobserved variables and intractable partition functions

The gradient $\nabla_{\theta}\ell(\theta)$ is given by the difference of two expectations

Due to unobs vars $\nabla_{\theta}\ell(\theta) = \mathbb{E}_{p(\mathbf{u}|\mathcal{D};\theta)}\left[\mathbf{m}(\mathbf{u},\mathcal{D};\theta)\right] - \mathbb{E}_{p(\mathbf{u},\mathbf{v};\theta)}\left[\mathbf{m}(\mathbf{u},\mathbf{v};\theta);\theta\right]$ where $\mathbf{m}(\mathbf{u},\mathbf{v};\theta) = \nabla_{\theta}\log\tilde{p}(\mathbf{u},\mathbf{v};\theta)$ Due to partition func

- ▶ The first expectation is with respect to $p(\mathbf{u}|\mathcal{D}; \boldsymbol{\theta})$.
- ▶ The second expectation is with respect to $p(\mathbf{u}, \mathbf{v}; \theta)$.
- ▶ Gradient ascent on $\ell(\theta)$ is possible if the two expectations can be computed. Typically done by taking a sample average, and hence requires sampling from $p(\mathbf{u}|\mathcal{D};\theta)$ and $p(\mathbf{u},\mathbf{v};\theta)$.

Proof (not examinable)

For the second term due to the log partition function, the same calculations as before give

$$\nabla_{\boldsymbol{\theta}} \log Z(\boldsymbol{\theta}) = \int \left[\nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) \right] p(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) d\mathbf{u} d\mathbf{v}$$

(replace x with (\mathbf{u}, \mathbf{v}) in the derivations on slide 51 of Basics of Model-Based Learning)

This is an expectation of the "moments" $\mathbf{m}(\mathbf{u}, \mathbf{v}; \theta)$

$$\mathbf{m}(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta}) = [\nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta})]$$

with respect to $p(\mathbf{u}, \mathbf{v}; \boldsymbol{\theta})$.

Proof (not examinable)

For the first term, the same steps as for the case of normalised models with unobserved variables give

$$\nabla_{\boldsymbol{\theta}} \log \int_{\mathbf{u}} \tilde{p}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u} = \frac{\int_{\mathbf{u}} \left[\nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) \right] \tilde{p}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}}{\tilde{p}(\mathcal{D}; \boldsymbol{\theta})}$$

And since

$$\frac{\tilde{p}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta})}{\tilde{p}(\mathcal{D}; \boldsymbol{\theta})} = \frac{\tilde{p}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta})/Z(\boldsymbol{\theta})}{\tilde{p}(\mathcal{D}; \boldsymbol{\theta})/Z(\boldsymbol{\theta})} = \frac{p(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta})}{p(\mathcal{D}; \boldsymbol{\theta})} = p(\mathbf{u}|\mathcal{D}; \boldsymbol{\theta})$$

we have

$$\nabla_{\boldsymbol{\theta}} \log \int_{\mathbf{u}} \tilde{p}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u} = \int_{\mathbf{u}} \left[\nabla_{\boldsymbol{\theta}} \log \tilde{p}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) \right] p(\mathbf{u} | \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}$$
$$= \int_{\mathbf{u}} \mathbf{m}(\mathbf{u}, \mathcal{D}; \boldsymbol{\theta}) p(\mathbf{u} | \mathcal{D}; \boldsymbol{\theta}) d\mathbf{u}$$

which is the posterior expectation of the "moments" when evaluated at \mathcal{D} , and where the expectation is taken with respect to the posterior $p(\mathbf{u}|\mathcal{D}; \boldsymbol{\theta})$.

Program recap

- 1. Intractable likelihoods due to unobserved variables
 - Unobserved variables
 - The likelihood function is implicitly defined via an integral
 - The gradient of the log-likelihood can be computed by solving an inference problem
- 2. Intractable likelihoods due to intractable partition functions
 - Unnormalised models and the partition function
 - The likelihood function is implicitly defined via an integral
 - The gradient of the log-likelihood can be computed by solving an inference problem
- 3. Combined case of unobserved variables and intractable partition functions
 - Restricted Boltzmann machine example
 - The likelihood function is implicitly defined via an integral
 - The gradient of the log-likelihood can be computed by solving two inference problems