Exercises for the tutorials: 2 and 4.
The other exercises are for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

$$
p\left(x_{1}, \ldots, x_{5}\right) \propto \phi_{12}\left(x_{1}, x_{2}\right) \phi_{13}\left(x_{1}, x_{3}\right) \phi_{14}\left(x_{1}, x_{4}\right) \phi_{23}\left(x_{2}, x_{3}\right) \phi_{25}\left(x_{2}, x_{5}\right) \phi_{45}\left(x_{4}, x_{5}\right)
$$

(a) Visualise it as an undirected graph.

Solution. We draw a node for each random variable x_{i}. There is an edge between two nodes if the corresponding variables co-occur in a factor.

(b) What are the neighbours of x_{3} in the graph?

Solution. The neighbours are all the nodes for which there is a single connecting edge. Thus: ne $\left(x_{3}\right)=\left\{x_{1}, x_{2}\right\}$. (Note that sometimes, we may denote ne $\left(x_{3}\right)$ by ne ${ }_{3}$.)
(c) Do we have $x_{3} \Perp x_{4} \mid x_{1}, x_{2}$?

Solution. Yes. The conditioning set $\left\{x_{1}, x_{2}\right\}$ equals n_{3}, which is also the Markov blanket of x_{3}. This means that x_{3} is conditionally independent of all the other variables given $\left\{x_{1}, x_{2}\right\}$, i.e. $x_{3} \Perp x_{4}, x_{5} \mid x_{1}, x_{2}$, which implies that $x_{3} \Perp x_{4} \mid x_{1}, x_{2}$. (One can also use graph separation to answer the question.)
(d) What is the Markov blanket of x_{4} ?

Solution. The Markov blanket of a node in a undirected graphical model equals the set of its neighbours: $\operatorname{MB}\left(x_{4}\right)=\operatorname{ne}\left(x_{4}\right)=\mathrm{ne}_{4}=\left\{x_{1}, x_{5}\right\}$. This implies, for example, that $x_{4} \Perp x_{2}, x_{3} \mid x_{1}, x_{5}$.
(e) On which minimal set of variables A do we need to condition to have $x_{1} \Perp x_{5} \mid A$?

Solution. We first identify all trails from x_{1} to x_{5}. There are three such trails: $\left(x_{1}, x_{2}, x_{5}\right)$, $\left(x_{1}, x_{3}, x_{2}, x_{5}\right)$, and (x_{1}, x_{4}, x_{5}). Conditioning on x_{2} blocks the first two trails, conditioning on x_{4} blocks the last. We thus have: $x_{1} \Perp x_{5} \mid x_{2}, x_{4}$, so that $A=\left\{x_{2}, x_{4}\right\}$.

Exercise 2. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the graph in Figure 1.

Figure 1: Graph for Exercise 2
(a) What is the set of Gibbs distributions that is induced by the graph?

Solution. The graph in Figure 1 has four maximal cliques:

$$
\left(x_{1}, x_{2}, x_{4}\right) \quad\left(x_{1}, x_{3}, x_{4}\right) \quad\left(x_{3}, x_{4}, x_{5}\right) \quad\left(x_{4}, x_{5}, x_{6}\right)
$$

The Gibbs distributions are thus

$$
p\left(x_{1}, \ldots, x_{6}\right) \propto \phi_{1}\left(x_{1}, x_{2}, x_{4}\right) \phi_{2}\left(x_{1}, x_{3}, x_{4}\right) \phi_{3}\left(x_{3}, x_{4}, x_{5}\right) \phi_{4}\left(x_{4}, x_{5}, x_{6}\right)
$$

(b) Let p be a pdf that factorises according to the graph. Does $p\left(x_{3} \mid x_{2}, x_{4}\right)=p\left(x_{3} \mid x_{4}\right)$ hold?

Solution. $p\left(x_{3} \mid x_{2}, x_{4}\right)=p\left(x_{3} \mid x_{4}\right)$ means that $x_{3} \Perp x_{2} \mid x_{4}$. We can use the graph to check whether this generally holds for pdfs that factorise according to the graph. There are multiple trails from x_{3} to x_{2}, including the trail (x_{3}, x_{1}, x_{2}), which is not blocked by x_{4}. From the graph, we thus cannot conclude that $x_{3} \Perp x_{2} \mid x_{4}$, and $p\left(x_{3} \mid x_{2}, x_{4}\right)=p\left(x_{3} \mid x_{4}\right)$ will generally not hold (the relation may hold for some carefully defined factors ϕ_{i}).
(c) Explain why $x_{2} \Perp x_{5} \mid x_{1}, x_{3}, x_{4}, x_{6}$ holds for all distributions that factorise over the graph.

Solution. Distributions that factorise over the graph satisfy the pairwise Markov property. Since x_{2} and x_{5} are not neighbours, and $x_{1}, x_{3}, x_{4}, x_{6}$ are the remaining nodes in the graph, the independence relation follows from the pairwise Markov property.
(d) Assume you would like to approximate $\mathbb{E}\left(x_{1} x_{2} x_{5} \mid x_{3}, x_{4}\right)$, i.e. the expected value of the product of x_{1}, x_{2}, and x_{5} given x_{3} and x_{4}, with a sample average. Do you need to have joint observations for all five variables x_{1}, \ldots, x_{5} ?

Solution. In the graph, all trails from $\left\{x_{1}, x_{2}\right\}$ to x_{5} are blocked by $\left\{x_{3}, x_{4}\right\}$, so that $x_{1}, x_{2} \Perp x_{5} \mid x_{3}, x_{4}$. We thus have

$$
\mathbb{E}\left(x_{1} x_{2} x_{5} \mid x_{3}, x_{4}\right)=\mathbb{E}\left(x_{1} x_{2} \mid x_{3}, x_{4}\right) \mathbb{E}\left(x_{5} \mid x_{3}, x_{4}\right) .
$$

Hence, we only need joint observations of ($x_{1}, x_{2}, x_{3}, x_{4}$) and (x_{3}, x_{4}, x_{5}). Variables (x_{1}, x_{2}) and x_{5} do not need to be jointly measured.

Exercise 3. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the following graph, sometimes called a diamond configuration.

(a) How do the pdfs/pmfs of the undirected graphical model factorise?

Solution. The maximal cliques are $(x, w),(w, z),(z, y)$ and (x, y). The undirected graphical model thus consists of pdfs/pmfs that factorise as follows

$$
\begin{equation*}
p(x, w, z, y) \propto \phi_{1}(x, w) \phi_{2}(w, z) \phi_{3}(z, y) \phi_{4}(x, y) \tag{S.1}
\end{equation*}
$$

(b) List all independencies that hold for the undirected graphical model.

Solution. We can generate the independencies by conditioning on progressively larger sets. Since there is a trail between any two nodes, there are no unconditional independencies. If we condition on a single variable, there is still a trail that connects the remaining ones. Let us thus consider the case where we condition on two nodes. By graph separation, we have

$$
\begin{equation*}
w \Perp y|x, z \quad x \Perp z| w, y \tag{S.2}
\end{equation*}
$$

These are all the independencies that hold for the model, since conditioning on three nodes does not lead to any independencies in a model with four variables.

Exercise 4. Factorisation from the Markov blankets I

Assume you know the following Markov blankets for all variables $x_{1}, \ldots, x_{4}, y_{1}, \ldots y_{4}$ of a pdf or pmf $p\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)$.

$$
\begin{array}{llll}
M B\left(x_{1}\right)=\left\{x_{2}, y_{1}\right\} & M B\left(x_{2}\right)=\left\{x_{1}, x_{3}, y_{2}\right\} & M B\left(x_{3}\right)=\left\{x_{2}, x_{4}, y_{3}\right\} & M B\left(x_{4}\right)=\left\{x_{3}, y_{4}\right\} \\
M B\left(y_{1}\right)=\left\{x_{1}\right\} & M B\left(y_{2}\right)=\left\{x_{2}\right\} & M B\left(y_{3}\right)=\left\{x_{3}\right\} & M B\left(y_{4}\right)=\left\{x_{4}\right\} \tag{2}
\end{array}
$$

Assuming that p is positive for all possible values of its variables, how does p factorise?

Solution. In undirected graphical models, the Markov blanket for a variable is the same as the set of its neighbours. Hence, when we are given all Markov blankets we know what local Markov property p must satisfy. For positive distributions we have an equivalence between p satisfying the local Markov property and p factorising over the graph. Hence, to specify the factorisation of p it suffices to construct the undirected graph H based on the Markov blankets and then read out the factorisation.

We need to build a graph where the neighbours of each variable equals the indicated Markov blanket. This can be easily done by starting with an empty graph and connecting each variable to the variables in its Markov blanket.

We see that each y_{i} is only connected to x_{i}. Including those Markov blankets we get the following graph:

Connecting the x_{i} to their neighbours according to the Markov blanket thus gives:

The graph has maximal cliques of size two, namely the $x_{i}-y_{i}$ for $i=1, \ldots, 4$, and the $x_{i}-x_{i+1}$ for $i=1, \ldots, 3$. Given the equivalence between the local Markov property and factorisation for positive distributions, we know that p must factorise as

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)=\frac{1}{Z} \prod_{i=1}^{3} m_{i}\left(x_{i}, x_{i+1}\right) \prod_{i=1}^{4} g_{i}\left(x_{i}, y_{i}\right) \tag{S.3}
\end{equation*}
$$

where $m_{i}\left(x_{i}, x_{i+1}\right)>0, g\left(x_{i}, y_{i}\right)>0$ are positive factors (potential functions).
The graphical model corresponds to an undirected version of a hidden Markov model where the x_{i} are the unobserved (latent, hidden) variables and the y_{i} are the observed ones. Note that the x_{i} form a Markov chain.

Exercise 5. Factorisation from the Markov blankets II

We consider the same setup as in Exercise 4 but we now assume that we do not know all Markov blankets but only

$$
\begin{equation*}
M B\left(x_{1}\right)=\left\{x_{2}, y_{1}\right\} \quad M B\left(x_{2}\right)=\left\{x_{1}, x_{3}, y_{2}\right\} \quad M B\left(x_{3}\right)=\left\{x_{2}, x_{4}, y_{3}\right\} \quad M B\left(x_{4}\right)=\left\{x_{3}, y_{4}\right\} \tag{3}
\end{equation*}
$$

Without inserting more independencies than those specified by the Markov blankets, draw the graph over which p factorises and state the factorisation. (Again assume that p is positive for all possible values of its variables).

Solution. We take the same approach as in Exercise 4. In particular, the Markov blankets of a variable are its neighbours in the graph. But since we are not given all Markov blankets and are not allowed to insert additional independencies, we must assume that each y_{i} is connected to all the other $y^{\prime} s$. For example, if we didn't connect y_{1} and y_{4} we would assert the additional independency $y_{1} \Perp y_{4} \mid x_{1}, x_{2}, x_{3}, x_{4}, y_{2}, y_{3}$.

We thus have a graph as follows:

The factorisation thus is

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)=\frac{1}{Z} g\left(y_{1}, \ldots, y_{4}\right) \prod_{i=1}^{3} m_{i}\left(x_{i}, x_{i+1}\right) \prod_{i=1}^{4} g_{i}\left(x_{i}, y_{i}\right) \tag{S.4}
\end{equation*}
$$

where the $m_{i}\left(x_{i}, x_{i+1}\right), g_{i}\left(x_{i}, y_{i}\right)$ and $g\left(y_{1}, \ldots, y_{4}\right)$ are positive factors. Compared to the factorisation in Exercise 4, we still have the Markov structure for the x_{i}, but only a single factor for $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ to avoid inserting independencies beyond those specified by the given Markov blankets.

Exercise 6. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time. The probability density or mass functions over d random variables x_{1}, \ldots, x_{d} then take the form

$$
p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i \leq j} \phi_{i j}\left(x_{i}, x_{j}\right)
$$

Such models are sometimes called pairwise Markov networks.
(a) Let $p\left(x_{1}, \ldots, x_{d}\right) \propto \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}\right)$ where \mathbf{A} is symmetric and $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top}$. What are the corresponding factors $\phi_{i j}$ for $i \leq j$?

Solution. Denote the (i, j)-th element of \mathbf{A} by $a_{i j}$. We have

$$
\begin{align*}
\mathbf{x}^{\top} \mathbf{A} \mathbf{x} & =\sum_{i j} a_{i j} x_{i} x_{j} \tag{S.5}\\
& =\sum_{i<j} 2 a_{i j} x_{i} x_{j}+\sum_{i} a_{i i} x_{i}^{2} \tag{S.6}
\end{align*}
$$

where the second line follows from $\mathbf{A}^{\top}=\mathbf{A}$. Hence,

$$
\begin{equation*}
-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}=-\frac{1}{2} \sum_{i<j} 2 a_{i j} x_{i} x_{j}-\frac{1}{2} \sum_{i} a_{i i} x_{i}^{2}-\sum_{i} b_{i} x_{i} \tag{S.7}
\end{equation*}
$$

so that

$$
\phi_{i j}\left(x_{i}, x_{j}\right)= \begin{cases}\exp \left(-a_{i j} x_{i} x_{j}\right) & \text { if } i<j \tag{S.8}\\ \exp \left(-\frac{1}{2} a_{i i} x_{i}^{2}-b_{i} x_{i}\right) & \text { if } i=j\end{cases}
$$

For $\mathbf{x} \in \mathbb{R}^{d}$, the distribution is a Gaussian with \mathbf{A} equal to the inverse covariance matrix. For binary \mathbf{x}, the model is known as Ising model or Boltzmann machine. For $x_{i} \in\{-1,1\}$,
$x_{i}^{2}=1$ for all i, so that the $a_{i i}$ are constants that can be absorbed into the normalisation constant. This means that for $x_{i} \in\{-1,1\}$, we can work with matrices \mathbf{A} that have zeros on the diagonal.
(b) For $p\left(x_{1}, \ldots, x_{d}\right) \propto \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}\right)$, show that $x_{i} \Perp x_{j} \mid\left\{x_{1}, \ldots, x_{d}\right\} \backslash\left\{x_{i}, x_{j}\right\}$ if the (i, j)-th element of \mathbf{A} is zero.

Solution. The previous question showed that we can write $p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i \leq j} \phi_{i j}\left(x_{i}, x_{j}\right)$ with potentials as in Equation (S.8). Consider two variables x_{i} and x_{j} for fixed (i, j). They only appear in the factorisation via the potential $\phi_{i j}$. If $a_{i j}=0$, the factor $\phi_{i j}$ becomes a constant, and no other factor contains x_{i} and x_{j}, which means that there is no edge between x_{i} and x_{j} if $a_{i j}=0$. By the pairwise Markov property it then follows that $x_{i} \Perp x_{j} \mid\left\{x_{1}, \ldots, x_{d}\right\} \backslash\left\{x_{i}, x_{j}\right\}$.

Exercise 7. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)^{\top}$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{m}\right)^{\top}$ with a probability mass function equal to

$$
\begin{equation*}
p(\mathbf{v}, \mathbf{h}) \propto \exp \left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h}+\mathbf{a}^{\top} \mathbf{v}+\mathbf{b}^{\top} \mathbf{h}\right) \tag{4}
\end{equation*}
$$

where \mathbf{W} is a $n \times m$ matrix. Both the v_{i} and h_{i} take values in $\{0,1\}$. The v_{i} are called the "visibles" variables since they are assumed to be observed while the h_{i} are the hidden variables since it is assumed that we cannot measure them.
(a) Use graph separation to show that the joint conditional $p(\mathbf{h} \mid \mathbf{v})$ factorises as

$$
p(\mathbf{h} \mid \mathbf{v})=\prod_{i=1}^{m} p\left(h_{i} \mid \mathbf{v}\right) .
$$

Solution. Figure 2 on the left shows the undirected graph for $p(\mathbf{v}, \mathbf{h})$ with $n=3, m=2$. We note that the graph is bi-partite: there are only direct connections between the h_{i} and the v_{i}. Conditioning on \mathbf{v} thus blocks all trails between the h_{i} (graph on the right). This means that the h_{i} are independent from each other given \mathbf{v} so that

$$
p(\mathbf{h} \mid \mathbf{v})=\prod_{i=1}^{m} p\left(h_{i} \mid \mathbf{v}\right) .
$$

Figure 2: Left: Graph for $p(\mathbf{v}, \mathbf{h})$. Right: Graph for $p(\mathbf{h} \mid \mathbf{v})$
(b) Show that

$$
\begin{equation*}
p\left(h_{i}=1 \mid \mathbf{v}\right)=\frac{1}{1+\exp \left(-b_{i}-\sum_{j} W_{j i} v_{j}\right)} \tag{5}
\end{equation*}
$$

where $W_{j i}$ is the (ji)-th element of \mathbf{W}, so that $\sum_{j} W_{j i} v_{j}$ is the inner product (scalar product) between the i-th column of \mathbf{W} and \mathbf{v}.

Solution. For the conditional $\operatorname{pmf} p\left(h_{i} \mid \mathbf{v}\right)$ any quantity that does not depend on h_{i} can be considered to be part of the normalisation constant. A general strategy is to first work out $p\left(h_{i} \mid \mathbf{v}\right)$ up to the normalisation constant and then to normalise it afterwards.
We begin with $p(\mathbf{h} \mid \mathbf{v})$:

$$
\begin{align*}
p(\mathbf{h} \mid \mathbf{v}) & =\frac{p(\mathbf{h}, \mathbf{v})}{p(\mathbf{v})} \tag{S.9}\\
& \propto p(\mathbf{h}, \mathbf{v}) \tag{S.10}\\
& \propto \exp \left(\mathbf{v}^{\top} \mathbf{W h}+\mathbf{a}^{\top} \mathbf{v}+\mathbf{b}^{\top} \mathbf{h}\right) \tag{S.11}\\
& \propto \exp \left(\mathbf{v}^{\top} \mathbf{W h}+\mathbf{b}^{\top} \mathbf{h}\right) \tag{S.12}\\
& \propto \exp \left(\sum_{i} \sum_{j} v_{j} W_{j i} h_{i}+\sum_{i} b_{i} h_{i}\right) \tag{S.13}
\end{align*}
$$

As we are interested in $p\left(h_{i} \mid \mathbf{v}\right)$ for a fixed i, we can drop all the terms not depending on that h_{i}, so that

$$
\begin{equation*}
p\left(h_{i} \mid \mathbf{v}\right) \propto \exp \left(\sum_{j} v_{j} W_{j i} h_{i}+b_{i} h_{i}\right) \tag{S.14}
\end{equation*}
$$

Since h_{i} only takes two values, 0 and 1, normalisation is here straightforward. Call the unnormalised pmf $\tilde{p}\left(h_{i} \mid \mathbf{v}\right)$,

$$
\begin{equation*}
\tilde{p}\left(h_{i} \mid \mathbf{v}\right)=\exp \left(\sum_{j} v_{j} W_{j i} h_{i}+b_{i} h_{i}\right) \tag{S.15}
\end{equation*}
$$

We then have

$$
\begin{align*}
p\left(h_{i} \mid \mathbf{v}\right) & =\frac{\tilde{p}\left(h_{i} \mid \mathbf{v}\right)}{\tilde{p}\left(h_{i}=0 \mid \mathbf{v}\right)+\tilde{p}\left(h_{i}=1 \mid \mathbf{v}\right)} \tag{S.16}\\
& =\frac{\tilde{p}\left(h_{i} \mid \mathbf{v}\right)}{1+\exp \left(\sum_{j} v_{j} W_{j i}+b_{i}\right)} \tag{S.17}\\
& =\frac{\exp \left(\sum_{j} v_{j} W_{j i} h_{i}+b_{i} h_{i}\right)}{1+\exp \left(\sum_{j} v_{j} W_{j i}+b_{i}\right)}, \tag{S.18}
\end{align*}
$$

so that

$$
\begin{align*}
p\left(h_{i}=1 \mid \mathbf{v}\right) & =\frac{\exp \left(\sum_{j} v_{j} W_{j i}+b_{i}\right)}{1+\exp \left(\sum_{j} v_{j} W_{j i}+b_{i}\right)} \tag{S.19}\\
& =\frac{1}{1+\exp \left(-\sum_{j} v_{j} W_{j i}-b_{i}\right)} \tag{S.20}
\end{align*}
$$

The probability $p(h=0 \mid \mathbf{v})$ equals $1-p\left(h_{i}=1 \mid \mathbf{v}\right)$, which is

$$
\begin{align*}
p\left(h_{i}=0 \mid \mathbf{v}\right) & =\frac{1+\exp \left(\sum_{j} v_{j} W_{j i}+b_{i}\right)}{1+\exp \left(\sum_{j} v_{j} W_{j i}+b_{i}\right)}-\frac{\exp \left(\sum_{j} v_{j} W_{j i}+b_{i}\right)}{1+\exp \left(\sum_{j} v_{j} W_{j i}+b_{i}\right)} \tag{S.21}\\
& =\frac{1}{1+\exp \left(\sum_{j} W_{j i} v_{j}+b_{i}\right)} \tag{S.22}
\end{align*}
$$

The function $x \mapsto 1 /(1+\exp (-x))$ is called the logistic function. It is a sigmoid function and is thus sometimes denoted by $\sigma(x)$. For other versions of the sigmoid function, see https://en.wikipedia.org/wiki/Sigmoid_function.

With that notation, we have

$$
p\left(h_{i}=1 \mid \mathbf{v}\right)=\sigma\left(\sum_{j} W_{j i} v_{j}+b_{i}\right)
$$

(c) Use a symmetry argument to show that

$$
p(\mathbf{v} \mid \mathbf{h})=\prod_{i} p\left(v_{i} \mid \mathbf{h}\right) \quad \text { and } \quad p\left(v_{i}=1 \mid \mathbf{h}\right)=\frac{1}{1+\exp \left(-a_{i}-\sum_{j} W_{i j} h_{j}\right)}
$$

Solution. Since $\mathbf{v}^{\top} \mathbf{W h}$ is a scalar we have $\left(\mathbf{v}^{\top} \mathbf{W h}\right)^{\top}=\mathbf{h}^{\top} \mathbf{W}^{\top} \mathbf{v}=\mathbf{v}^{\top} \mathbf{W h}$, so that

$$
\begin{align*}
p(\mathbf{v}, \mathbf{h}) & \propto \exp \left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h}+\mathbf{a}^{\top} \mathbf{v}+\mathbf{b}^{\top} \mathbf{h}\right) \tag{S.23}\\
& \propto \exp \left(\mathbf{h}^{\top} \mathbf{W}^{\top} \mathbf{v}+\mathbf{b}^{\top} \mathbf{h}+\mathbf{a}^{\top} \mathbf{v}\right) . \tag{S.24}
\end{align*}
$$

To derive the result, we note that \mathbf{v} and a now take the place of \mathbf{h} and \mathbf{b} from before, and that we now have \mathbf{W}^{\top} rather than \mathbf{W}. In Equation (5), we thus replace h_{i} with v_{i}, b_{i} with a_{i}, and $W_{j i}$ with $W_{i j}$ to obtain $p\left(v_{i}=1 \mid \mathbf{h}\right)$. In terms of the sigmoid function, we have

$$
p\left(v_{i}=1 \mid \mathbf{h}\right)=\sigma\left(\sum_{j} W_{i j} h_{j}+a_{i}\right) .
$$

Note that while $p(\mathbf{v} \mid \mathbf{h})$ factorises, the marginal $p(\mathbf{v})$ does generally not. The marginal $p(\mathbf{v})$ can here be obtained in closed form up to its normalisation constant.

$$
\begin{align*}
p(\mathbf{v}) & =\sum_{\mathbf{h} \in\{0,1\}^{m}} p(\mathbf{v}, \mathbf{h}) \tag{S.25}\\
& =\frac{1}{Z} \sum_{\mathbf{h} \in\{0,1\}^{m}} \exp \left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h}+\mathbf{a}^{\top} \mathbf{v}+\mathbf{b}^{\top} \mathbf{h}\right) \tag{S.26}\\
& =\frac{1}{Z} \sum_{\mathbf{h} \in\{0,1\}^{m}} \exp \left(\sum_{i j} v_{i} h_{j} W_{i j}+\sum_{i} a_{i} v_{i}+\sum_{j} b_{j} h_{j}\right) \tag{S.27}\\
& =\frac{1}{Z} \sum_{\mathbf{h} \in\{0,1\}^{m}} \exp \left(\sum_{j=1}^{m} h_{j}\left[\sum_{i} v_{i} W_{i j}+b_{j}\right]+\sum_{i} a_{i} v_{i}\right) \tag{S.28}\\
& =\frac{1}{Z} \sum_{\mathbf{h} \in\{0,1\}^{m}} \prod_{j=1}^{m} \exp \left(h_{j}\left[\sum_{i} v_{i} W_{i j}+b_{j}\right]\right) \exp \left(\sum_{i} a_{i} v_{i}\right) \tag{S.29}\\
& =\frac{1}{Z} \exp \left(\sum_{i} a_{i} v_{i}\right) \sum_{\mathbf{h} \in\{0,1\}^{m}} \prod_{j=1}^{m} \exp \left(h_{j}\left[\sum_{i} v_{i} W_{i j}+b_{j}\right]\right) \tag{S.30}\\
& =\frac{1}{Z} \exp \left(\sum_{i} a_{i} v_{i}\right) \sum_{h_{1}, \ldots, h_{m}} \prod_{j=1}^{m} \exp \left(h_{j}\left[\sum_{i} v_{i} W_{i j}+b_{j}\right]\right) \tag{S.31}
\end{align*}
$$

Importantly, each term in the product only depends on a single h_{j}, so that by sequentially applying the distributive law, we have

$$
\begin{align*}
\sum_{h_{1}, \ldots, h_{m}} \prod_{j=1}^{m} \exp \left(h_{j}\left[\sum_{i} v_{i} W_{i j}+b_{j}\right]\right)= & {\left[\sum_{h_{1}, \ldots, h_{m-1}} \prod_{j=1}^{m-1} \exp \left(h_{j}\left[\sum_{i} v_{i} W_{i j}+b_{j}\right]\right)\right] . } \\
& \sum_{h_{m}} \exp \left(h_{m}\left[\sum_{i} v_{i} W_{i m}+b_{m}\right]\right) \tag{S.32}\\
= & \ldots \\
= & \prod_{j=1}^{m}\left[\sum_{h_{j}} \exp \left(h_{j}\left[\sum_{i} v_{i} W_{i j}+b_{j}\right]\right)\right] \tag{S.33}
\end{align*}
$$

Since $h_{j} \in\{0,1\}$, we obtain

$$
\begin{equation*}
\sum_{h_{j}} \exp \left(h_{j}\left[\sum_{i} v_{i} W_{i j}+b_{j}\right]\right)=1+\exp \left(\sum_{i} v_{i} W_{i j}+b_{j}\right) \tag{S.34}
\end{equation*}
$$

and thus

$$
\begin{equation*}
p(\mathbf{v})=\frac{1}{Z} \exp \left(\sum_{i} a_{i} v_{i}\right) \prod_{j=1}^{m}\left[1+\exp \left(\sum_{i} v_{i} W_{i j}+b_{j}\right)\right] . \tag{S.35}
\end{equation*}
$$

Note that in the derivation of $p(\mathbf{v})$ we have not used the assumption that the visibles v_{i} are binary. The same expression would thus obtained if the visibles were defined in another space, e.g. the real numbers.

While $p(\mathbf{v})$ is written as a product, $p(\mathbf{v})$ does not factorise into terms that depend on subsets of the v_{i}. On the contrary, all v_{i} are present in all factors. Since $p(\mathbf{v})$ does not factorise, computing the normalising Z is expensive. For binary visibles $v_{i} \in\{0,1\}, Z$ equals

$$
\begin{equation*}
Z=\sum_{\mathbf{v} \in\{0,1\}^{n}} \exp \left(\sum_{i} a_{i} v_{i}\right) \prod_{j=1}^{m}\left[1+\exp \left(\sum_{i} v_{i} W_{i j}+b_{j}\right)\right] \tag{S.36}
\end{equation*}
$$

where we have to sum over all 2^{n} configurations of the visibles \mathbf{v}. This is computationally expensive, or even prohibitive if n is large ($2^{20}=1048576,2^{30}>10^{9}$). Note that different values of $a_{i}, b_{i}, W_{i j}$ yield different values of Z. (This is a reason why Z is called the partition function when the $a_{i}, b_{i}, W_{i j}$ are free parameters.)
It is instructive to write $p(\mathbf{v})$ in the log-domain,

$$
\begin{equation*}
\log p(\mathbf{v})=\log Z+\sum_{i=1}^{n} a_{i} v_{i}+\sum_{j=1}^{m} \log \left[1+\exp \left(\sum_{i} v_{i} W_{i j}+b_{j}\right)\right], \tag{S.37}
\end{equation*}
$$

and to introduce the nonlinearity $f(u)$,

$$
\begin{equation*}
f(u)=\log [1+\exp (u)], \tag{S.38}
\end{equation*}
$$

which is called the softplus function and plotted below. The softplus function is a smooth approximation of $\max (0, u)$, see e.g. https://en.wikipedia.org/wiki/Rectifier_(neural_ networks)

With the softplus function $f(u)$, we can write $\log p(\mathbf{v})$ as

$$
\begin{equation*}
\log p(\mathbf{v})=\log Z+\sum_{i=1}^{n} a_{i} v_{i}+\sum_{j=1}^{m} f\left(\sum_{i} v_{i} W_{i j}+b_{j}\right) . \tag{S.39}
\end{equation*}
$$

The parameter b_{j} plays the role of a threshold as shown in the figure below. The terms $f\left(\sum_{i} v_{i} W_{i j}+b_{j}\right)$ can be interpreted in terms of feature detection. The sum $\sum_{i} v_{i} W_{i j}$ is the inner product between \mathbf{v} and the j-th column of \mathbf{W}, and the inner product is largest if \mathbf{v} equals the j-th column. We can thus consider the columns of \mathbf{W} to be feature-templates, and the $f\left(\sum_{i} v_{i} W_{i j}+b_{j}\right)$ a way to measure how much of each feature is present in \mathbf{v}.

Further, $\sum_{i} v_{i} W_{i j}+b_{j}$ is also the input to the sigmoid function when computing $p\left(h_{j}=\right.$ $1 \mid \mathbf{v})$. Thus, the conditional probability for h_{j} to be one, i.e. "active", can be considered to be an indicator of the presence of the j-th feature (j-th column of \mathbf{W}) in the input \mathbf{v}. If v is such that $\sum_{i} v_{i} W_{i j}+b_{j}$ is large for many j, i.e. if many features are detected, then $f\left(\sum_{i} v_{i} W_{i j}+b_{j}\right)$ will be non-zero for many j, and $\log p(\mathbf{v})$ will be large.

Exercise 8. Hidden Markov models and change of measure

Consider the following undirected graph for a hidden Markov model where the y_{i} correspond to observed (visible) variables and the x_{i} to unobserved (hidden/latent) variables.

The graph implies the following factorisation

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) \propto \phi_{1}^{y}\left(x_{1}, y_{1}\right) \prod_{i=2}^{t} \phi_{i}^{x}\left(x_{i-1}, x_{i}\right) \phi_{i}^{y}\left(x_{i}, y_{i}\right) \tag{6}
\end{equation*}
$$

where the ϕ_{i}^{x} and ϕ_{i}^{y} are non-negative factors.
Let us consider the situation where $\prod_{i=2}^{t} \phi_{i}^{x}\left(x_{i-1}, x_{i}\right)$ equals

$$
\begin{equation*}
f(\mathbf{x})=\prod_{i=2}^{t} \phi_{i}^{x}\left(x_{i-1}, x_{i}\right)=f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \tag{7}
\end{equation*}
$$

with $\mathbf{x}=\left(x_{1}, \ldots, x_{t}\right)$ and where the f_{i} are (conditional) pdfs. We thus have

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) \propto f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} \phi_{i}^{y}\left(x_{i}, y_{i}\right) \tag{8}
\end{equation*}
$$

(a) Provide a factorised expression for $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$

Solution. For fixed (observed) values of the $y_{i}, p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$ factorises as

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right) \propto f_{1}\left(x_{1}\right) g_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) g_{i}\left(x_{i}\right) \tag{S.40}
\end{equation*}
$$

where $g_{i}\left(x_{i}\right)$ is $\phi_{i}^{y}\left(x_{i}, y_{i}\right)$ for a fixed value of y_{i}.
(b) Draw the undirected graph for $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$

Solution. Conditioning corresponds to removing nodes from an undirected graph. We thus have the following Markov chain for $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$.

(c) Show that if $\phi_{i}^{y}\left(x_{i}, y_{i}\right)$ equals the conditional pdf of y_{i} given x_{i}, i.e. $p\left(y_{i} \mid x_{i}\right)$, the marginal $p\left(x_{1}, \ldots, x_{t}\right)$, obtained by integrating out y_{1}, \ldots, y_{t} from (8), equals $f(\mathbf{x})$.

Solution. In this setting all factors in (8) are conditional pdfs and we are dealing with a directed graphical model that factorises as

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right)=f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} p\left(y_{i} \mid x_{i}\right) \tag{S.41}
\end{equation*}
$$

By integrating over the y_{i}, we have

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{t}\right) & =\int p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{t} \tag{S.42}\\
& =f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \int \prod_{i=1}^{t} p\left(y_{i} \mid x_{i}\right) \mathrm{d} y_{1} \ldots \mathrm{~d} y_{t} \tag{S.43}\\
& =f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} \underbrace{\int p\left(y_{i} \mid x_{i}\right) \mathrm{d} y_{i}}_{1} \tag{S.44}\\
& =f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \tag{S.45}\\
& =f(\mathbf{x}) \tag{S.46}
\end{align*}
$$

(d) Compute the normalising constant for $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$ and express it as an expectation over $f(\mathbf{x})$.

Solution. With

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) \propto f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} \phi_{i}^{y}\left(x_{i}, y_{i}\right) \tag{S.47}
\end{equation*}
$$

The normalising constant is given by

$$
\begin{align*}
Z & =\int f_{1}\left(x_{1}\right) \prod_{2=1}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} g_{i}\left(x_{i}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{t} \tag{S.48}\\
& =\mathbb{E}_{f}\left[\prod_{i=1}^{t} g_{i}\left(x_{i}\right)\right] \tag{S.49}
\end{align*}
$$

Since we can use ancestral sampling to sample from f, the above expectation can be easily computed via sampling.
(e) Express the expectation of a test function $h(\mathbf{x})$ with respect to $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$ as a reweighted expectation with respect to $f(\mathbf{x})$.

Solution. By definition, the expectation over a test function $h(\mathbf{x})$ is

$$
\begin{align*}
\mathbb{E}_{p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)}[h(\mathbf{x})] & =\frac{1}{Z} \int h(\mathbf{x}) f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} g_{i}\left(x_{i}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{t} \tag{S.50}\\
& =\frac{\mathbb{E}_{f}\left[h(\mathbf{x}) \prod_{i} g_{i}\left(x_{i}\right)\right]}{\mathbb{E}_{f}\left[\prod_{i} g_{i}\left(x_{i}\right)\right]} \tag{S.51}
\end{align*}
$$

Both the numerator and denominator can be approximated using samples from f.
Since the $g_{i}\left(x_{i}\right)=\phi_{i}^{y}\left(x_{i}, y_{i}\right)$ involve the observed variables y_{i}, this has a nice interpretation: We can think we have two models for $\mathbf{x}: f(\mathbf{x})$ that does not involve the observations and $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$ that does. Note, however, that unless $\phi_{i}^{y}\left(x_{i}, y_{i}\right)$ is the conditional pdf $p\left(y_{i} \mid x_{i}\right), f(\mathbf{x})$ is not the marginal $p\left(x_{1}, \ldots, x_{t}\right)$ that you would obtain by integrating out the y 's from the joint model. We can thus generally think it is a base distribution that got "enhanced" by a change of measure in our expression for $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$. If $\phi_{i}^{y}\left(x_{i}, y_{i}\right)$ is the conditional pdf $p\left(y_{i} \mid x_{i}\right)$, the change of measure corresponds to going from the prior to the posterior by multiplication with the likelihood (the terms g_{i}).
From the expression for the expectation, we can see that the "enhancing" leads to a corresponding introduction of weights in the expectation that depend via g_{i} on the observations. This can be particularly well seen when we approximate the expectation as a sample average over n samples $\mathbf{x}^{(k)} \sim f(\mathbf{x})$:

$$
\begin{align*}
\mathbb{E}_{p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)}[h(\mathbf{x})] & \approx \sum_{k=1}^{n} W^{(k)} h\left(\mathbf{x}^{(k)}\right) \tag{S.52}\\
W^{(k)} & =\frac{w^{(k)}}{\sum_{k=1}^{n} w^{(k)}} \tag{S.53}\\
w^{(k)} & =\prod_{i} g_{i}\left(x_{i}^{(k)}\right) \tag{S.54}
\end{align*}
$$

where $x_{i}^{(k)}$ is the i-th dimension of the vector $\mathbf{x}^{(k)}$.

