Variational Inference and Learning I
Fundamentals and the EM algorithm

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134)
School of Informatics, The University of Edinburgh

Spring Semester 2024
Learning and inference often involves integrals that are hard to compute.

For example:

- Marginalisation/inference: \(p(x) = \int_y p(x, y) dy \)
- Likelihood in case of unobserved variables:
 \(L(\theta) = p(D; \theta) = \int_u p(u, D; \theta) du \)

We here discuss a variational approach to (approximate) inference and learning.
Variational methods have a long history, in particular in physics. For example:

- Fermat’s principle (1650) to explain the path of light: “light travels between two given points along the path of shortest time” (see e.g. http://www.feynmanlectures.caltech.edu/I_26.html)

- Principle of least action in classical mechanics and beyond (see e.g. http://www.feynmanlectures.caltech.edu/II_19.html)

- Finite elements methods to solve problems in fluid dynamics or civil engineering.

Loosely speaking: the general idea is to frame the original problem in terms of an optimisation problem.
Program

1. Preparations
2. The variational principle
3. Application to inference
4. Application to learning
1. Preparations
 - Concavity of the logarithm and Jensen’s inequality
 - Kullback-Leibler divergence and its properties

2. The variational principle

3. Application to inference

4. Application to learning
\(\log(u) \) is a concave function

- \(\log(u) \) is a concave function

\[
\log((1 - a)u_1 + au_2) \geq (1 - a)\log(u_1) + a\log(u_2) \quad a \in [0, 1]
\]

\((1 - a)x + ay \) with \(a \in [0, 1] \) linearly interpolates between \(x \) and \(y \).

- \(\log(\text{average}) \geq \text{average (log)} \)

- Generalisation

\[
\log \mathbb{E}[g(x)] \geq \mathbb{E}[\log g(x)]
\]

with \(g(x) > 0 \)

- Called Jensen’s inequality for concave functions.
Kullback-Leibler divergence

Kullback Leibler divergence $KL(p||q)$

$$KL(p||q) = \int p(x) \log \frac{p(x)}{q(x)} \, dx = E_{p(x)} \left[\log \frac{p(x)}{q(x)} \right]$$ (1)

Properties

- $KL(p||q) = 0$ if and only if (iff) $p = q$
 (they may be different on sets of probability zero under p)
- $KL(p||q) \neq KL(q||p)$
- $KL(p||q) \geq 0$

- Non-negativity follows from the concavity of the logarithm.
Non-negativity of the KL divergence

Non-negativity follows from the concavity of the logarithm.

\[-KL(p||q) = -\mathbb{E}_{p(x)} \left[\log \frac{p(x)}{q(x)} \right] \quad (2)\]

\[= \mathbb{E}_{p(x)} \left[\log \frac{q(x)}{p(x)} \right] \quad (3)\]

\[\leq \log \mathbb{E}_{p(x)} \left[\frac{q(x)}{p(x)} \right] \quad (4)\]

\[\int p(x)q(x)/p(x)dx=1\]

Hence \(-KL(p||q) \leq \log(1) = 0\) and thus

\[KL(p||q) \geq 0 \quad (5)\]
KL divergence minimisation and MLE for iid data

- Assume your data x_1, \ldots, x_n is sampled iid from $p_*(x)$.
- Your model is $p(x; \theta)$. Consider KL div $\text{KL}(p_*(x) || p(x; \theta))$

$$
\text{KL}(p_*(x) || p(x; \theta)) = \mathbb{E}_{p_*(x)} \left[\log \frac{p_*(x)}{p(x; \theta)} \right]
$$

(6)

$$
= \mathbb{E}_{p_*(x)} \log p_*(x) - \mathbb{E}_{p_*(x)} \log p(x; \theta)
$$

(7)

- $\text{argmin}_\theta \text{KL}(p_*(x) || p(x; \theta)) = \text{argmax}_\theta \mathbb{E}_{p_*(x)} \log p(x; \theta)$
- Approximating the expectation $\mathbb{E}_{p_*(x)}$ with a sample average gives log-likelihood (scaled by $1/n$)

$$
\frac{1}{n} \ell(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p(x_i; \theta)
$$

(8)

- Hence: $\hat{\theta}_{\text{MLE}} = \text{argmax}_\theta \ell(\theta) \approx \text{argmin}_\theta \text{KL}(p_*(x) || p(x; \theta))$
Asymmetry of the KL divergence

Blue: mixture of Gaussians $p(x)$ (fixed)

Green: (unimodal) Gaussian q that minimises $\text{KL}(q||p)$

Red: (unimodal) Gaussian q that minimises $\text{KL}(p||q)$

Barber Figure 28.1, Section 28.3.4
Asymmetry of the KL divergence

\[
\operatorname{argmin}_q \text{KL}(q||p) = \operatorname{argmin}_q \int q(x) \log \frac{q(x)}{p(x)} dx
\]

- Optimal \(q \) avoids regions where \(p \) is small.
 (but can be small where \(p \) is large)
- Produces good local fit, “mode seeking”

\[
\operatorname{argmin}_q \text{KL}(p||q) = \operatorname{argmin}_q \int p(x) \log \frac{p(x)}{q(x)} dx
\]

- Optimal \(q \) is nonzero where \(p \) is nonzero
 (and does not care about regions where \(p \) is small)
- Corresponds to MLE; produces global fit/moment matching
Asymmetry of the KL divergence

Blue: mixture of Gaussians $p(x)$ (fixed)

Red: optimal (unimodal) Gaussians $q(x)$

Global moment matching (left) versus mode seeking (middle and right). (two local minima are shown)
Program

1. Preparations
 - Concavity of the logarithm and Jensen’s inequality
 - Kullback-Leibler divergence and its properties

2. The variational principle

3. Application to inference

4. Application to learning
Program

1. Preparations

2. The variational principle
 - Variational lower bound
 - Maximising the ELBO to compute the marginal and conditional from the joint

3. Application to inference

4. Application to learning
Variational lower bound: auxiliary distribution

Consider joint pdf /pmf $p(x, y)$ with marginal $p(x) = \int p(x, y)dy$

- We can write $p(x)$ as

$$p(x) = \int p(x, y) \frac{q(y|x)}{q(y|x)} dy = \mathbb{E}_{q(y|x)} \left[\frac{p(x, y)}{q(y|x)} \right]$$ \hspace{1cm} (9)

where $q(y|x)$ is an auxiliary distribution (called the variational distribution in the context of variational inference/learning) for a given x.

- Log marginal is

$$\log p(x) = \log \mathbb{E}_{q(y|x)} \left[\frac{p(x, y)}{q(y|x)} \right]$$ \hspace{1cm} (10)

- Approximating the expectation with a sample average leads to importance sampling. Another approach is to work with the concavity of the logarithm instead.
Variational lower bound: concavity of the logarithm

- Concavity of the log gives

\[\log p(x) = \log \mathbb{E}_{q(y|x)} \left[\frac{p(x, y)}{q(y|x)} \right] \geq \mathbb{E}_{q(y|x)} \left[\log \frac{p(x, y)}{q(y|x)} \right] \] \hspace{1cm} (11)

This is the variational lower bound for \(\log p(x) \).

- Right-hand side is called the (variational) free energy \(\mathcal{F}_x(q) \) or the evidence lower bound (ELBO) \(\mathcal{L}_x(q) \)

\[\mathcal{L}_x(q) = \mathbb{E}_{q(y|x)} \left[\log \frac{p(x, y)}{q(y|x)} \right] \] \hspace{1cm} (12)

- Since \(q \) is a function, the ELBO is a functional, which is a mapping that depends on a function.
Properties of the ELBO

\[\mathcal{L}_x(q) = \mathbb{E}_{q(y|x)} \left[\log \frac{p(x, y)}{q(y|x)} \right] \]

By manipulating the definition of the ELBO, we obtain the following equivalent forms

\[\mathcal{L}_x(q) = \log p(x) - \text{KL}(q(y|x) \| p(y|x)) \tag{13} \]
\[= \mathbb{E}_{q(y|x)} \log p(x|y) - \text{KL}(q(y|x) \| p(y)) \tag{14} \]
\[= \mathbb{E}_{q(y|x)} \log p(x, y) + H(q) \tag{15} \]

where \(p(y) \) is the marginal of \(p(x, y) \) and \(H(q) \) is the entropy of \(q \).

Entropy is a measure of randomness/variability of a variable

\[H(q) = -\mathbb{E}_{q(y|x)} \left[\log q(y|x) \right] \tag{16} \]

Larger entropy means more variability.
Properties of the ELBO (proof)

First expression:

\[\mathcal{L}_x(q) = \mathbb{E}_{q(y|x)} \left[\log \frac{p(x, y)}{q(y|x)} \right] = \mathbb{E}_{q(y|x)} \left[\log \frac{p(y|x)p(x)}{q(y|x)} \right]
\]

\[= \mathbb{E}_{q(y|x)} \left[\log \frac{p(y|x)}{q(y|x)} + \log p(x) \right]
\]

\[= \mathbb{E}_{q(y|x)} \left[\log \frac{p(y|x)}{q(y|x)} \right] + \log p(x)
\]

\[= -\text{KL}(q(y|x) \parallel p(y|x)) + \log p(x) \]

Second expression is obtained similarly but using

\[p(x, y) = p(x|y)p(y) \] instead of \[p(x, y) = p(y|x)p(x) \] above.

Third expression from the definition of the entropy.
Tightness of the ELBO

From $\mathcal{L}_x(q) = \log p(x) - \text{KL}(q(y|x)\|p(y|x))$ and non-negativity of the KL divergence, we have

1. $\log p(x) \geq \mathcal{L}_x(q)$ (as before)
2. $\log p(x) = \mathcal{L}_x(q) \iff q(y|x) = p(y|x)$

Maximising $\mathcal{L}_x(q)$ with respect to q yields both $\log p(x)$ and the conditional $p(y|x)$ at the same time.

Makes sense: if we know $p(x, y)$ and $p(x)$, we know $p(y|x)$, and vice versa, since $p(y|x) = p(x, y)/p(x)$.
Alternative approach

- We started from the task of approximating the marginal

\[p(x) = \int p(x, y) \, dy \quad (17) \]

- Alternative starting point is the task of approximating the conditional \(p(y|x) \) for some given \(x \) by a distribution \(q(y|x) \).

- Measuring the quality of the approximation \(q(y|x) \) by

\[\text{KL}(q(y|x) \| p(y|x)) \]

\(= \log p(x) - \mathcal{L}_x(q) \quad (18) \)

Same key result as before.
By maximising the ELBO

$$\mathcal{L}_x(q) = \mathbb{E}_{q(y|x)} \left[\log \frac{p(x, y)}{q(y|x)} \right]$$

we can split the joint $p(x, y)$ into $p(x)$ and $p(y|x)$

$$\log p(x) = \max_q \mathcal{L}_x(q)$$

$$p(y|x) = \arg\max_q \mathcal{L}_x(q)$$

- Highlights the variational principle: The inference problem is expressed in terms of an optimisation problem.
Solving the optimisation problem

\[\mathcal{L}_x(q) = \mathbb{E}_{q(y|x)} \left[\log \frac{p(x,y)}{q(y|x)} \right] \]

- Difficulties when maximising the ELBO:
 - Learning of a pdf/pmf \(q(y|x) \)
 - Maximisation when objective involves \(\mathbb{E}_{q(y|x)} \) that depends on \(q \)
- Restrict search space to a family \(\mathcal{Q} \) of variational distributions \(q(y|x) \) for which \(\mathcal{L}_x(q) \) is computable.
- Family \(\mathcal{Q} \) specified by
 - independence assumptions, e.g. \(q(y|x) = \prod_i q(y_i|x) \), which corresponds to “mean-field” variational inference
 - parametric assumptions, e.g. \(q(y_i|x) = \mathcal{N}(y_i; \mu_i(x), \sigma_i^2(x)) \)
- Discussed in more detail later.
- \(\mathcal{L}_x(q) \) can be computed analytically in closed form only in special cases.
Program

1. Preparations

2. The variational principle
 - Variational lower bound
 - Maximising the ELBO to compute the marginal and conditional from the joint

3. Application to inference

4. Application to learning
1. Preparations

2. The variational principle

3. Application to inference
 - The mechanics
 - Interpretation
 - Nature of the approximation

4. Application to learning
Approximate posterior inference

- Inference task: given value $x = x_o$ and joint pdf/pmf $p(x, y)$, compute $p(y|x_o)$.
- Variational approach: estimate the posterior by solving an optimisation problem

$$
\hat{p}(y|x_o) = \arg\max_{q \in Q} L_{x_o}(q) \quad (19)
$$

Q is the set of pdfs/pmfs in which we search for the solution

- From the basic property of the ELBO in Equation (13)

$$
\log p(x_o) = \text{KL}(q(y|x_o)||p(y|x_o)) + L_{x_o}(q) = \text{const} \quad (20)
$$

- Because the sum of the KL and ELBO is constant, we have

$$
\arg\max_{q \in Q} L_{x_o}(q) = \arg\min_{q \in Q} \text{KL}(q(y|x_o)||p(y|x_o)) \quad (21)
$$
Equivalent forms of the ELBO:

\[L_{x_o}(q) = \mathbb{E}_{q(y|x_o)} \log p(x_o|y) - \text{KL}(q(y|x_o) || p(y)) \]

By maximising \(L_{x_o}(q) \) we find a \(q \) that

- produces \(y \) which are likely explanations of \(x_o \)
- stays close to the prior \(p(y) \)

If included in the search space \(Q \), \(p(y|x_o) \) is the optimal \(q \), which means that the posterior fulfils the two desiderata best.
As compromise between variable and likely imputations

▸ Equivalent forms of the ELBO:

\[
\mathcal{L}_{x_o}(q) = \mathbb{E}_{q(y|x_o)} \log p(x_o, y) + \mathcal{H}(q)
\]

(23)

▸ By maximising \(\mathcal{L}_{x_o}(q) \) we find a \(q \) that
 ▸ produces likely imputations (filled-in data) \(y \)
 ▸ is maximally variable

▸ If included in the search space \(Q \), \(p(y|x_o) \) is the optimal \(q \),
 which means that the posterior fulfils the two desiderata best.
Nature of the approximation

\[
\operatorname*{argmax}_{q \in Q} \mathcal{L}_{x_0}(q) = \operatorname*{argmin}_{q \in Q} \text{KL}(q(y|x_0) \| p(y|x_0))
\]

- When minimising \(\text{KL}(q \| p) \) with respect to \(q \), \(q \) will try very hard to be zero where \(p \) is small.
- Assume true posterior is correlated bivariate Gaussian and we work with \(Q = \{ q(y|x_0) : q(y|x_0) = q(y_1|x_o)q(y_2|x_o) \} \) (independence but no parametric assumptions)

- Optimal \(q \) is Gaussian.
- Mean is correct but variances dictated by the variances of \(p(y|x_0) \) along the \(y_1 \) and \(y_2 \) axes.
- Posterior variance is underestimated.

(Bishop, Figure 10.2)
Nature of the approximation

- Assume that true posterior is multimodal, but that the family of variational distributions Q only includes unimodal distributions.
- The optimal $q(y|x_o)$ only covers one mode: “mode-seeking behaviour”.

Bishop Figure 10.3 (adapted)
Program

1. Preparations

2. The variational principle

3. Application to inference
 - The mechanics
 - Interpretation
 - Nature of the approximation

4. Application to learning
1. Preparations

2. The variational principle

3. Application to inference

4. Application to learning
 - Learning with Bayesian models
 - Learning with statistical models and unobserved variables
 - (Variational) EM algorithm
Learning by Bayesian inference

- Task 1: For a Bayesian model \(p(x|\theta)p(\theta) = p(x, \theta) \), compute the posterior \(p(\theta|D) \)
- Formally the same problem as before: \(D = x_o \) and \(\theta \equiv y \).
- Task 2: For a Bayesian model \(p(v, h|\theta)p(\theta) = p(v, h, \theta) \), compute the posterior \(p(\theta|D) \) where the data \(D \) are for the visibles \(v \) only.
- With the equivalence \(D = x_o \) and \((h, \theta) \equiv y\), we are formally back to the problem just studied.
Task: For the model \(p(\mathbf{v}, \mathbf{h}; \theta) \), estimate the parameters \(\theta \) from data \(\mathcal{D} \) on the visibles \(\mathbf{v} \) only (\(\mathbf{h} \) is unobserved).

To evaluate the log likelihood function \(\ell(\theta) \), we need to evaluate the integral

\[
\ell(\theta) = \log p(\mathcal{D}; \theta) = \log \int_{\mathbf{h}} p(\mathcal{D}, \mathbf{h}; \theta) d\mathbf{h},
\]

which is generally intractable.

We could approximate \(\ell(\theta) \) and its gradient using Monte Carlo integration.

Here: use the variational approach.
Parameter estimation in presence of unobserved variables

We had

\[\mathcal{L}_x(q) = \mathbb{E}_{q(y|x)} \left[\log \frac{p(x, y)}{q(y|x)} \right] \]

\[= \log p(x) - \text{KL}(q(y|x) \| p(y|x)) \]

(25)

Substitute

\[x \rightarrow \mathcal{D}, \quad y \rightarrow h, \quad p(x, y) \rightarrow p(\mathcal{D}, h; \theta) \]

(27)

We then have

\[\mathcal{L}_\mathcal{D}(\theta, q) = \mathbb{E}_{q(h|\mathcal{D})} \left[\log \frac{p(\mathcal{D}, h; \theta)}{q(h|\mathcal{D})} \right] \]

\[= \log p(\mathcal{D}; \theta) - \text{KL}(q(h|\mathcal{D}) \| p(h|\mathcal{D}; \theta)) \]

(29)

Notation \(\mathcal{L}_\mathcal{D}(\theta, q) \) highlights dependency on \(\theta \) and \(q \).
MLE by maximising the ELBO

- Using $\ell(\theta)$ for the log-likelihood $\log p(D; \theta)$, we have

$$\mathcal{L}_D(\theta, q) = \ell(\theta) - \text{KL}(q(h|D)||p(h|D; \theta))$$ \hspace{1cm} (30)

- If the search space Q is unrestricted or includes $p(h|D; \theta)$

$$\max_q \mathcal{L}_D(\theta, q) = \ell(\theta)$$ \hspace{1cm} (31)

- Maximum likelihood estimation (MLE)

$$\max_{\theta, q} \mathcal{L}_D(\theta, q) = \max_\theta \ell(\theta)$$ \hspace{1cm} (32)

\[
\text{MLE = maximise the ELBO } \mathcal{L}_D(\theta, q) \text{ with respect to } \theta \text{ and } q
\]

- Restricted search space Q leads to approximate estimate of θ and $p(h|D; \theta)$.
Variational expectation maximisation (EM): maximise $\mathcal{L}_D(\theta, q)$ by iterating between maximisation with respect to θ and maximisation with respect to q (coordinate ascent).
Where is the “expectation”?

- The optimisation with respect to q is called the “expectation step”

$$
\max_{q \in Q} \mathcal{L}_D(\theta, q) = \max_{q \in Q} \mathbb{E}_{q(h|D)} \left[\log \frac{p(D, h; \theta)}{q(h|D)} \right]
$$

(33)

- Denote the best q by q^* so that

$$
\max_{q \in Q} \mathcal{L}_D(\theta, q) = \mathcal{L}_D(\theta, q^*) = \mathbb{E}_{q^*(h|D)} \left[\log \frac{p(D, h; \theta)}{q^*(h|D)} \right]
$$

(34)

which is defined in terms of an expectation and the reason for the name “expectation step”.

Classical EM algorithm

- Denote the parameters at iteration k by θ_k.
- We know that the optimal q for the expectation step is $q^*(h|\mathcal{D}) = p(h|\mathcal{D}; \theta_k)$.
- If we can compute the posterior $p(h|\mathcal{D}; \theta_k)$, we obtain the (classical) EM algorithm that iterates between:

E-step: compute the expectation

$$
\mathcal{L}_\mathcal{D}(\theta, q^*) = \mathbb{E}_{p(h|\mathcal{D}; \theta_k)}[\log p(\mathcal{D}, h; \theta)] - \mathbb{E}_{p(h|\mathcal{D}; \theta_k)} \log p(h|\mathcal{D}; \theta_k)
$$

interpretation: expected completed log-likelihood of θ

does not depend on θ and does not need to be computed

M-step: maximise with respect to θ

$$
\theta_{k+1} = \arg\max_{\theta} \mathcal{L}_\mathcal{D}(\theta, q^*) = \arg\max_{\theta} \mathbb{E}_{p(h|\mathcal{D}; \theta_k)}[\log p(\mathcal{D}, h; \theta)]
$$
Classical EM algorithm never decreases the log likelihood

- Assume you have updated the parameters and start iteration \(k + 1 \) with optimisation with respect to \(q \)

\[
\max_q \mathcal{L}_D(\theta_k, q) \tag{35}
\]

- Optimal solution \(q_{k+1}^* \) is the posterior \(p(h|\mathcal{D}; \theta_k) \) so that

\[
\ell(\theta_k) = \mathcal{L}_D(\theta_k, q_{k+1}^*) \tag{36}
\]

- Optimise with respect to the \(\theta \) while keeping \(q \) fixed at \(q_{k+1}^* \)

\[
\max_\theta \mathcal{L}_D(\theta, q_{k+1}^*) \tag{37}
\]

- Due to maximisation, updated parameter \(\theta_{k+1} \) is such that

\[
\mathcal{L}_D(\theta_{k+1}, q_{k+1}^*) \geq \mathcal{L}_D(\theta_k, q_{k+1}^*) = \ell(\theta_k) \tag{38}
\]

- From variational lower bound: \(\ell(\theta) \geq \mathcal{L}_D(\theta, q) \). Hence:

\[
\ell(\theta_{k+1}) \geq \mathcal{L}_D(\theta_{k+1}, q_{k+1}^*) \geq \ell(\theta_k)
\]

\[\Rightarrow \text{EM yields non-decreasing sequence } \ell(\theta_1), \ell(\theta_2), \ldots.\]
Program recap

1. Preparations
 - Concavity of the logarithm and Jensen’s inequality
 - Kullback-Leibler divergence and its properties

2. The variational principle
 - Variational lower bound
 - Maximising the ELBO to compute the marginal and conditional from the joint

3. Application to inference
 - The mechanics
 - Interpretation
 - Nature of the approximation

4. Application to learning
 - Learning with Bayesian models
 - Learning with statistical models and unobserved variables
 - (Variational) EM algorithm