Variational Inference and Learning I Fundamentals and the EM algorithm

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Spring Semester 2024

Recap

- ► Learning and inference often involves integrals that are hard to compute.
- For example:
 - ► Marginalisation/inference: $p(\mathbf{x}) = \int_{\mathbf{y}} p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$
 - Likelihood in case of unobserved variables: $L(\theta) = p(\mathcal{D}; \theta) = \int_{\mathbf{u}} p(\mathbf{u}, \mathcal{D}; \theta) d\mathbf{u}$
- We here discuss a variational approach to (approximate) inference and learning.

History

Variational methods have a long history, in particular in physics. For example:

- Fermat's principle (1650) to explain the path of light: "light travels between two given points along the path of shortest time" (see e.g. http://www.feynmanlectures.caltech.edu/I_26.html)
- Principle of least action in classical mechanics and beyond (see e.g. http://www.feynmanlectures.caltech.edu/II_19.html)
- Finite elements methods to solve problems in fluid dynamics or civil engineering.

Loosely speaking: the general idea is to frame the original problem in terms of an optimisation problem.

- 1. Preparations
- 2. The variational principle
- 3. Application to inference
- 4. Application to learning

- 1. Preparations
 - Concavity of the logarithm and Jensen's inequality
 - Kullback-Leibler divergence and its properties
- 2. The variational principle
- 3. Application to inference
- 4. Application to learning

log(u) is a concave function

 $ightharpoonup \log(u)$ is a concave function

$$\log((1-a)u_1+au_2)\geq (1-a)\log(u_1)+a\log(u_2)$$
 $a\in [0,1]$ $(1-a)x+ay$ with $a\in [0,1]$ linearly interpolates between x and y .

- ▶ log(average) ≥ average (log)
- Generalisation

$$\log \mathbb{E}[g(\mathbf{x})] \geq \mathbb{E}[\log g(\mathbf{x})]$$

with
$$g(\mathbf{x}) > 0$$

Called Jensen's inequality for concave functions.

Kullback-Leibler divergence

ightharpoonup Kullback Leibler divergence KL(p||q)

$$\mathsf{KL}(p||q) = \int p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x} = \mathbb{E}_{p(\mathbf{x})} \left[\log \frac{p(\mathbf{x})}{q(\mathbf{x})} \right] \qquad (1)$$

- Properties
 - Arr KL(p||q) = 0 if and only if (iff) p = q (they may be different on sets of probability zero under p)
 - $ightharpoonup \operatorname{\mathsf{KL}}(p||q)
 eq \operatorname{\mathsf{KL}}(q||p)$
 - ightharpoonup KL $(p||q) \ge 0$
- Non-negativity follows from the concavity of the logarithm.

Non-negativity of the KL divergence

Non-negativity follows from the concavity of the logarithm.

$$-\mathsf{KL}(p||q) = -\mathbb{E}_{p(\mathbf{x})} \left[\log \frac{p(\mathbf{x})}{q(\mathbf{x})} \right] \tag{2}$$

$$= \mathbb{E}_{p(\mathbf{x})} \left[\log \frac{q(\mathbf{x})}{p(\mathbf{x})} \right] \tag{3}$$

$$\leq \log \mathbb{E}_{p(\mathbf{x})} \left[\frac{q(\mathbf{x})}{p(\mathbf{x})} \right]$$

$$\int p(\mathbf{x})q(\mathbf{x})/p(\mathbf{x})d\mathbf{x} = 1$$
(4)

Hence $-\mathsf{KL}(p||q) \leq \log(1) = 0$ and thus

$$\mathsf{KL}(p||q) \ge 0 \tag{5}$$

KL divergence minimisation and MLE for iid data

- ightharpoonup Assume your data $\mathbf{x}_1, \ldots, \mathbf{x}_n$ is sampled iid from $p_*(\mathbf{x})$.
- ▶ Your model is $p(\mathbf{x}; \theta)$. Consider KL div KL $(p_*(\mathbf{x})||p(\mathbf{x}; \theta))$

$$\mathsf{KL}(p_*(\mathbf{x})||p(\mathbf{x};\boldsymbol{\theta})) = \mathbb{E}_{p_*(\mathbf{x})} \left[\log \frac{p_*(\mathbf{x})}{p(\mathbf{x};\boldsymbol{\theta})} \right] \tag{6}$$

$$= \mathbb{E}_{p_*(\mathbf{x})} \log p_*(\mathbf{x}) - \mathbb{E}_{p_*(\mathbf{x})} \log p(\mathbf{x}; \boldsymbol{\theta}) \quad (7)$$

- Approximating the expectation $\mathbb{E}_{p_*(\mathbf{x})}$ with a sample average gives log-likelihood (scaled by 1/n)

$$\frac{1}{n}\ell(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p(\mathbf{x}_i; \theta)$$
 (8)

▶ Hence: $\hat{\theta}_{\mathsf{MLE}} = \operatorname{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) \approx \operatorname{argmin}_{\boldsymbol{\theta}} \mathsf{KL}(p_*(\mathbf{x})||p(\mathbf{x};\boldsymbol{\theta}))$

Asymmetry of the KL divergence

Blue: mixture of Gaussians p(x) (fixed)

Green: (unimodal) Gaussian q that minimises KL(q||p)

Red: (unimodal) Gaussian q that minimises KL(p||q)

Barber Figure 28.1, Section 28.3.4

Asymmetry of the KL divergence

$$\operatorname{argmin}_q \mathsf{KL}(q||p) = \operatorname{argmin}_q \int q(\mathbf{x}) \log \frac{q(\mathbf{x})}{p(\mathbf{x})} d\mathbf{x}$$

- Optimal q avoids regions where p is small.
 (but can be small where p is large)
- Produces good local fit, "mode seeking"

$$\operatorname{argmin}_q \mathsf{KL}(p||q) = \operatorname{argmin}_q \int p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x}$$

- Popular q is nonzero where p is nonzero (and does not care about regions where p is small)
- Corresponds to MLE; produces global fit/moment matching

Asymmetry of the KL divergence

Blue: mixture of Gaussians $p(\mathbf{x})$ (fixed)

Red: optimal (unimodal) Gaussians $q(\mathbf{x})$

Global moment matching (left) versus mode seeking (middle and right). (two local minima are shown)

Bishop Figure 10.3

- 1. Preparations
 - Concavity of the logarithm and Jensen's inequality
 - Kullback-Leibler divergence and its properties
- 2. The variational principle
- 3. Application to inference
- 4. Application to learning

- 1. Preparations
- 2. The variational principle
 - Variational lower bound
 - Maximising the ELBO to compute the marginal and conditional from the joint
- 3. Application to inference
- 4. Application to learning

Variational lower bound: auxiliary distribution

Consider joint pdf /pmf $p(\mathbf{x}, \mathbf{y})$ with marginal $p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$

ightharpoonup We can write p(x) as

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) \frac{q(\mathbf{y}|\mathbf{x})}{q(\mathbf{y}|\mathbf{x})} d\mathbf{y} = \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\frac{p(\mathbf{x}, \mathbf{y})}{q(\mathbf{y}|\mathbf{x})} \right]$$
(9)

where $q(\mathbf{y}|\mathbf{x})$ is an auxiliary distribution (called the variational distribution in the context of variational inference/learning) for a given \mathbf{x} .

Log marginal is

$$\log p(\mathbf{x}) = \log \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\frac{p(\mathbf{x}, \mathbf{y})}{q(\mathbf{y}|\mathbf{x})} \right]$$
 (10)

Approximating the expectation with a sample average leads to importance sampling. Another approach is to work with the concavity of the logarithm instead.

Variational lower bound: concavity of the logarithm

Concavity of the log gives

$$\log p(\mathbf{x}) = \log \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\frac{p(\mathbf{x}, \mathbf{y})}{q(\mathbf{y}|\mathbf{x})} \right] \ge \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{y})}{q(\mathbf{y}|\mathbf{x})} \right] \quad (11)$$

This is the variational lower bound for $\log p(\mathbf{x})$.

▶ Right-hand side is called the (variational) free energy $\mathcal{F}_{x}(q)$ or the evidence lower bound (ELBO) $\mathcal{L}_{x}(q)$

$$\mathcal{L}_{\mathbf{x}}(q) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{y})}{q(\mathbf{y}|\mathbf{x})} \right]$$
 (12)

ightharpoonup Since q is a function, the ELBO is a functional, which is a mapping that depends on a function.

Properties of the ELBO

$$\mathcal{L}_{\mathsf{x}}(q) = \mathbb{E}_{q(\mathsf{y}|\mathsf{x})} \left[\log rac{p(\mathsf{x},\mathsf{y})}{q(\mathsf{y}|\mathsf{x})}
ight]$$

By manipulating the definition of the ELBO, we obtain the following equivalent forms

$$\mathcal{L}_{\mathbf{x}}(q) = \log p(\mathbf{x}) - \mathsf{KL}(q(\mathbf{y}|\mathbf{x})||p(\mathbf{y}|\mathbf{x}))$$
 (13)

$$= \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \log p(\mathbf{x}|\mathbf{y}) - \mathsf{KL}(q(\mathbf{y}|\mathbf{x})||p(\mathbf{y})) \tag{14}$$

$$= \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \log p(\mathbf{x}, \mathbf{y}) + \mathcal{H}(q)$$
 (15)

where $p(\mathbf{y})$ is the marginal of $p(\mathbf{x}, \mathbf{y})$ and $\mathcal{H}(q)$ is the entropy of q.

Entropy is a measure of randomness/variability of a variable

$$\mathcal{H}(q) = -\mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log q(\mathbf{y}|\mathbf{x}) \right] \tag{16}$$

Larger entropy means more variability.

Properties of the ELBO (proof)

First expression:

$$\mathcal{L}_{\mathbf{x}}(q) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{y})}{q(\mathbf{y}|\mathbf{x})} \right] = \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log \frac{p(\mathbf{y}|\mathbf{x})p(\mathbf{x})}{q(\mathbf{y}|\mathbf{x})} \right]$$

$$= \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log \frac{p(\mathbf{y}|\mathbf{x})}{q(\mathbf{y}|\mathbf{x})} + \log p(\mathbf{x}) \right]$$

$$= \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log \frac{p(\mathbf{y}|\mathbf{x})}{q(\mathbf{y}|\mathbf{x})} \right] + \log p(\mathbf{x})$$

$$= -\mathsf{KL}(q(\mathbf{y}|\mathbf{x})||p(\mathbf{y}|\mathbf{x})) + \log p(\mathbf{x})$$

- Second expression is obtained similarly but using $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$ instead of $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{y}|\mathbf{x})p(\mathbf{x})$ above.
- Third expression from the definition of the entropy.

Tightness of the ELBO

- From $\mathcal{L}_{\mathbf{x}}(q) = \log p(\mathbf{x}) \mathsf{KL}(q(\mathbf{y}|\mathbf{x})||p(\mathbf{y}|\mathbf{x}))$ and non-negativity of the KL divergence, we have
 - 1. $\log p(\mathbf{x}) \geq \mathcal{L}_{\mathbf{x}}(q)$ (as before)
 - 2. $\log p(\mathbf{x}) = \mathcal{L}_{\mathbf{x}}(q) \Leftrightarrow q(\mathbf{y}|\mathbf{x}) = p(\mathbf{y}|\mathbf{x})$
- Maximising $\mathcal{L}_{\mathbf{x}}(q)$ with respect to q yields both $\log p(\mathbf{x})$ and the conditional $p(\mathbf{y}|\mathbf{x})$ at the same time.
- Makes sense: if we know $p(\mathbf{x}, \mathbf{y})$ and $p(\mathbf{x})$, we know $p(\mathbf{y}|\mathbf{x})$, and vice versa, since $p(\mathbf{y}|\mathbf{x}) = p(\mathbf{x}, \mathbf{y})/p(\mathbf{x})$.

Alternative approach

▶ We started from the task of approximating the marginal

$$p(\mathbf{x}) = \int p(\mathbf{x}, \mathbf{y}) d\mathbf{y}$$
 (17)

- Alternative starting point is the task of approximating the conditional $p(\mathbf{y}|\mathbf{x})$ for some given \mathbf{x} by a distribution $q(\mathbf{y}|\mathbf{x})$.
- Measuring the quality of the approximation $q(\mathbf{y}|\mathbf{x})$ by $\mathrm{KL}(q(\mathbf{y}|\mathbf{x})||p(\mathbf{y}|\mathbf{x}))$ gives

$$KL(q(\mathbf{y}|\mathbf{x})||p(\mathbf{y}|\mathbf{x})) = \log p(\mathbf{x}) - \mathcal{L}_{\mathbf{x}}(q)$$
 (18)

Same key result as before.

Variational principle

By maximising the ELBO

$$\mathcal{L}_{\mathbf{x}}(q) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log rac{p(\mathbf{x},\mathbf{y})}{q(\mathbf{y}|\mathbf{x})}
ight]$$

we can split the joint $p(\mathbf{x}, \mathbf{y})$ into $p(\mathbf{x})$ and $p(\mathbf{y}|\mathbf{x})$

$$\log p(\mathbf{x}) = \max_{q} \mathcal{L}_{\mathbf{x}}(q)$$
 $p(\mathbf{y}|\mathbf{x}) = rgmax_{q} \mathcal{L}_{\mathbf{x}}(q)$

► Highlights the variational principle: The inference problem is expressed in terms of an optimisation problem.

Solving the optimisation problem

$$\mathcal{L}_{\mathsf{x}}(q) = \mathbb{E}_{q(\mathsf{y}|\mathsf{x})} \left[\log rac{p(\mathsf{x},\mathsf{y})}{q(\mathsf{y}|\mathsf{x})}
ight]$$

- Difficulties when maximising the ELBO:
 - ▶ Learning of a pdf/pmf $q(\mathbf{y}|\mathbf{x})$
 - Maximisation when objective involves $\mathbb{E}_{q(\mathbf{y}|\mathbf{x})}$ that depends on q
- Restrict search space to a family Q of variational distributions $q(\mathbf{y}|\mathbf{x})$ for which $\mathcal{L}_{\mathbf{x}}(q)$ is computable.
- ightharpoonup Family Q specified by
 - independence assumptions, e.g. $q(\mathbf{y}|\mathbf{x}) = \prod_i q(y_i|\mathbf{x})$, which corresponds to "mean-field" variational inference
 - ▶ parametric assumptions, e.g. $q(y_i|\mathbf{x}) = \mathcal{N}(y_i; \mu_i(\mathbf{x}), \sigma_i^2(\mathbf{x}))$
- Discussed in more detail later.
- \triangleright $\mathcal{L}_{\mathsf{x}}(q)$ can be computed analytically in closed form only in special cases.

- 1. Preparations
- 2. The variational principle
 - Variational lower bound
 - Maximising the ELBO to compute the marginal and conditional from the joint
- 3. Application to inference
- 4. Application to learning

- 1. Preparations
- 2. The variational principle
- 3. Application to inference
 - The mechanics
 - Interpretation
 - Nature of the approximation
- 4. Application to learning

Approximate posterior inference

- Inference task: given value $\mathbf{x} = \mathbf{x}_o$ and joint pdf/pmf $p(\mathbf{x}, \mathbf{y})$, compute $p(\mathbf{y}|\mathbf{x}_o)$.
- Variational approach: estimate the posterior by solving an optimisation problem

$$\hat{p}(\mathbf{y}|\mathbf{x}_o) = \operatorname*{argmax}_{q \in \mathcal{Q}} \mathcal{L}_{\mathbf{x}_o}(q) \tag{19}$$

Q is the set of pdfs/pmfs in which we search for the solution

▶ From the basic property of the ELBO in Equation (13)

$$\log p(\mathbf{x}_o) = \mathsf{KL}(q(\mathbf{y}|\mathbf{x}_o)||p(\mathbf{y}|\mathbf{x}_o)) + \mathcal{L}_{\mathbf{x}_o}(q) = \mathsf{const} \qquad (20)$$

Because the sum of the KL and ELBO is constant, we have

$$\underset{q \in \mathcal{Q}}{\operatorname{argmax}} \, \mathcal{L}_{\mathbf{x}_o}(q) = \underset{q \in \mathcal{Q}}{\operatorname{argmin}} \, \mathsf{KL}(q(\mathbf{y}|\mathbf{x}_o)||p(\mathbf{y}|\mathbf{x}_o)) \tag{21}$$

Posterior as compromise between prior and fit

Equivalent forms of the ELBO:

$$\mathcal{L}_{\mathbf{x}_o}(q) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}_o)} \log p(\mathbf{x}_o|\mathbf{y}) - \mathsf{KL}(q(\mathbf{y}|\mathbf{x}_o)||p(\mathbf{y})) \tag{22}$$

- ightharpoonup By maximising $\mathcal{L}_{\mathbf{x}_o}(q)$ we find a q that
 - \triangleright produces **y** which are likely explanations of \mathbf{x}_o
 - ightharpoonup stays close to the prior $p(\mathbf{y})$
- ▶ If included in the search space Q, $p(\mathbf{y}|\mathbf{x}_o)$ is the optimal q, which means that the posterior fulfils the two desiderata best.

As compromise between variable and likely imputations

Equivalent forms of the ELBO:

$$\mathcal{L}_{\mathbf{x}_o}(q) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x}_o)} \log p(\mathbf{x}_o, \mathbf{y}) + \mathcal{H}(q)$$
 (23)

- ightharpoonup By maximising $\mathcal{L}_{\mathbf{x}_o}(q)$ we find a q that
 - produces likely imputations (filled-in data) y
 - ► is maximally variable
- If included in the search space Q, $p(\mathbf{y}|\mathbf{x}_o)$ is the optimal q, which means that the posterior fulfils the two desiderata best.

Nature of the approximation

$$\operatorname{argmax}_{q \in \mathcal{Q}} \mathcal{L}_{\mathsf{x}_o}(q) = \operatorname{argmin}_{q \in \mathcal{Q}} \mathsf{KL}(q(\mathsf{y}|\mathsf{x}_o)||p(\mathsf{y}|\mathsf{x}_o))$$

- When minimising KL(q||p) with respect to q, q will try very hard to be zero where p is small.
- Assume true posterior is correlated bivariate Gaussian and we work with $Q = \{q(\mathbf{y}|\mathbf{x}_o) : q(\mathbf{y}|\mathbf{x}_o) = q(y_1|\mathbf{x}_o)q(y_2|\mathbf{x}_o)\}$ (independence but no parametric assumptions)
- ightharpoonup Optimal q is Gaussian.
- Mean is correct but variances dictated by the variances of $p(\mathbf{y}|\mathbf{x}_o)$ along the y_1 and y_2 axes.
- Posterior variance is underestimated.

Nature of the approximation

- Assume that true posterior is multimodal, but that the family of variational distributions \mathcal{Q} only includes unimodal distributions.
- The optimal $q(\mathbf{y}|\mathbf{x}_o)$ only covers one mode: "mode-seeking behaviour".

local optimum local optimum

Bishop Figure 10.3 (adapted)

Blue: true posterior Red: approximation

- 1. Preparations
- 2. The variational principle
- 3. Application to inference
 - The mechanics
 - Interpretation
 - Nature of the approximation
- 4. Application to learning

- 1. Preparations
- 2. The variational principle
- 3. Application to inference
- 4. Application to learning
 - Learning with Bayesian models
 - Learning with statistical models and unobserved variables
 - (Variational) EM algorithm

Learning by Bayesian inference

- ▶ Task 1: For a Bayesian model $p(\mathbf{x}|\theta)p(\theta) = p(\mathbf{x},\theta)$, compute the posterior $p(\theta|\mathcal{D})$
- Formally the same problem as before: $\mathcal{D} = \mathbf{x}_o$ and $\theta \equiv \mathbf{y}$.
- ► Task 2: For a Bayesian model $p(\mathbf{v}, \mathbf{h}|\theta)p(\theta) = p(\mathbf{v}, \mathbf{h}, \theta)$, compute the posterior $p(\theta|\mathcal{D})$ where the data \mathcal{D} are for the visibles \mathbf{v} only.
- ▶ With the equivalence $\mathcal{D} = \mathbf{x}_o$ and $(\mathbf{h}, \boldsymbol{\theta}) \equiv \mathbf{y}$, we are formally back to the problem just studied.

Parameter estimation in presence of unobserved variables

- ► Task: For the model $p(\mathbf{v}, \mathbf{h}; \theta)$, estimate the parameters θ from data \mathcal{D} on the visibles \mathbf{v} only (\mathbf{h} is unobserved).
- ▶ To evaluate the log likelihood function $\ell(\theta)$, we need to evaluate the integral

$$\ell(\boldsymbol{\theta}) = \log p(\mathcal{D}; \boldsymbol{\theta}) = \log \int_{\mathbf{h}} p(\mathcal{D}, \mathbf{h}; \boldsymbol{\theta}) d\mathbf{h},$$
 (24)

which is generally intractable.

- ightharpoonup We could approximate $\ell(\theta)$ and its gradient using Monte Carlo integration.
- ► Here: use the variational approach.

Parameter estimation in presence of unobserved variables

We had

$$\mathcal{L}_{\mathbf{x}}(q) = \mathbb{E}_{q(\mathbf{y}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{y})}{q(\mathbf{y}|\mathbf{x})} \right]$$

$$= \log p(\mathbf{x}) - \mathsf{KL}(q(\mathbf{y}|\mathbf{x})||p(\mathbf{y}|\mathbf{x}))$$
(25)

Substitute

$$\mathbf{x} \to \mathcal{D}, \quad \mathbf{y} \to \mathbf{h}, \quad p(\mathbf{x}, \mathbf{y}) \to p(\mathcal{D}, \mathbf{h}; \boldsymbol{\theta})$$
 (27)

We then have

$$\mathcal{L}_{\mathcal{D}}(\theta, q) = \mathbb{E}_{q(\mathbf{h}|\mathcal{D})} \left[\log \frac{p(\mathcal{D}, \mathbf{h}; \theta)}{q(\mathbf{h}|\mathcal{D})} \right]$$

$$= \log p(\mathcal{D}; \theta) - \mathsf{KL}(q(\mathbf{h}|\mathcal{D})||p(\mathbf{h}|\mathcal{D}; \theta))$$
(28)

Notation $\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta},q)$ highlights dependency on $\boldsymbol{\theta}$ and q.

MLE by maximising the ELBO

▶ Using $\ell(\theta)$ for the log-likelihood log $p(\mathcal{D}; \theta)$, we have

$$\mathcal{L}_{\mathcal{D}}(\theta, q) = \ell(\theta) - \mathsf{KL}(q(\mathbf{h}|\mathcal{D})||p(\mathbf{h}|\mathcal{D}; \theta)) \tag{30}$$

▶ If the search space Q is unrestricted or includes $p(\mathbf{h}|\mathcal{D}; \boldsymbol{\theta})$

$$\max_{q} \mathcal{L}_{\mathcal{D}}(\theta, q) = \ell(\theta) \tag{31}$$

Maximum likelihood estimation (MLE)

$$\max_{\boldsymbol{\theta}, q} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}, q) = \max_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}) \tag{32}$$

 $\mathsf{MLE} = \mathsf{maximise}$ the ELBO $\mathcal{L}_{\mathcal{D}}(oldsymbol{ heta}, q)$ with respect to $oldsymbol{ heta}$ and q

▶ Restricted search space \mathcal{Q} leads to approximate estimate of θ and $p(\mathbf{h}|\mathcal{D}; \theta)$.

Variational EM algorithm

Variational expectation maximisation (EM): maximise $\mathcal{L}_{\mathcal{D}}(\theta, q)$ by iterating between maximisation with respect to θ and maximisation with respect to q (coordinate ascent).

PMR - Variational Inference and Learning I - ©Michael U. Gutmann, UoE, 2018-2024 CC BY 4.0 © (€)

Where is the "expectation"?

► The optimisation with respect to *q* is called the "expectation step"

$$\max_{q \in \mathcal{Q}} \mathcal{L}_{\mathcal{D}}(\theta, q) = \max_{q \in \mathcal{Q}} \mathbb{E}_{q(\mathbf{h}|\mathcal{D})} \left[\log \frac{p(\mathcal{D}, \mathbf{h}; \theta)}{q(\mathbf{h}|\mathcal{D})} \right]$$
(33)

ightharpoonup Denote the best q by q^* so that

$$\max_{q \in \mathcal{Q}} \mathcal{L}_{\mathcal{D}}(\theta, q) = \mathcal{L}_{\mathcal{D}}(\theta, q^*) = \mathbb{E}_{q^*(\mathbf{h}|\mathcal{D})} \left[\log \frac{p(\mathcal{D}, \mathbf{h}; \theta)}{q^*(\mathbf{h}|\mathcal{D})} \right]$$
(34)

which is defined in terms of an expectation and the reason for the name "expectation step".

Classical EM algorithm

- ightharpoonup Denote the parameters at iteration k by θ_k .
- We know that the optimal q for the expectation step is $q^*(\mathbf{h}|\mathcal{D}) = p(\mathbf{h}|\mathcal{D}; \theta_k)$
- If we can compute the posterior $p(\mathbf{h}|\mathcal{D}; \theta_k)$, we obtain the (classical) EM algorithm that iterates between:

E-step: compute the expectation

$$\mathcal{L}_{\mathcal{D}}(\theta, q^*) = \underbrace{\mathbb{E}_{p(\mathbf{h}|\mathcal{D};\theta_k)}[\log p(\mathcal{D}, \mathbf{h}; \theta)]}_{\text{interpretation: expected completed log-likelihood of } \underbrace{\mathbb{E}_{p(\mathbf{h}|\mathcal{D};\theta_k)}\log p(\mathbf{h}|\mathcal{D}; \theta_k)}_{\text{does not depend on } \theta \text{ and does not need to be computed}}$$

M-step: maximise with respect to θ

$$m{ heta}_{k+1} = \operatorname*{argmax}_{m{ heta}} \mathcal{L}_{\mathcal{D}}(m{ heta}, m{q}^*) = \operatorname*{argmax}_{m{ heta}} \mathbb{E}_{p(\mathbf{h}|\mathcal{D};m{ heta}_k)}[\log p(\mathcal{D}, \mathbf{h}; m{ heta})]$$

Classical EM algorithm never decreases the log likelihood

Assume you have updated the parameters and start iteration k+1 with optimisation with respect to q

$$\max_{q} \mathcal{L}_{\mathcal{D}}(\theta_k, q) \tag{35}$$

▶ Optimal solution q_{k+1}^* is the posterior $p(\mathbf{h}|\mathcal{D}; \theta_k)$ so that

$$\ell(\theta_k) = \mathcal{L}_{\mathcal{D}}(\theta_k, q_{k+1}^*) \tag{36}$$

lacktriangle Optimise with respect to the heta while keeping q fixed at q_{k+1}^*

$$\max_{\boldsymbol{\theta}} \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}, q_{k+1}^*) \tag{37}$$

ightharpoonup Due to maximisation, updated parameter θ_{k+1} is such that

$$\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}_{k+1}, q_{k+1}^*) \ge \mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}_k, q_{k+1}^*) = \ell(\boldsymbol{\theta}_k)$$
 (38)

From variational lower bound: $\ell(m{ heta}) \geq \mathcal{L}_{\mathcal{D}}(m{ heta}, m{q})$. Hence:

$$\ell(oldsymbol{ heta}_{k+1}) \geq \mathcal{L}_{\mathcal{D}}(oldsymbol{ heta}_{k+1}, oldsymbol{q}_{k+1}^*) \geq \ell(oldsymbol{ heta}_k)$$

 \Rightarrow EM yields non-decreasing sequence $\ell(\theta_1), \ell(\theta_2), \ldots$

Program recap

1. Preparations

- Concavity of the logarithm and Jensen's inequality
- Kullback-Leibler divergence and its properties

2. The variational principle

- Variational lower bound
- Maximising the ELBO to compute the marginal and conditional from the joint

3. Application to inference

- The mechanics
- Interpretation
- Nature of the approximation

4. Application to learning

- Learning with Bayesian models
- Learning with statistical models and unobserved variables
- (Variational) EM algorithm