These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the exercises.

Structural Causal Model: A structural causal model (SCM) M is given by the set of assignments

$$X_i \coloneqq f_i(Pa_i, U_i),$$

one for each variable in the network. Here the f_i s are deterministic functions, and the U_i s are jointly independent noise variables.

Interventions and the do-operator For a given node X in M the assignment X := f(Pa, U) is replaced by by X := x. We denote this modified model as M' = M[X := x] or M' = M; do(X := x). Graphically, the operation eliminates all incoming edges into X.

After applying the do-operator, we obtain probabilities for an event E under the intervention as $p_{M[X:=x]}(E)$, which can also be written as $p(E|do(X \coloneqq x))$.

Counterfactuals: General recipe

- 1. Abduction: Condition the joint distribution of the exogenous variables $U = (U_1, \ldots, U_d)$ on the event E = e to obtain p(U|E = e).
- 2. Action: Perform the do-intervention $X \coloneqq x$ in M resulting in the model $M' = M[X \coloneqq x]$ and the modified graph.
- 3. **Prediction:** Compute the target counterfactual using the noise distribution p(U|E = e) in M'.

I-map — The set of independencies that a graph K asserts is denoted $\mathcal{I}(K)$. K is said to be an independency map (I-map) for a set of independencies \mathcal{U} if,

$$\mathcal{I}(K) \subseteq \mathcal{U} \tag{1}$$

A complete graph is an I–map since it makes no assertions, this means that an I–map is not necessarily useful.

While the set of "target" independencies \mathcal{U} can be specified in any way, they are often the independencies that a certain distribution p satisfies. This set of independencies is denoted by $\mathcal{I}(p)$.

Minimal I-map — A "sparsified" I-map: A graph K such that if any edge is removed, $\mathcal{I}(K) \notin \mathcal{U}$.

P-map — K is said to be a perfect map (P-map) for a set of independencies \mathcal{U} if $\mathcal{I}(K) = \mathcal{U}$

Constructing minimal I-maps

Undirected graphs — $\forall x_i \in N$, determine MB (x_i) and connect x_i to all variables in MB (x_i) .

Directed graphs — Assume an ordering $\mathbf{x} = (x_1, \ldots, x_d)$, then $\forall x_i \in \mathbf{x}$ set pa_i to π_i , where π_i is a minimal subset of the pre_i such that

$$x_i \perp \{ \operatorname{pre}_i \setminus \pi_i \} \mid \pi_i \tag{2}$$

I-equivalence

Undirected graphs — $\mathcal{I}(H_1)$ and $\mathcal{I}(H_2)$ are I-equivalent *iff* they have the same skeleton.

Directed graphs — $\mathcal{I}(G_1)$ and $\mathcal{I}(G_2)$ are I-equivalent *iff* they have the same skeleton and set of immoralities.

Undirected and directed graphs — $\mathcal{I}(H)$ and $\mathcal{I}(G)$ are I-equivalent *iff* they have the same skeleton and the DAG G does not have immoralities.

- Skeleton graph without arrow heads, i.e. connections irrespective of direction
- Immoralities the set of collider nodes without covering edge (without "married parents")