Variational Inference and Learning II
Latent Variable Models and Variational Autoencoders

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR1134)
School of Informatics, The University of Edinburgh

Spring Semester 2024
Assumptions

- Model: $p(v, h; \theta)$
- Data: $\mathcal{D} = \{v_1, \ldots, v_n\}$, $v_i \overset{iid}{\sim} p_*$
- The model is a latent variable model: we have observations for all dimensions of v but no observations of the latents h.
- For each observation v_i, there is a latent h_i.
- Because of iid assumption,

$$p(v_1, \ldots, v_n, h_1, \ldots, h_n; \theta) = \prod_{i=1}^{n} p(v_i, h_i; \theta) \quad (1)$$

- We do not deal with the case of unobserved variables due to missing data, i.e. incomplete observations of v. (For VI work on this topic, see e.g. Simkus et al, Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data, https://arxiv.org/abs/2111.13180)
1. Scalable generic variational learning of latent variable models

2. Deep latent variable models and variational autoencoders
1. Scalable generic variational learning of latent variable models
 - ELBO for iid data
 - Amortised variational inference
 - Reparameterisation and stochastic optimisation

2. Deep latent variable models and variational autoencoders
Lower bound on the likelihood for iid data

- We had

\[\mathcal{L}_x(q) = \mathbb{E}_{q(y|x)} \left[\log \frac{p(x, y)}{q(y|x)} \right] \tag{2} \]

- Substitute

\[x \rightarrow (v_1, \ldots, v_n) \quad p(x, y) \rightarrow \prod_{i=1}^{n} p(v_i, h_i; \theta) \tag{3} \]

\[y \rightarrow (h_1, \ldots, h_n) \tag{4} \]

- Since the true conditional factorises, we use

\[q(h_1, \ldots, h_n|v_1, \ldots, v_n) = \prod_{i=1}^{n} q(h_i|v_i) \tag{5} \]

- We have one conditional variational distribution \(q(h|v) \).
The ELBO \mathcal{L}_D for iid data $\mathcal{D} = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ becomes a sum of per data-point ELBOs $\mathcal{L}_{\mathbf{v}_i}$, denoted by \mathcal{L}_i:

$$\mathcal{L}_D(\theta, q) = \sum_{i=1}^{n} \mathcal{L}_i(\theta, q)$$

(6)

$$\mathcal{L}_i(\theta, q) = \mathbb{E}_{q(h_i | \mathbf{v}_i)} \left[\log \frac{p(\mathbf{v}_i, h_i; \theta)}{q(h_i | \mathbf{v}_i)} \right]$$

(7)

Technical detail: In \mathcal{L}_i, we can drop the index i from h_i since it is just the random variable $h \sim q(h | \mathbf{v}_i)$. Hence:

$$\mathcal{L}_i(\theta, q) = \mathbb{E}_{q(h | \mathbf{v}_i)} \left[\log \frac{p(\mathbf{v}_i, h; \theta)}{q(h | \mathbf{v}_i)} \right]$$

(8)
Lower bound on the likelihood for iid data

- From the basic properties of the ELBO, we have
 \[\mathcal{L}_i(\theta, q) = \log p(v_i; \theta) - \text{KL}(q(h|v_i)||p(h|v_i; \theta)) \] (9)

- This gives
 \[\mathcal{L}_D(\theta, q) = \sum_{i=1}^{n} \left[\log p(v_i; \theta) - \text{KL}(q(h|v_i)||p(h|v_i; \theta)) \right] \] (10)

- With \(\ell(\theta) = \sum_i \log p(v_i; \theta) \) we obtain
 \[\mathcal{L}_D(\theta, q) = \ell(\theta) - \sum_{i=1}^{n} \text{KL}(q(h|v_i)||p(h|v_i; \theta)) \] (11)

- Maximum likelihood estimation
 \[\max_{\theta} \ell(\theta) = \max_{\theta, q} \mathcal{L}_D(\theta, q) \] (12)
ELBO maximisation for large sample sizes

▶ For iid data, we have seen a connection between maximum likelihood estimation and minimisation of $\text{KL}(p^*(v)||p(v; \theta))$ if the sample size n is large:

$$\argmax_{\theta} \ell(\theta) \approx \argmin_{\theta} \text{KL}(p^*(v)||p(v; \theta))$$ \hspace{1cm} (13)

▶ A similar result can be shown for \mathcal{L}_D:

$$\argmax_{\theta, q} \mathcal{L}_D(\theta, q) \approx \argmin_{\theta, q} \text{KL}(p^*(v)q(h|v)||p(v, h; \theta))$$ \hspace{1cm} (14)

▶ Note: θ and q enter the KL divergence on different sides: θ on the right; q on the left.
Potential failure modes

\[
\argmax_{\theta, q} \mathcal{L}_D(\theta, q) \approx \argmin_{\theta, q} \text{KL}(p_*(v)q(h|v)||p(v, h; \theta))
\]

- For fixed \(q\), maximising the ELBO wrt \(\theta\) fits the model \(p(v, h; \theta)\) to augmented data \((v, h)\), with \(v \sim p_*\) and \(h \sim q(h|v)\).
- For fixed \(\theta\), maximising the ELBO wrt \(q\) may lead to mode seeking behaviour.
- By changing \(q\), we change the training data / the target distribution \(p_*(v)q(h|v)\) that we approximate with our model \(p(v, h; \theta)\).
Potential failure modes

\[
\arg\max_{\theta, q} \mathcal{L}_D(\theta, q) \approx \arg\min_{\theta, q} \text{KL}(p_* (v) q(h | v) || p(v, h; \theta))
\]

- An example is the learning of representations in \(h \) space.
- Because of mode-seeking property, \(q(h | v) \) may only cover a small space in \(h \) (for sake of argument, a single mode).
- It thus produces “reduced” training data for \(p(v, h; \theta) \).
- If \(p(v, h; \theta) \) is sufficiently flexible, the KL div can be minimised and we do have \(p_* (v) q(h | v) \approx p(v, h; \hat{\theta}) \) and hence

\[
p_* (v) \approx p(v; \hat{\theta}) = \int p(v, h; \hat{\theta}) dh
\] \hspace{1cm} (15)

- This means that the marginal \(p(v; \hat{\theta}) \) is meaningful and approximates the distribution of the observed data.
- But the joint \(p(v, h; \hat{\theta}) \) and learned \(q \) may not be meaningful at all since trained with “reduced” \(h \) samples.
For large sample sizes \(n \) we have

\[
\frac{1}{n} \ell(\theta) = \frac{1}{n} \sum_{i=1}^{n} \log p(v_i; \theta) \rightarrow \mathbb{E}_{p^\ast(v)} [\log p(v; \theta)] \tag{16}
\]

Similarly

\[
\frac{1}{n} \mathcal{L}_D(\theta, q) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}_{v_i}(\theta, q) \rightarrow \mathbb{E}_{p^\ast(v)} \mathcal{L}_v(\theta, q) \tag{17}
\]

Dividing Equation (11) by \(n \) thus gives:

\[
\frac{1}{n} \mathcal{L}_D(\theta, q) = \frac{1}{n} \ell(\theta) - \frac{1}{n} \sum_{i=1}^{n} \text{KL}(q(h|v_i)||p(h|v_i; \theta)) \tag{18}
\]

\[
\rightarrow \mathbb{E}_{p^\ast(v)} \mathcal{L}_v(\theta, q) = \mathbb{E}_{p^\ast(v)} [\log p(v; \theta)] - \mathbb{E}_{p^\ast(v)} [\text{KL}(q(h|v)||p(h|v; \theta))] \tag{19}
\]
ELBO max for large sample sizes: proof (not examinable)

\[
\mathbb{E}_{p_*(v)} \mathcal{L}_v(\theta, q) = \mathbb{E}_{p_*(v)} [\log p(v; \theta)] - \mathbb{E}_{p_*(v)} [\text{KL}(q(h|v)||p(h|v; \theta))] \\
= \mathbb{E}_{p_*(v)} [\log p(v; \theta)] - \mathbb{E}_{p_*(v)} \mathbb{E}_q(h|v) \left[\log \frac{q(h|v)}{p(h|v; \theta)} \right] \\
= -\mathbb{E}_{p_*(v)} \mathbb{E}_q(h|v) \left[\log \frac{q(h|v)}{p(h|v; \theta)p(v; \theta)} \right]
\]

(20)

Subtract \(\mathbb{E}_{p_*(v)}[\log p_*(v)] \) on both sides:

\[
\mathbb{E}_{p_*(v)} [\mathcal{L}_v(\theta, q) - \log p_*(v)] = -\mathbb{E}_{p_*(v)} \mathbb{E}_q(h|v) \left[\log \frac{q(h|v)}{p(h|v; \theta)p(v; \theta)} \right] \\
- \mathbb{E}_{p_*(v)} \log p_*(v)
\]

(23)

\[
= -\mathbb{E}_{p_*(v)} \mathbb{E}_q(h|v) \left[\log \frac{p_*(v)q(h|v)}{p(h|v; \theta)p(v; \theta)} \right]
\]

(24)

\[
= -\text{KL} (p_*(v)q(h|v)||p(h|v; \theta)p(v; \theta))
\]

(25)

\[
= -\text{KL} (p_*(v)q(h|v)||p(h, v; \theta))
\]

(26)

Hence: \(\arg\max_{\theta, q} \mathcal{L}_D(\theta, q) \approx \arg\min_{\theta, q} \text{KL}(p_*(v)q(h|v)||p(v, h; \theta)) \)
Key technical difficulties

- Let us return to the case of finite samples.
- We have to maximise $L_D(\theta, q) = \sum_i L_i(\theta, q)$ with respect to θ and the conditional $q(h|v)$.
- We had

$$L_i(\theta, q) = \mathbb{E}_{q(h|v_i)} \left[\log \frac{p(v_i, h; \theta)}{q(h|v_i)} \right] \quad (27)$$

Analytical closed form expression only available in special cases.
- We do not want to restrict the model class but solve the optimisation problem for large n and generic $p(v, h; \theta)$.
- Key technical difficulties are:
 1. Learning of conditional variational distribution $q(h|v)$
 2. Maximisation when the objective involves the $\mathbb{E}_{q(h|v_i)}$
Issue 1: Learning the conditional variational distribution

- Learning the conditional $q(h|v)$ is hard since we have to effectively learn infinitely many pdfs/pmfs (one for each v!).
- \mathcal{L}_i only involves $q(h|v_i)$. Hence we could optimise \mathcal{L}_D by optimising each \mathcal{L}_i with respect to $q_i(h) = q(h|v_i)$

$$\max_q \mathcal{L}_D(\theta, q) \Leftrightarrow \max_{q_i} \mathcal{L}_i(\theta, q_i) \quad \text{for} \; i = 1, \ldots, n \quad (28)$$

- We typically make some parametric assumptions. Let $q_i(h)$ be parameterised as $q_i(h; \lambda_i) \in Q_i$.
- Different $q_i(h; \lambda_i)$ may belong to different parametric families.
- Optimisation with respect to q_i then becomes optimisation with respect to λ_i.
Issue 1: Learning the conditional variational distribution

- Closed form solution typically not available. This means that we have to iteratively optimise \mathcal{L}_i with respect to λ_i for all data points.
- Feasible if n is very small. But too costly otherwise.
Amortisation

- Let us parameterise the conditional distribution $q(h|v)$ directly as
 \[q(h|v) = q_\phi(h|v) = q(h; \lambda_\phi(v)) \] (29)
 where $\lambda_\phi(v)$ is a nonlinear function parameterised by ϕ. It is called inference or encoder network, or simply encoder.
- This means that we assume that each $q(h|v_i)$ belongs to the same parametric family $Q = \{q(h; \lambda)\}_\lambda$.
- The function $\lambda_\phi(v)$ maps each v to its corresponding parameter value λ.
- Note: λ are the parameters of the variational distribution while ϕ are the parameters of the encoder network.
- Denote $\mathcal{L}_i(\theta, q_\phi)$ by $\mathcal{L}_i(\theta, \phi)$ and $\mathcal{L}_D(\theta, q_\phi)$ by $\mathcal{L}_D(\theta, \phi)$.
- We learn ϕ by maximising
 \[\mathcal{L}_D(\theta, \phi) = \sum_{i=1}^{n} \mathcal{L}_i(\theta, \phi) \] (30)
Amortisation (example)

* A popular choice for $q_\phi(h|v)$ is
 \[
 q_\phi(h|v) = \prod_{k=1}^{H} q_\phi(h_k|v) \quad (31)
 \]
 \[
 q_\phi(h_k|v) = \mathcal{N}(h_k; \mu_k(v; \phi^\mu_k), \sigma^2_k(v; \phi^\sigma_k)) \quad (32)
 \]
 ϕ denotes parameters needed to parameterise all mean and var functions.

* Often used for variational autoencoders (see later).

* Makes both an independence and parametric assumption.

* This means that $Q = \{q(h; \lambda)\}_\lambda$ equals the factorised Gaussian family with parameters
 \[
 \lambda = (\mu_1, \ldots, \mu_H, \sigma^2_1, \ldots, \sigma^2_H) \quad (33)
 \]

* The mapping $\lambda_\phi(v)$ maps v to the means and variances,
 \[
 (\mu_1, \ldots, \mu_H, \sigma^2_1, \ldots, \sigma^2_H) = \lambda_\phi(v) \quad (34)
 \]
Amortisation gap

- \mathcal{L}_D is maximised if all individual per data-point \mathcal{L}_i are maximised.
- When learning ϕ, we hope that after learning

$$q(\mathbf{h}; \lambda_\phi(\mathbf{v}_i)) \approx \arg\max_{q_i \in \mathcal{Q}_i} \mathcal{L}_i(\theta, q_i) \quad \text{for all } i$$ (35)

- The optimisation $\arg\max_{q_i} \mathcal{L}_i$ maps \mathbf{v}_i to the optimal q_i, and the idea of amortised inference is to approximate this mapping.
- However, the approximation will not be perfect because
 - $\lambda_\phi(\mathbf{v})$ is learned by maximising the sum $\sum_i \mathcal{L}_i(\theta, \phi)$ and not a single $\mathcal{L}_i(\theta, \phi)$ for a given \mathbf{v}_i.
 - We assume that all $q(\mathbf{h}|\mathbf{v}_i)$ belong to the same parametric family, i.e. $\mathcal{Q} = \mathcal{Q}_i$ for all i, which may not be the case.
- The approximation will be better for some \mathbf{v}_i than for others.
Amortisation gap

- The approximation error due to amortisation is
 \[q^*_i(h|v_i) - q(h; \lambda \hat{\phi}(v_i)) = \arg\max_{q_i \in Q} L_i(\theta, q_i) \quad (36) \]

 (If \(Q = Q_i \), we can also compare the amortised with the optimal parameter \(\lambda \))

- Difference between corresponding ELBOs is called the amortisation gap
 \[L_i(\theta, q^*_i) - L_i(\theta, \hat{\phi}) = \arg\max_{\phi} L_D(\theta, \phi) \quad (37) \]

- After learning, the encoder network \(\lambda \hat{\phi}(v) \) can be applied to test inputs \(v_{\text{test}} \) thereby bypassing an optimisation of the ELBO \(L_{v_{\text{test}}} \).

- The approximation error and amortisation gap will likely be larger for \(v_{\text{test}} \) than for the training data \(v_1, \ldots, v_n \).

For methods to reduce the amortisation gap, see e.g. Marino et al, *Iterative amortised inference*, ICML 2018, https://arxiv.org/abs/1807.09356
Amortisation gap

- Example in two dimensions where q_i is assumed Gaussian with parameters $\lambda = (\mu_1, \mu_2)$.
- The contour plot shows $\mathcal{L}_i(\theta, q_i)$ as a function of λ.
- The blue line shows the gradient ascent optimisation path when the ELBO is optimised without amortisation.
- The cyan diamond shows the amortised estimate $\hat{\lambda}_\phi(v_i)$.

Figure 1 from Marino et al, ICML 2018.
The optimisation problem is

\[
\hat{\theta}, \hat{\phi} = \arg\max_{\theta, \phi} \mathcal{L}_D(\theta, \phi)
\]

where

\[
\mathcal{L}_D(\theta, \phi) = \sum_{i=1}^{n} \mathcal{L}_i(\theta, \phi)
\]

\[
= \sum_{i=1}^{n} \mathbb{E}_{q_{\phi}(h|v_i)} \left[\log \frac{p(v_i, h; \theta)}{q_{\phi}(h|v_i)} \right]
\]

We would like to solve it using gradient ascent.

Difficulties:

1. We generally cannot compute the expectations in closed form.
2. The parameter \(\phi \) occurs in the expectation so that we cannot pull \(\nabla_{\phi} \) inside.
Important special case

▶ For some q_ϕ, part of the ELBO is available in closed form.
▶ From the basic properties of the ELBO

$$\mathcal{L}_i(\theta, \phi) = \mathbb{E}_{q_\phi(h|v_i)} \left[\log p(v_i, h; \theta) \right] + \mathcal{H}(q_\phi)$$ \hspace{1cm} (41)

where $\mathcal{H}(q_\phi)$ is the entropy of q_ϕ.
▶ The entropy can sometimes be computed in closed form.
▶ For factorised Gaussian:

$$\mathcal{H}(q_\phi) = \sum_{k=1}^{H} \frac{1}{2} \left(1 + \log(2\pi\sigma_k^2(v)) \right)$$ \hspace{1cm} (42)

▶ However, the $\mathbb{E}_{q_\phi(h|v_i)}$ issue remains for the first term.
Reparameterisation

- Consider again the general case.
- We can approximate the expectation as a sample average, but we have to keep track of the ϕ-dependency of the samples.
- For that, let us consider variational distributions $q_\phi(h|v)$ that can be obtained via a transformation of a random variable ϵ that we can sample from.

$$ h \sim q_\phi(h|v) \iff h = t_\phi(\epsilon, v), \quad \epsilon \sim p(\epsilon) \quad (43) $$

- Examples:
 - $h \sim \mathcal{N}(h; \mu(v), \sigma^2(v)) \iff h = \mu(v) + \sigma(v)\epsilon$ with $\epsilon \sim \mathcal{N}(\epsilon, 0, 1)$.
 - Inverse transform sampling
 - Factor analysis or ICA model where factor or mixing matrix depends on v.
 - ...
Reparameterisation

By the law of the unconscious statistician, we then obtain

\[
\mathbb{E}_{q_\phi(h|v_i)} \left[\log \frac{p(v_i, h; \theta)}{q_\phi(h|v_i)} \right] = \mathbb{E}_{p(\epsilon)} \left[\log \frac{p(v_i, t_\phi(\epsilon, v_i); \theta)}{q_\phi(t_\phi(\epsilon, v_i)|v_i)} \right] \tag{44}
\]

We can now pull the gradients inside

\[
\nabla_{\theta, \phi} \mathbb{E}_{q_\phi(h|v_i)} [\cdots] = \nabla_{\theta, \phi} \mathbb{E}_{p(\epsilon)} [\cdots] = \mathbb{E}_{p(\epsilon)} [\nabla_{\theta, \phi} \cdots]
\]

The gradient can then be computed via auto-differentiation.

Note: Alternative to reparameterisation is to use an approach called score function gradient estimation (not examinable).
The gradient of $\mathcal{L}_D(\theta, \phi)$ thus becomes

$$\nabla_{\theta, \phi} \mathcal{L}_D(\theta, \phi) = \sum_{i=1}^{n} \mathbb{E}_{p(\epsilon_i)} \left[\nabla_{\theta, \phi} \log \frac{p(v_i, t_\phi(\epsilon_i, v_i); \theta)}{q_\phi(t_\phi(\epsilon_i, v_i)|v_i)} \right]$$ \hspace{1cm} (45)$$

We can approximate $\mathbb{E}_{p(\epsilon_i)}$ with a sample average (Monte Carlo integration) with S samples.

For large n and S, evaluation of the gradient is expensive.

Computing the gradient for all v_i and using a large S is not necessary. We can use stochastic optimisation instead.

This means we only evaluate the gradient for a random subset (minibatch) of the v_i and set S to a small number (e.g. 1!).

We gloss over technical details here; for an introduction to stochastic optimisation, see *Introduction to Stochastic Search and Optimization* by James Spall.

Eq (45) can be manipulated to reduce the variance of the stochastic gradient, see Roeder et al, *Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference*, NeuRIPS 2017.
Program

1. Scalable generic variational learning of latent variable models
 - ELBO for iid data
 - Amortised variational inference
 - Reparameterisation and stochastic optimisation

2. Deep latent variable models and variational autoencoders
1. Scalable generic variational learning of latent variable models

2. Deep latent variable models and variational autoencoders
 - Deep latent variable model
 - Variational autoencoder (VAE)
 - Gaussian and Bernoulli VAE
Deep directed graphical models

- Parametric directed graphical models are sets of pdfs/pmfs that factorise as

\[p(x; \theta) = \prod_{k=1}^{d} p(x_k | pa_k; \theta) \quad (46) \]

where \(pa_k \) denotes the parents of \(x_k \) in a given directed acyclic graph (DAG).

- We say that the model is a deep directed graphical model if

\[p(x_k | pa_k; \theta) = p(x_k; \eta_k) \quad \text{with} \quad \eta_k = \eta^k_{\theta}(pa_k) \quad (47) \]

where \(p(x_k; \eta) \) is a parametric model and \(\eta^k_{\theta}(pa_k) \) a parameterised nonlinear function (deep neural network) that maps the parents \(pa_k \) to the model-parameters \(\eta_k \).
Example

- **Chain rule** \(p(x; \theta) = \prod_{k=1}^{d} p(x_k|\text{pre}_k; \theta) \) with
 \[
p(x_k|\text{pre}_k; \theta) = \mathcal{N}(x_k; \mu_k, \sigma_k^2), \quad (\mu_k, \sigma_k^2) = \eta_{\theta}^k(\text{pre}_k)
 \]

- **Markov chain** \(p(x; \theta) = \prod_{k=1}^{d} p(x_k|x_{k-1}; \theta) \) with
 \[
p(x_k|x_{k-1}; \theta) = \mathcal{N}(x_k; \mu_k, \sigma_k^2), \quad (\mu_k, \sigma_k^2) = \eta_{\theta}^k(x_{k-1})
 \]
Deep latent variable model

▶ A deep (directed) latent variable model is a deep directed graphical model with latent variables.
▶ Often (but not always), they are models of the form

\[p(v, h; \theta) = p(v|h; \theta)p(h) \] \hspace{1cm} (48)

where \(p(h) \) does not depend on \(\theta \) and \(p(v|h; \theta) \) is

\[p(v|h; \theta) = \prod_{k=1}^{d} p(v_k|\tilde{pa}_k, h; \theta) \] \hspace{1cm} (49)

with

\[p(v_k|\tilde{pa}_k, h; \theta) = p(v_k; \eta_k) \hspace{1cm} \eta_k = \eta^k_{\theta}(\tilde{pa}_k, h) \] \hspace{1cm} (50)

▶ The latents \(h \) affect the distribution of all the visibles; \(\tilde{pa}_k \) denotes the parents of \(v_k \) restricted to the visibles, i.e. without the \(h \).
▶ Note: parameterised models \(p(h; \theta) \) may also be used.
Graphical model for variational autoencoders

Reconsider the directed acyclic graph for FA and ICA:

The visibles $\mathbf{v} = (v_1, \ldots, v_d)$ are independent from each other given the latents $\mathbf{h} = (h_1, \ldots, h_H)$.

Different assumptions on $p(v_k|\mathbf{h})$ and $p(\mathbf{h})$ give different methods, e.g. FA and ICA.

Working with $H < d$ and $p(v_k|\mathbf{h}; \theta) = p(v_k; \eta_k)$, where $\eta_k = \eta_{\theta}(\mathbf{h})$, gives variational autoencoders (VAE).

The function $\eta_k = \eta_{\theta}^k(\mathbf{h})$ is called the decoder or decoder network.
VAE: overview

- Depending on the data, different parametric families are chosen for the univariate distributions $p(v_k; \eta_k)$
- For example:
 - Gaussian pdf for $v_k \in \mathbb{R}$: Here $\eta_k = (m_k, \nu^2_k)$ are the mean and variance.
 - Bernoulli pmf for $v_k \in \{0, 1\}$: Here $\eta_k = p_k$ is the probability for $v_k = 1$.
- Note: The parametric families may be simple but the parameter η_k is a nonlinear transformation of h: $\eta_k = \eta_{\theta}(h)$
Example: Gaussian VAE

Nonlinear mean function (NN with random weights and ReLu), constant variance:

Nonlinear mean and variance functions:
The variational distribution \(q_\phi(h|v) \) is often assumed to be a factorised Gaussian.

Variational distribution \(q_\phi(h|v) \) goes under several names: encoder, inference model, or recognition model are used; the model \(p(v|h; \theta) \) is called the decoder or generative model.

Note: the encoder/decoder names may refer to the distribution or the mapping to their parameters.
We now derive the ELBO for the VAE using that:

- \(p(v, h; \theta) = p(v|h; \theta)p(h) \) with \(p(h) = \mathcal{N}(h; 0, I) \)
- Factorised Gaussian for the variational distribution \(q_\phi(h|v) \)

As before:

\[
q_\phi(h|v) = \prod_k q(h_k|v) \tag{51}
\]
\[
q_\phi(h_k|v) = \mathcal{N}(h_k; \mu_k(v), \sigma^2_k(v)) \tag{52}
\]

That is, \(\lambda_\phi(v) \) maps \(v \) to \((\mu_1, \ldots, \mu_H, \sigma^2_1, \ldots, \sigma^2_H) \).

(\(\phi \)-dependency of \(\mu_k(v), \sigma^2_k(v) \) is suppressed.)

With the Gaussianity assumption on \(p(h) \) and \(q_\phi(h|v) \), part of the ELBO can be computed in closed form.
VAE: learning

► We have seen that if $q_\phi(h|v)$ is a factorised Gaussian

$$
\mathcal{L}_i = \mathbb{E}_{q_\phi(h|v_i)}[\log p(v_i, h; \theta)] + \sum_{k=1}^{H} \frac{1}{2} \left(1 + \log(2\pi\sigma_k^2(v_i))\right)
$$

► Inserting further that $p(v, h; \theta) = p(v|h; \theta)\mathcal{N}(h; 0, I)$, we have

$$
\mathbb{E}_{q_\phi(h|v_i)} \log p(v_i, h; \theta) = \mathbb{E}_{q_\phi(h|v_i)}[\log p(v_i|h; \theta)] + \mathbb{E}_{q_\phi(h|v_i)}[\log \mathcal{N}(h; 0, I)]
$$

► We can compute the second term in closed form

$$
\mathbb{E}_{q_\phi(h|v_i)}[\log \mathcal{N}(h; 0, I)] = -\frac{H}{2} \log(2\pi) - \frac{1}{2} \mathbb{E}_{q_\phi(h|v_i)} \left[\sum_{k=1}^{H} h_k^2\right]
$$

$$
= -\frac{H}{2} \log(2\pi) - \frac{1}{2} \sum_{k=1}^{H} \left[\sigma_k^2(v_i) + \mu_k^2(v_i)\right]
$$
VAE: learning

- Hence

\[L_i = \mathbb{E}_{q(\mathbf{h}|\mathbf{v}_i)} [\log p(\mathbf{v}_i|\mathbf{h}; \theta)] - \frac{H}{2} \log(2\pi) \]

\[- \frac{1}{2} \sum_{k=1}^{H} \left[\sigma_k^2(\mathbf{v}_i) + \mu_k^2(\mathbf{v}_i) \right] + \sum_{k=1}^{H} \frac{1}{2} \left(1 + \log(2\pi \sigma_k^2(\mathbf{v}_i)) \right) \]

\[= \mathbb{E}_{q(\mathbf{h}|\mathbf{v}_i)} [\log p(\mathbf{v}_i|\mathbf{h}; \theta)] \]

\[+ \frac{1}{2} \sum_{k=1}^{H} \left(1 + \log(\sigma_k^2(\mathbf{v}_i)) - \sigma_k^2(\mathbf{v}_i) - \mu_k^2(\mathbf{v}_i) \right) \]

- Same expression can be obtained from

\[L_i = \mathbb{E}_{q(\mathbf{h}|\mathbf{v}_i)} [\log p(\mathbf{v}_i|\mathbf{h}; \theta)] - \text{KL}(q(\mathbf{h}|\mathbf{v}_i)||\mathcal{N}(\mathbf{h}; 0, I)) \]

and using the closed-form expression for the KL divergence.

- First term: reconstruction/fit; second term: regularisation
With the conditional independence assumption for $p(v_i|h; \theta)$:

\[
\mathbb{E}_{q_\phi(h|v_i)} \left[\log p(v_i|h; \theta) \right] = \sum_{k=1}^d \mathbb{E}_{q_\phi(h|v_i)} \left[\log p(v_{ik}; \eta^k_\theta(h)) \right]
\]

where v_{ik} denotes the k-th element of v_i.

We thus have for the VAE:

\[
\mathcal{L}_i(\theta, \phi) = \sum_{k=1}^d \mathbb{E}_{q_\phi(h|v_i)} \left[\log p(v_{ik}; \eta^k_\theta(h)) \right] + \\
+ \frac{1}{2} \sum_{k=1}^H \left(1 + \log(\sigma^2_k(v_i)) - \sigma^2_k(v_i) - \mu^2_k(v_i) \right) \tag{53}
\]

Optimisation problem

\[
\hat{\theta}, \hat{\phi} = \arg\max_{\theta, \phi} \mathcal{L}_D(\theta, \phi) = \arg\max_{\theta, \phi} \sum_{i=1}^n \mathcal{L}_i(\theta, \phi) \tag{54}
\]

Solved with stochastic gradient ascent and the reparam. trick.
Gaussian VAE

- The Gaussian VAE is obtained for
 \[p(v_k|h; \theta) = \mathcal{N}(v_k; m_k, s^2_k) \quad (m_k, s^2_k) = \eta^k_\theta(h) \quad (55) \]

- Generative model \(p(v|h; \theta) \) equivalent to
 \[
 v = \begin{pmatrix}
 m_1(h) \\
 \vdots \\
 m_D(h)
 \end{pmatrix} + \begin{pmatrix}
 s_1(h) \\
 \vdots \\
 s_D(h)
 \end{pmatrix} n, \quad n \sim \mathcal{N}(n; 0, I)
 \]

- FA obtained for \(m = (m_1, \ldots, m_D)^\top = Fh + c \) and \(s^2_k = \Psi_k \).
- Gaussian VAE is a nonlinear generalisation of FA.
The Bernoulli VAE with $v_k \in \{0, 1\}$ is obtained for

$$p(v_k|h; \theta) = p_k^{v_k} (1 - p_k)^{(1 - v_k)} \quad p_k = \eta_k(h) \quad (56)$$

This is often also used for $v_k \in [0, 1]$. While the ELBO can be evaluated, it is formally wrong since v_k is not binary.

For $v_k \in [0, 1]$, use the so-called continuous Bernoulli distribution or the beta distribution instead.

(see Loaiza-Ganem and Cunningham, *The continuous Bernoulli: fixing a pervasive error in variational autoencoders*, NeuRIPS 2019)
Program recap

1. Scalable generic variational learning of latent variable models
 - ELBO for iid data
 - Amortised variational inference
 - Reparameterisation and stochastic optimisation

2. Deep latent variable models and variational autoencoders
 - Deep latent variable model
 - Variational autoencoder (VAE)
 - Gaussian and Bernoulli VAE