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The other exercises are for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Cause-effect interventions

[Peters, Janzing and Schölkopf, ex 3.2] Suppose that the distribution p(X,Y ) is given by the SCM

X := UX , Y := 4 ·X + UY , (1)

with UX ∼ N(0, 1) and UY ∼ N(0, 1) (iid).

(a) Consider computing p(Y |do(X := x)). Draw the resulting modified graphical model after the do-
operation X := x. Compute p(Y |do(X := 2)).

Solution. The initial graphical model is X → Y . As X has no incoming arrows, the
modified graphical model is the same as the initial one. So we now consider inference
for Y in the unmodified graphical model, i.e. p(Y |X = 2). Hence Y := 4 · 2 + UY , so
E[Y |do(X := 2)] = 8, and V[Y |do(X := 2)] = V[UY ] = 1. As Y |do(X := 2) is a linear
combination of a constant and the Gaussian RV UY , we have that Y |do(Y := 2) ∼ N(8, 1).

(b) Consider computing p(X|do(Y := y)). Draw the resulting modified graphical model after the do-
operation Y := y. Compute p(X|do(Y := 7)).

Solution. The initial graphical model is X → Y . The modification for do(Y := 7) drops
the incoming edges to Y , so the modified graphical model has X and Y as disconnected
(independent) nodes. So p(X|do(Y := 7)) = p(X) ∼ N(0, 1).

Exercise 2. Adjustment formula

(a) Consider the graphical model M shown in Fig. 1(a). Now assume that we intervene on node X
to set X := x. Specify the factorization of the modified graphical model (post-intervention), and
derive the adjustment formula for p(Y = y|do(X := x)) in terms of the conditional probability
distributions specified in M .
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Figure 1: Figures for parts (a) and (b) of the adjustment formula question.
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Solution. The modified graphical model M ′ = M [X := x] deletes all incoming edges into
node X, so in this case this is the edge Z → X. Thus we have the truncated factorization
pM [X:=x](X = x, Y = y, Z = z,W = w) = p(Z = z)p(W = w|X = x)p(Y = y|X = x, Z =
z,W = w) if X = x, and 0 if X 6= x.

The adjustment formula is given by inference in M ′, i.e.

p(Y = y|do(X := x)) = pM ′(Y = y|X = x) = pM ′(Y = y,X = x)/pM ′(X = x) = pM ′(Y = y,X = x)

=
∑
w,z

p(Z = z)p(W = w|X = x)p(Y = y|X = x,W = w,Z = z).

In the top line we have used pM ′(X = x) = 1 as shown in the slides. Note that here W is
a mediator between X and Y .

(b) Now assume that the graph M is as shown in Fig. 1(b). Answer the same questions as for part (a)
above.

Solution. As above, the modified graphical model M ′ deletes all incoming edges into
node X, so in this case this is the edge Z → X. Thus we have pM [X:=x](X = x, Y = y, Z =
z,W = w) = p(Z = z)p(Y = y|X = x, Z = z)p(W = w|X = x, Y = y) if X = x, and 0 if
X 6= x.

However, in M ′ note that the variable W can be marginalized out, so we have

p(Y = y|do(X := x)) = pM ′(Y = y|X = x) = pM ′(Y = y,X = x)/pM ′(X = x) = pM ′(Y = y,X = x)

=
∑
w,z

p(Y = y|X = x, Z = z)p(W = w|X = x, Y = y)p(Z = z)

=
∑
z

p(Y = y|X = x, Z = z)p(Z = z)
∑
w

p(W = w|X = x, Y = y)

=
∑
z

p(Y = y|X = x, Z = z)p(Z = z).

Exercise 3. Counterfactual example

[Based on Pearl, Glymour and Jewell (2016) 4.2.3] Let X denote the amount of time a student spends in
an after-school remedial program, H the amount of homework a student does, and Y the student’s score
on the exam. We have the following SCM M :

X := UX ,

H := a ·X + UH ,

Y := b ·X + c ·H + UY ,

where the U ’s are all independent. It has been determined that a = 0.5, b = 0.7 and c = 0.4 provide a
good model for the population.

We now consider a student Jane for whom we measure X = 0.5, H = 1 and Y = 1.5. What would Jane’s
score have been if they had doubled their homework time H?

HINT: You can make use of the general recipe for computing counterfactuals in SCMs from the lecture
slides.
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(b) after intervention

X Y

H

X Y

H

(a) before intervention

Figure 2: SCM for the homework problem, show (a) before and (b) after intervention.

Solution. We follow the general recipe for counterfactuals as given in the lectures. The first
stage is infer the U ’s given the information available. In this case we note that the values of
UX , UH and UY can be determined exactly from the information given, i.e.,

UX = 0.5

UH = 1− 0.5 · 0.5 = 0.75

UY = 1.5− 0.7 · 0.5− 0.4 · 1 = 0.75.

Next we perform the do-intervention H := 2 on the SCM, as shown in Figure 2(b). Finally we
use the U values in the modified SCM, to obtain

X = UX = 0.5

H := 2.0

Y = b ·X + c ·H + UY = 0.7 · 0.5 + 0.4 · 2.0 + 0.75 = 1.90.

Thus we conclude that Jane’s exam score would have increased from 1.5 to 1.9 if they had
doubled the amount of homework done.

Exercise 4. I-equivalence

(a) Which of three graphs represent the same set of independencies? Explain.
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Solution. To check whether the graphs are I-equivalent, we have to check the skeletons
and the immoralities. All have the same skeleton, but graph 1 and graph 2 also have the
same immorality. The answer is thus: graph 1 and 2 encode the same independencies.
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(b) Which of three graphs represent the same set of independencies? Explain.

v x

w y

z

Graph 1
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z

Graph 2
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w y

z

Graph 3

Solution. The skeleton of graph 3 is different from the skeleton of graphs 1 and 2, so
that graph 3 cannot be I-equivalent to graph 1 or 2, and we do not need to further check
the immoralities for graph 3. Graph 1 and 2 have the same skeleton, and they also have
the same immorality. Hence, graph 1 and 2 are I-equivalent. Note that node w in graph 1
is in a collider configuration along trail v − w − x but it is not an immorality because its
parents are connected (covering edge); equivalently for node v in graph 2.

v x

w y

z

skeleton

v x

w y

z

immorality

(c) Assume the graph below is a perfect map for a set of independencies U .

x1 x2

x3 x4 x5

x6 x7

Graph 0

For each of the three graphs below, explain whether the graph is a perfect map, an I-map, or not
an I-map for U .
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x1 x2

x3 x4 x5

x6 x7

Graph 1

x1 x2

x3 x4 x5

x6 x7

Graph 2

x1 x2

x3 x4 x5

x6 x7

Graph 3

Solution.

• Graph 1 has an immorality x2 → x5 ← x7 which graph 0 does not have. The graph is
thus not I-equivalent to graph 0 and can thus not be a perfect map. Moreover, graph
1 asserts that x2 ⊥⊥ x7|x4 which is not case for graph 0. Since graph 0 is a perfect
map for U , graph 1 asserts an independency that does not hold for U and can thus
not be an I-map for U .

• Graph 2 has an immorality x1 → x3 ← x7 which graph 0 does not have. Graph 2
thus asserts that x1 ⊥⊥ x7, which is not the case for graph 0. Hence, for the same
reason as for graph 1, graph 2 is not an I-map for U .

• Graph 3 has the same skeleton and set of immoralities as graph 0. It is thus I-
equivalent to graph 0, and hence also a perfect map.

Exercise 5. Minimal I-maps

(a) Assume that the graph G in Figure 3 is a perfect I-map for p(a, z, q, e, h). Determine the minimal

directed I-map using the ordering (e, h, q, z, a). Is the obtained graph I-equivalent to G?

a z

q

e

h

Figure 3: Perfect I-map G for Exercise 5, question (a).

Solution. To find a minimal I-map, we can use the procedure that we used to simplify the
chain rule and visualise the obtained factorisation as a DAG. Since we are given a perfect
I-map G for p, we can use the graph to check whether p satisfies a certain independency.
This gives the following recipe:

1. Assume an ordering of the variables. Denote the ordered random variables by x1, . . . , xd.

2. For each i, find a minimal subset of variables πi ⊆ prei such that

xi ⊥⊥ {prei \ πi} | πi
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is in I(G) (only works if G is a perfect I-map for I(p))

3. Construct a graph with parents pai = πi.

Note: For I-maps G that are not perfect, if the graph does not indicate that a certain
independency holds, we have to check that the independency indeed does not hold for p.
If we don’t, we won’t obtain a minimal I-map but just an I-map for I(p). This is because
p may have independencies that are not encoded in the graph G.

Given the ordering (e, h, q, z, a), we build a graph where e is the root. From Figure 3 (and
the perfect map assumption), we see that h ⊥⊥ e does not hold. We thus set e as parent
of h, see first graph in Figure 4. Then:

• We consider q: preq = {e, h}. There is no subset πq of preq on which we could
condition to make q independent of preq \ πq, so that we set the parents of q in the
graph to paq = {e, h}. (Second graph in Figure 4.)

• We consider z: prez = {e, h, q}. From the graph in Figure 3, we see that for πz =
{q, h} we have z ⊥⊥ prez \πz|πz. Note that πz = {q} does not work because z ⊥⊥ e, h|q
does not hold. We thus set paz = {q, h}. (Third graph in Figure 4.)

• We consider a: prea = {e, h, q, z}. This is the last node in the ordering. To find
the minimal set πa for which a ⊥⊥ prea \ πa|πa, we can determine its Markov blanket
MB(a). The Markov blanket is the set of parents (none), children (q), and co-parents
of a (z) in Figure 3, so that MB(a) = {q, z}. We thus set paa = {q, z}.(Fourth graph
in Figure 4.)
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Figure 4: Exercise 5, Question (a):Construction of a minimal directed I-map for the ordering
(e, h, q, z, a).

Since the skeleton in the obtained minimal I-map is different from the skeleton of G, we do
not have I-equivalence. Note that the ordering (e, h, q, z, a) yields a denser graph (Figure
4) than the graph in Figure 3. Whilst a minimal I-map, the graph does e.g. not show that
a ⊥⊥ z. Furthermore, the causal interpretation of the two graphs is different.

(b) For the collection of random variables (a, z, h, q, e) you are given the following Markov blankets for
each variable:

• MB(a) = {q,z}
• MB(z) = {a,q,h}
• MB(h) = {z}
• MB(q) = {a,z,e}
• MB(e) = {q}

(i) Draw the undirected minimal I-map representing the independencies.

(ii) Indicate a Gibbs distribution that satisfies the independence relations specified by the Markov
blankets.
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Solution. Connecting each variable to all variables in its Markov blanket yields the
desired undirected minimal I-map (see lecture slides). Note that the Markov blankets are
not mutually disjoint.

a z
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h

After MB(a)

a z

q

e

h

After MB(z)

a z

q

e

h

After MB(q)

For positive distributions, the set of distributions that satisfy the local Markov property
relative to a graph (as given by the Markov blankets) is the same as the set of Gibbs
distributions that factorise according to the graph. Given the I-map, we can now easily
find the Gibbs distribution

p(a, z, h, q, e) =
1

Z
φ1(a, z, q)φ2(q, e)φ3(z, h),

where the φi must take positive values on their domain. Note that we used the maximal
clique (a, z, q).

Exercise 6. I-equivalence between directed and undirected graphs

(a) Verify that the following two graphs are I-equivalent by listing and comparing the independencies
that each graph implies.

z

y

x

u

z

y

x

u

Solution. First, note that both graphs share the same skeleton and the only reason that
they are not fully connected is the missing edge between x and z.

For the DAG, there is also only one ordering that is topological to the graph: x, u, y, z.
The missing edge between x and y corresponds to the only independency encoded by the
graph: z ⊥⊥ prez \ paz|paz, i.e.

z ⊥⊥ x|u, y.
This is the same independency that we get from the directed local Markov property.

For the undirected graph,
z ⊥⊥ x|u, y

holds because u, y block all paths between z and x. All variables but z and x are connected
to each other, so that no further independency can hold.

Hence both graphs only encode z ⊥⊥ x|u, y and they are thus I-equivalent.
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(b) Are the following two graphs, which are directed and undirected hidden Markov models, I-equivalent?

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Solution. The skeleton of the two graphs is the same and there are no immoralities.
Hence, the two graphs are I-equivalent.

(c) Are the following two graphs I-equivalent?

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Solution. The two graphs are not I-equivalent because x1−x2−x3 forms an immorality.
Hence, the undirected graph encodes x1 ⊥⊥ x3|x2 which is not represented in the directed
graph. On the other hand, the directed graph asserts x1 ⊥⊥ x3 which is not represented in
the undirected graph.

Exercise 7. Moralisation: Converting DAGs to undirected minimal I-maps

In the lecture, we had the following recipe to construct undirected minimal I-maps for I(p):

• Determine the Markov blanket for each variable xi

• Construct a graph where the neighbours of xi are given by its Markov blanket.

We can adapt the recipe to construct an undirected minimal I-map for the independencies I(G) encoded
by a DAG G. What we need to do is to use G to read out the Markov blankets for the variables xi rather
than determining the Markov blankets from the distribution p.

Show that this procedure leads to the following recipe to convert DAGs to undirected minimal I-maps:

1. For all immoralities in the graph: add edges between all parents of the collider node.

2. Make all edges in the graph undirected.

The first step is sometimes called “moralisation” because we “marry” all the parents in the graph that are
not already directly connected by an edge. The resulting undirected graph is called the moral graph of G,
sometimes denoted by M(G).

Solution. The Markov blanket of a variable x is the set of its parents, children, and co-parents,
as shown in the graph below in sub-figure (a). The parents and children are connected to x
in the directed graph, but the co-parents are not directly connected to x. Hence, according to
“Construct a graph where the neighbours of xi are its Markov blanket.”, we need to introduce
edges between x and all its co-parents. This gives the intermediate graph in sub-figure (b).
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Now, considering the top-left parent of x, we see that for that node, the Markov blanket includes
the other parents of x. This means that we need to connect all parents of x, which gives the
graph in sub-figure (c). This is sometimes called “marrying” the parents of x. Continuing in
this way, we see that we need to “marry” all parents in the graph that are not already married.

Finally, we need to make all edges in the graph undirected, which gives sub-figure (d).

A simpler approach is to note that the DAG specifies the factorisation p(x) =
∏

i p(xi|pai). We
can consider each conditional p(xi|pai) to be a factor φi(xi, pai) so that we obtain the Gibbs
distribution p(x) =

∏
i φi(xi|pai). Visualising the distribution by connecting all variables in the

same factor φi(xi|pai) leads to the “marriage” of all parents of xi. This corresponds to the first
step in the recipe because xi is in a collider configuration with respect to the parent nodes. Not
all parents form an immorality but this does here not matter because those that do not form an
immorality are already connected by a covering edge in the first place.

x

(a) DAG

x

(b) Intermediate step 1

x

(c) Intermediate step 2

x

(d) Undirected graph

Figure 5: Answer to Exercise 7: Illustrating the moralisation process

Exercise 8. Moralisation exercise

For the DAG G below find the minimal undirected I-map for I(G).

x2x1 x3

x4 x5

x6 x7

Solution. To derive an undirected minimal I-map from a directed one, we have to construct
the moralised graph where the “unmarried” parents are connected by a covering edge. This is
because each conditional p(xi|pai) corresponds to a factor φi(xi,pai) and we need to connect all
variables that are arguments of the same factor with edges.

Statistically, the reason for marrying the parents is as follows: An independency x ⊥⊥ y|{child, other nodes}
does not hold in the directed graph in case of collider connections but would hold in the undi-
rected graph if we didn’t marry the parents. Hence links between the parents must be added.

It is important to add edges between all parents of a node. Here, p(x4|x1, x2, x3) corresponds
to a factor φ(x4, x1, x2, x3) so that all four variables need to be connected. Just adding edges
x1 − x2 and x2 − x3 would not be enough.

9 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/


The moral graph, which is the requested minimal undirected I-map, is shown below.

x2x1 x3

x4 x5

x6 x7

Exercise 9. Moralisation exercise

Consider the DAG G:

y

z1 z2

x1 x2 x3 x4 x5 x6

A friend claims that the undirected graph below is the moral graph M(G) of G. Is your friend correct? If
not, state which edges needed to be removed or added, and explain, in terms of represented independencies,
why the changes are necessary for the graph to become the moral graph of G.

y

z1 z2

x1 x2 x3 x4 x5 x6

Solution. The moral graph M(G) is an undirected minimal I-map of the independencies
represented by G. Following the procedure of connecting “unmarried” parents of colliders, we
obtain the following moral graph of G:
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y

z1 z2

x1 x2 x3 x4 x5 x6

We can thus see that the friend’s undirected graph is not the moral graph of G.

The edge between x1 and x6 can be removed. This is because for G, we have e.g. the indepen-
dencies x1 ⊥⊥ x6|z1, x1 ⊥⊥ x6|z2, x1 ⊥⊥ x6|z1, z2 which is not represented by the drawn undirected
graph.

We need to add edges between x1 and x3, and between x4 and x6. Otherwise, the undirected
graph makes the wrong independency assertion that x1 ⊥⊥ x3|x2, z1 (and equivalent for x4 and
x6).

Exercise 10. Triangulation: Converting undirected graphs to directed minimal I-
maps

In Exercise 7 we adapted a recipe for constructing undirected minimal I-maps for I(p) to the case of
I(G), where G is a DAG. The key difference was that we used the graph G to determine independencies
rather than the distribution p.

We can similarly adapt the recipe for constructing a directed minimal I-map for I(p) to build a directed
minimal I-map for I(H), where H is an undirected graph:

1. Choose an ordering of the random variables.

2. For all variables xi, use H to determine a minimal subset πi of the predecessors prei such that

xi ⊥⊥ (prei \ πi) | πi

holds.

3. Construct a DAG with the πi as parents pai of xi.

Remarks: (1) Directed minimal I-maps obtained with different orderings are generally not I-equivalent.
(2) The directed minimal I-maps obtained with the above method are always chordal graphs. Chordal
graphs are graphs where the longest trail without shortcuts is a triangle (https: // en. wikipedia. org/
wiki/ Chordal_ graph ). They are thus also called triangulated graphs. We obtain chordal graphs because
if we had trails without shortcuts that involved more than 3 nodes, we would necessarily have an immorality
in the graph. But immoralities encode independencies that an undirected graph cannot represent, which
would make the DAG not an I-map for I(H) any more.

(a) Let H be the undirected graph below. Determine the directed minimal I-map for I(H) with the
variable ordering x1, x2, x3, x4, x5.
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x1 x2

x3 x4

x5

Solution. We use the ordering x1, x2, x3, x4, x5 and follow the conversion procedure:

• x2 is not independent from x1 so that we set pa2 = {x1}. See first graph in Figure 6.

• Since x3 is connected to both x1 and x2, we don’t have x3 ⊥⊥ x2, x1. We cannot make
x3 independent from x2 by conditioning on x1 because there are two paths from x3
to x2 and x1 only blocks the upper one. Moreover, x1 is a neighbour of x3 so that
conditioning on x2 does make them independent. Hence we must set pa3 = {x1, x2}.
See second graph in Figure 6.

• For x4, we see from the undirected graph, that x4 ⊥⊥ x1 | x3, x2. The graph further
shows that removing either x3 or x2 from the conditioning set is not possible and
conditioning on x1 won’t make x4 independent from x2 or x3. We thus have pa4 =
{x2, x3}. See fourth graph in Figure 6.

• The same reasoning shows that pa5 = {x3, x4}. See last graph in Figure 6.

This results in the triangulated directed graph in Figure 6 on the right.

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

Figure 6: . Answer to Exercise 10, Question (a).

To see why triangulation is necessary consider the case where we didn’t have the edge
between x2 and x3 as in Figure 7. The directed graph would then imply that x3 ⊥⊥ x2 | x1
(check!). But this independency assertion does not hold in the undirected graph so that
the graph in Figure 7 is not an I-map.

(b) For the undirected graph from question (a) above, which variable ordering yields the directed mini-
mal I-map below?

x1 x2

x3 x4

x5
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x1 x2

x3 x4

x5

Figure 7: Not a directed I-map for the undirected graphical model defined by the graph in
Exercise 10, Question (a).

Solution. x1 is the root of the DAG, so it comes first. Next in the ordering are the
children of x1: x2, x3, x4. Since x3 is a child of x4, and x4 a child of x2, we must have
x1, x2, x4, x3. Furthermore, x3 must come before x5 in the ordering since x5 is a child of
x3, hence the ordering used must have been: x1, x2, x4, x3, x5.

Exercise 11. I-maps, minimal I-maps, and I-equivalency

Consider the following probability density function for random variables x1, . . . , x6.

pa(x1, . . . , x6) = p(x1)p(x2)p(x3|x1, x2)p(x4|x2)p(x5|x1)p(x6|x3, x4, x5)

For each of the two graphs below, explain whether it is a minimal I-map, not a minimal I-map but still
an I-map, or not an I-map for the independencies that hold for pa.

x1 x2

x3 x4x5

x6

graph 1

x1 x2

x3 x4x5

x6

graph 2

Solution. The pdf can be visualised as the following directed graph, which is a minimal I-map
for it.

x1 x2

x3 x4x5

x6
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Graph 1 defines distributions that factorise as

pb(x) = p(x1)p(x2)p(x3|x1, x2)p(x4|x2, x3)p(x5|x1, x3)p(x6|x3, x4, x5). (S.1)

Comparing with pa(x1, . . . , x6), we see that only the conditionals p(x4|x2, x3) and p(x5|x1, x3)
are different. Specifically, their conditioning set includes x3, which means that Graph 1 encodes
fewer independencies than what pa(x1, . . . , x6) satisfies. In particular x4 ⊥⊥ x3|x2 and x5 ⊥⊥ x3|x1
are not represented in the graph. This means that we could remove x3 from the conditioning
sets, or equivalently remove the edges x3 → x4 and x3 → x5 from the graph without introducing
independence assertions that do not hold for pa. This means graph 1 is an I-map but not a
minimal I-map.

Graph 2 is not an I-map. To be an undirected minimal I-map, we had to connect variables x5
and x4 that are parents of x6. Graph 2 wrongly claims that x5 ⊥⊥ x4 | x1, x3, x6.

Exercise 12. Limits of directed and undirected graphical models

We here consider the probabilistic model p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2) where p(y1, y2|x1, x2)
factorises as

p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2) (2)

with n(x1, x2) equal to

n(x1, x2) =

(∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2

)−1

. (3)

In the lecture “Factor Graphs”, we used the model to illustrate the setup where x1 and x2 are two inde-
pendent inputs that each control the interacting variables y1 and y2 (see graph below).

some interaction

x1 x2

y1 y2

(a) Use the basic characterisations of statistical independence

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = p(u|z)p(v|z) (4)

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = a(u, z)b(v, z) (a(u, z) ≥ 0, b(v, z) ≥ 0) (5)

to show that p(y1, y2, x1, x2) satisfies the following independencies

x1 ⊥⊥ x2 x1 ⊥⊥ y2 | y1, x2 x2 ⊥⊥ y1 | y2, x1

Solution. The pdf/pmf is

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)
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For x1 ⊥⊥ x2

We compute p(x1, x2) as

p(x1, x2) =

∫
p(y1, y2, x1, x2)dy1dy2 (S.2)

=

∫
p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)dy1dy2 (S.3)

= n(x1, x2)p(x1)p(x2)

∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2 (S.4)

(3)
= n(x1, x2)p(x1)p(x2)

1

n(x1, x2)
(S.5)

= p(x1)p(x2). (S.6)

Since p(x1) and p(x2) are the univariate marginals of x1 and x2, respectively, it follows
from (4) that x1 ⊥⊥ x2.

For x1 ⊥⊥ y2 | y1,x2

We rewrite p(y1, y2, x1, x2) as

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2) (S.7)

= [p(y1|x1)p(x1)n(x1, x2)] [p(y2|x2)φ(y1, y2)p(x2)] (S.8)

= φA(x1, y1, x2)φB(y2, y1, x2) (S.9)

With (5), we have that x1 ⊥⊥ y2 | y1, x2. Note that p(x2) can be associated either with φA
or with φB.

For x2 ⊥⊥ y1 | y2,x1

We use here the same approach as for x1 ⊥⊥ y2 | y1, x2. (By symmetry considerations,
we could immediately see that the relation holds but let us write it out for clarity). We
rewrite p(y1, y2, x1, x2) as

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2) (S.10)

= [p(y2|x2)n(x1, x2)p(x2)p(x1))] [p(y1|x1)φ(y1, y2)]) (S.11)

= φ̃A(x2, x1, y2)φ̃B(y1, y2, x1) (S.12)

With (5), we have that x2 ⊥⊥ y1 | y2, x1.

(b) Is there an undirected perfect map for the independencies satisfied by p(y1, y2, x1, x2)?

Solution. We write

p(y1, y2, x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2)p(x1)p(x2)

as a Gibbs distribution

p(y1, y2, x1, x2) = φ1(y1, x1)φ2(y2, x2)φ3(y1, y2)φ4(x1, x2) with (S.13)

φ1(y1, x1) = p(y1|x1)p(x1) (S.14)

φ2(y2, x2) = p(y2|x2)p(x2) (S.15)

φ3(y1, y2) = φ(y1, y2) (S.16)

φ4(x1, x2) = n(x1, x2). (S.17)

Visualising it as an undirected graph gives an I-map:
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x1 x2

y1 y2

While the graph implies x1 ⊥⊥ y2 | y1, x2 and x2 ⊥⊥ y1 | y2, x1, the independency x1 ⊥⊥ x2
is not represented. Hence the graph is not a perfect map. Note further that removing any
edge would result in a graph that is not an I-map for I(p) anymore. Hence the graph is a
minimal I-map for I(p) but that we cannot obtain a perfect I-map.

(c) Is there a directed perfect map for the independencies satisfied by p(y1, y2, x1, x2)?

Solution. We construct directed minimal I-maps for p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2)
for different orderings as explained in the lecture. We will see that they do not represent
all independencies in I(p) and hence that they are not perfect I-maps.

To guarantee unconditional independence of x1 and x2, the two variables must come first
in the orderings (either x1 and then x2 or the other way around).

If we use the ordering x1, x2, y1, y2, and that

• x1 ⊥⊥ x2
• y2 ⊥⊥ x1|y1, x2, which is y2 ⊥⊥ pre(y2) \ π|π for π = (y1, x2)

are in I(p), we obtain the following directed minimal I-map:

x1 x2

y1 y2

The graphs misses x2 ⊥⊥ y1 | y2, x1.
If we use the ordering x1, x2, y2, y1, and that

• x1 ⊥⊥ x2
• y1 ⊥⊥ x2|x1, y2, which is y1 ⊥⊥ pre(y1) \ π|π for π = (x1, y2)

are in I(p), we obtain the following directed minimal I-map:

x1 x2

y1 y2

The graph misses x1 ⊥⊥ y2 | y1, x2.
Moreover, the graphs imply a directionality between y1 and y2, or a direct influence of x1
on y2, or of x2 on y1, in contrast to the original modelling goals.

(d) (optional, not examinable) The following factor graph represents p(y1, y2, x1, x2):
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p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

Use the separation rules for factor graphs to verify that we can find all independence relations.
The separation rules are (see Barber, section 4.4.1, or the original paper by Brendan Frey: https:

// arxiv. org/ abs/ 1212. 2486 ):

“If all paths are blocked, the variables are conditionally independent. A path is blocked if one or
more of the following conditions is satisfied:

1. One of the variables in the path is in the conditioning set.

2. One of the variables or factors in the path has two incoming edges that are part of the path
(variable or factor collider), and neither the variable or factor nor any of its descendants are
in the conditioning set.”

Remarks:

• “one or more of the following” should best be read as “one of the following”.

• “incoming edges” means directed incoming edges

• the descendants of a variable or factor node are all the variables that you can reach by following
a path (containing directed or directed edges, but for directed edges, all directions have to be
consistent)

• In the graph we have dashed directed edges: they do count when you determine the descendants
but they do not contribute to paths. For example, y1 is a descendant of the n(x1, x2) factor
node but x1 − n− y2 is not a path.

Solution. x1 ⊥⊥ x2

There are two paths from x1 to x2 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

Both the blue and red path are blocked by condition 2.

x1 ⊥⊥ y2 | y1,x2

There are two paths from x1 to y2 marked with red and blue below:
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p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(y1 y2)

The observed variables are marked in blue. For the red path, the observed x2 blocks the
path (condition 1). Note that the n(x1, x2) node would be open by condition 2. The blue
path is blocked by condition 1 too. In directed graphical models, the y1 node would be
open, but here while condition 2 does not apply, condition 1 still applies (note the one or
more of ... in the separation rules), so that the path is blocked.

x2 ⊥⊥ y1 | y2,x1

There are two paths from x2 to y1 marked with red and blue below:

p(x1)

x1

p(x2)

x2

p(y1|x1) p(y2|x2)

y1 y2

n(x1 x2)

φ(x1 x2)

The same reasoning as before yields the result.

Finally note that x1 and x2 are not independent given y1 or y2 because the upper path
through n(x1, x2) is not blocked whenever y1 or y2 are observed (condition 2).

Credit: this example is discussed in the original paper by B. Frey (Figure 6).

18 ©Michael U. Gutmann, UoE, 2018-23 CC BY 4.0 cb

https://creativecommons.org/licenses/by/4.0/

