Exercises for the tutorials: 2 and 4.
The other exercises are for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

$$
p\left(x_{1}, \ldots, x_{5}\right) \propto \phi_{12}\left(x_{1}, x_{2}\right) \phi_{13}\left(x_{1}, x_{3}\right) \phi_{14}\left(x_{1}, x_{4}\right) \phi_{23}\left(x_{2}, x_{3}\right) \phi_{25}\left(x_{2}, x_{5}\right) \phi_{45}\left(x_{4}, x_{5}\right)
$$

(a) Visualise it as an undirected graph.
(b) What are the neighbours of x_{3} in the graph?
(c) Do we have $x_{3} \Perp x_{4} \mid x_{1}, x_{2}$?
(d) What is the Markov blanket of x_{4} ?
(e) On which minimal set of variables A do we need to condition to have $x_{1} \Perp x_{5} \mid A$?

Exercise 2. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the graph in Figure 1.

Figure 1: Graph for Exercise 2
(a) What is the set of Gibbs distributions that is induced by the graph?
(b) Let p be a pdf that factorises according to the graph. Does $p\left(x_{3} \mid x_{2}, x_{4}\right)=p\left(x_{3} \mid x_{4}\right)$ hold?
(c) Explain why $x_{2} \Perp x_{5} \mid x_{1}, x_{3}, x_{4}, x_{6}$ holds for all distributions that factorise over the graph.
(d) Assume you would like to approximate $\mathbb{E}\left(x_{1} x_{2} x_{5} \mid x_{3}, x_{4}\right)$, i.e. the expected value of the product of x_{1}, x_{2}, and x_{5} given x_{3} and x_{4}, with a sample average. Do you need to have joint observations for all five variables x_{1}, \ldots, x_{5} ?

Exercise 3. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the following graph, sometimes called a diamond configuration.

(a) How do the pdfs/pmfs of the undirected graphical model factorise?
(b) List all independencies that hold for the undirected graphical model.

Exercise 4. Factorisation from the Markov blankets I

Assume you know the following Markov blankets for all variables $x_{1}, \ldots, x_{4}, y_{1}, \ldots y_{4}$ of a pdf or $\operatorname{pmf} p\left(x_{1}, \ldots, x_{4}, y_{1}, \ldots, y_{4}\right)$.

$$
\begin{array}{llll}
\operatorname{MB}\left(x_{1}\right)=\left\{x_{2}, y_{1}\right\} & \operatorname{MB}\left(x_{2}\right)=\left\{x_{1}, x_{3}, y_{2}\right\} & \operatorname{MB}\left(x_{3}\right)=\left\{x_{2}, x_{4}, y_{3}\right\} & \operatorname{MB}\left(x_{4}\right)=\left\{x_{3}, y_{4}\right\} \\
\operatorname{MB}\left(y_{1}\right)=\left\{x_{1}\right\} & \operatorname{MB}\left(y_{2}\right)=\left\{x_{2}\right\} & \operatorname{MB}\left(y_{3}\right)=\left\{x_{3}\right\} & \operatorname{MB}\left(y_{4}\right)=\left\{x_{4}\right\} \tag{2}
\end{array}
$$

Assuming that p is positive for all possible values of its variables, how does p factorise?

Exercise 5. Factorisation from the Markov blankets II

We consider the same setup as in Exercise 4 but we now assume that we do not know all Markov blankets but only

$$
\begin{equation*}
\operatorname{MB}\left(x_{1}\right)=\left\{x_{2}, y_{1}\right\} \quad \operatorname{MB}\left(x_{2}\right)=\left\{x_{1}, x_{3}, y_{2}\right\} \quad \operatorname{MB}\left(x_{3}\right)=\left\{x_{2}, x_{4}, y_{3}\right\} \quad \operatorname{MB}\left(x_{4}\right)=\left\{x_{3}, y_{4}\right\} \tag{3}
\end{equation*}
$$

Without inserting more independencies than those specified by the Markov blankets, draw the graph over which p factorises and state the factorisation. (Again assume that p is positive for all possible values of its variables).

Exercise 6. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time. The probability density or mass functions over d random variables x_{1}, \ldots, x_{d} then take the form

$$
p\left(x_{1}, \ldots, x_{d}\right) \propto \prod_{i \leq j} \phi_{i j}\left(x_{i}, x_{j}\right)
$$

Such models are sometimes called pairwise Markov networks.
(a) Let $p\left(x_{1}, \ldots, x_{d}\right) \propto \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}\right)$ where \mathbf{A} is symmetric and $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right)^{\top}$. What are the corresponding factors $\phi_{i j}$ for $i \leq j$?
(b) For $p\left(x_{1}, \ldots, x_{d}\right) \propto \exp \left(-\frac{1}{2} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-\mathbf{b}^{\top} \mathbf{x}\right)$, show that $x_{i} \Perp x_{j} \mid\left\{x_{1}, \ldots, x_{d}\right\} \backslash\left\{x_{i}, x_{j}\right\}$ if the (i, j)-th element of \mathbf{A} is zero.

Exercise 7. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables $\mathbf{v}=$ $\left(v_{1}, \ldots, v_{n}\right)^{\top}$ and $\mathbf{h}=\left(h_{1}, \ldots, h_{m}\right)^{\top}$ with a probability mass function equal to

$$
\begin{equation*}
p(\mathbf{v}, \mathbf{h}) \propto \exp \left(\mathbf{v}^{\top} \mathbf{W} \mathbf{h}+\mathbf{a}^{\top} \mathbf{v}+\mathbf{b}^{\top} \mathbf{h}\right), \tag{4}
\end{equation*}
$$

where \mathbf{W} is a $n \times m$ matrix. Both the v_{i} and h_{i} take values in $\{0,1\}$. The v_{i} are called the "visibles" variables since they are assumed to be observed while the h_{i} are the hidden variables since it is assumed that we cannot measure them.
(a) Use graph separation to show that the joint conditional $p(\mathbf{h} \mid \mathbf{v})$ factorises as

$$
p(\mathbf{h} \mid \mathbf{v})=\prod_{i=1}^{m} p\left(h_{i} \mid \mathbf{v}\right) .
$$

(b) Show that

$$
\begin{equation*}
p\left(h_{i}=1 \mid \mathbf{v}\right)=\frac{1}{1+\exp \left(-b_{i}-\sum_{j} W_{j i} v_{j}\right)} \tag{5}
\end{equation*}
$$

where $W_{j i}$ is the $(j i)$-th element of \mathbf{W}, so that $\sum_{j} W_{j i} v_{j}$ is the inner product (scalar product) between the i-th column of \mathbf{W} and \mathbf{v}.
(c) Use a symmetry argument to show that

$$
p(\mathbf{v} \mid \mathbf{h})=\prod_{i} p\left(v_{i} \mid \mathbf{h}\right) \quad \text { and } \quad p\left(v_{i}=1 \mid \mathbf{h}\right)=\frac{1}{1+\exp \left(-a_{i}-\sum_{j} W_{i j} h_{j}\right)}
$$

Exercise 8. Hidden Markov models and change of measure

Consider the following undirected graph for a hidden Markov model where the y_{i} correspond to observed (visible) variables and the x_{i} to unobserved (hidden/latent) variables.

The graph implies the following factorisation

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) \propto \phi_{1}^{y}\left(x_{1}, y_{1}\right) \prod_{i=2}^{t} \phi_{i}^{x}\left(x_{i-1}, x_{i}\right) \phi_{i}^{y}\left(x_{i}, y_{i}\right), \tag{6}
\end{equation*}
$$

where the ϕ_{i}^{x} and ϕ_{i}^{y} are non-negative factors.
Let us consider the situation where $\prod_{i=2}^{t} \phi_{i}^{x}\left(x_{i-1}, x_{i}\right)$ equals

$$
\begin{equation*}
f(\mathbf{x})=\prod_{i=2}^{t} \phi_{i}^{x}\left(x_{i-1}, x_{i}\right)=f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \tag{7}
\end{equation*}
$$

with $\mathbf{x}=\left(x_{1}, \ldots, x_{t}\right)$ and where the f_{i} are (conditional) pdfs. We thus have

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{t}, y_{1}, \ldots, y_{t}\right) \propto f_{1}\left(x_{1}\right) \prod_{i=2}^{t} f_{i}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} \phi_{i}^{y}\left(x_{i}, y_{i}\right) \tag{8}
\end{equation*}
$$

(a) Provide a factorised expression for $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$
(b) Draw the undirected graph for $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$
(c) Show that if $\phi_{i}^{y}\left(x_{i}, y_{i}\right)$ equals the conditional pdf of y_{i} given x_{i}, i.e. $p\left(y_{i} \mid x_{i}\right)$, the marginal $p\left(x_{1}, \ldots, x_{t}\right)$, obtained by integrating out y_{1}, \ldots, y_{t} from (8), equals $f(\mathbf{x})$.
(d) Compute the normalising constant for $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$ and express it as an expectation over $f(\mathbf{x})$.
(e) Express the expectation of a test function $h(\mathbf{x})$ with respect to $p\left(x_{1}, \ldots, x_{t} \mid y_{1}, \ldots, y_{t}\right)$ as a reweighted expectation with respect to $f(\mathbf{x})$.

