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Exercises for the tutorials: 1 and 5.

The other exercises are for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Cause-effect interventions

[Peters, Janzing and Schölkopf, ex 3.2] Suppose that the distribution p(X,Y ) is given by the
SCM

X := UX , Y := 4 ·X + UY , (1)

with UX ∼ N(0, 1) and UY ∼ N(0, 1) (iid).

(a) Consider computing p(Y |do(X := x)). Draw the resulting modified graphical model after
the do-operation X := x. Compute p(Y |do(X := 2)).

(b) Consider computing p(X|do(Y := y)). Draw the resulting modified graphical model after
the do-operation Y := y. Compute p(X|do(Y := 7)).

Exercise 2. Adjustment formula

(a) Consider the graphical model M shown in Fig. 1(a). Now assume that we intervene on
node X to set X := x. Specify the factorization of the modified graphical model (post-
intervention), and derive the adjustment formula for p(Y = y|do(X := x)) in terms of the
conditional probability distributions specified in M .

(b) Now assume that the graph M is as shown in Fig. 1(b). Answer the same questions as for
part (a) above.

Exercise 3. Counterfactual example

[Based on Pearl, Glymour and Jewell (2016) 4.2.3] Let X denote the amount of time a student
spends in an after-school remedial program, H the amount of homework a student does, and Y
the student’s score on the exam. We have the following SCM M :

X := UX ,

H := a ·X + UH ,

Y := b ·X + c ·H + UY ,
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Figure 1: Figures for parts (a) and (b) of the adjustment formula question.
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where the U ’s are all independent. It has been determined that a = 0.5, b = 0.7 and c = 0.4
provide a good model for the population.

We now consider a student Jane for whom we measure X = 0.5, H = 1 and Y = 1.5. What
would Jane’s score have been if they had doubled their homework time H?

HINT: You can make use of the general recipe for computing counterfactuals in SCMs from the
lecture slides.

Exercise 4. I-equivalence

(a) Which of three graphs represent the same set of independencies? Explain.
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(b) Which of three graphs represent the same set of independencies? Explain.
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(c) Assume the graph below is a perfect map for a set of independencies U .

x1 x2

x3 x4 x5

x6 x7

Graph 0

For each of the three graphs below, explain whether the graph is a perfect map, an I-map,
or not an I-map for U .
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Exercise 5. Minimal I-maps

(a) Assume that the graph G in Figure 2 is a perfect I-map for p(a, z, q, e, h). Determine the
minimal directed I-map using the ordering (e, h, q, z, a). Is the obtained graph I-equivalent
to G?

a z

q

e

h

Figure 2: Perfect I-map G for Exercise 5, question (a).

(b) For the collection of random variables (a, z, h, q, e) you are given the following Markov
blankets for each variable:

• MB(a) = {q,z}
• MB(z) = {a,q,h}
• MB(h) = {z}
• MB(q) = {a,z,e}
• MB(e) = {q}

(i) Draw the undirected minimal I-map representing the independencies.

(ii) Indicate a Gibbs distribution that satisfies the independence relations specified by
the Markov blankets.

Exercise 6. I-equivalence between directed and undirected graphs

(a) Verify that the following two graphs are I-equivalent by listing and comparing the inde-
pendencies that each graph implies.
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(b) Are the following two graphs, which are directed and undirected hidden Markov models,
I-equivalent?

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

(c) Are the following two graphs I-equivalent?

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Exercise 7. Moralisation: Converting DAGs to undirected minimal I-maps

In the lecture, we had the following recipe to construct undirected minimal I-maps for I(p):

• Determine the Markov blanket for each variable xi

• Construct a graph where the neighbours of xi are given by its Markov blanket.

We can adapt the recipe to construct an undirected minimal I-map for the independencies I(G)
encoded by a DAG G. What we need to do is to use G to read out the Markov blankets for the
variables xi rather than determining the Markov blankets from the distribution p.

Show that this procedure leads to the following recipe to convert DAGs to undirected minimal
I-maps:

1. For all immoralities in the graph: add edges between all parents of the collider node.

2. Make all edges in the graph undirected.

The first step is sometimes called “moralisation” because we “marry” all the parents in the
graph that are not already directly connected by an edge. The resulting undirected graph is
called the moral graph of G, sometimes denoted by M(G).
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Exercise 8. Moralisation exercise

For the DAG G below find the minimal undirected I-map for I(G).

x2x1 x3

x4 x5

x6 x7

Exercise 9. Moralisation exercise

Consider the DAG G:

y

z1 z2

x1 x2 x3 x4 x5 x6

A friend claims that the undirected graph below is the moral graph M(G) of G. Is your friend
correct? If not, state which edges needed to be removed or added, and explain, in terms of
represented independencies, why the changes are necessary for the graph to become the moral
graph of G.

y

z1 z2

x1 x2 x3 x4 x5 x6

Exercise 10. Triangulation: Converting undirected graphs to directed minimal I-
maps

In Exercise 7 we adapted a recipe for constructing undirected minimal I-maps for I(p) to the
case of I(G), where G is a DAG. The key difference was that we used the graph G to determine
independencies rather than the distribution p.

We can similarly adapt the recipe for constructing a directed minimal I-map for I(p) to build a
directed minimal I-map for I(H), where H is an undirected graph:
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1. Choose an ordering of the random variables.

2. For all variables xi, use H to determine a minimal subset πi of the predecessors prei such
that

xi ⊥⊥ (prei \ πi) | πi
holds.

3. Construct a DAG with the πi as parents pai of xi.

Remarks: (1) Directed minimal I-maps obtained with different orderings are generally not I-
equivalent. (2) The directed minimal I-maps obtained with the above method are always chordal
graphs. Chordal graphs are graphs where the longest trail without shortcuts is a triangle
(https://en.wikipedia.org/wiki/Chordal_graph). They are thus also called triangulated
graphs. We obtain chordal graphs because if we had trails without shortcuts that involved more
than 3 nodes, we would necessarily have an immorality in the graph. But immoralities encode
independencies that an undirected graph cannot represent, which would make the DAG not an
I-map for I(H) any more.

(a) Let H be the undirected graph below. Determine the directed minimal I-map for I(H)
with the variable ordering x1, x2, x3, x4, x5.

x1 x2

x3 x4

x5

(b) For the undirected graph from question (a) above, which variable ordering yields the
directed minimal I-map below?

x1 x2

x3 x4

x5

Exercise 11. I-maps, minimal I-maps, and I-equivalency

Consider the following probability density function for random variables x1, . . . , x6.

pa(x1, . . . , x6) = p(x1)p(x2)p(x3|x1, x2)p(x4|x2)p(x5|x1)p(x6|x3, x4, x5)

For each of the two graphs below, explain whether it is a minimal I-map, not a minimal I-map
but still an I-map, or not an I-map for the independencies that hold for pa.
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Exercise 12. Limits of directed and undirected graphical models

We here consider the probabilistic model p(y1, y2, x1, x2) = p(y1, y2|x1, x2)p(x1)p(x2) where
p(y1, y2|x1, x2) factorises as

p(y1, y2|x1, x2) = p(y1|x1)p(y2|x2)φ(y1, y2)n(x1, x2) (2)

with n(x1, x2) equal to

n(x1, x2) =

(∫
p(y1|x1)p(y2|x2)φ(y1, y2)dy1dy2

)−1

. (3)

In the lecture “Factor Graphs”, we used the model to illustrate the setup where x1 and x2 are
two independent inputs that each control the interacting variables y1 and y2 (see graph below).

some interaction

x1 x2

y1 y2

(a) Use the basic characterisations of statistical independence

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = p(u|z)p(v|z) (4)

u ⊥⊥ v|z ⇐⇒ p(u, v|z) = a(u, z)b(v, z) (a(u, z) ≥ 0, b(v, z) ≥ 0) (5)

to show that p(y1, y2, x1, x2) satisfies the following independencies

x1 ⊥⊥ x2 x1 ⊥⊥ y2 | y1, x2 x2 ⊥⊥ y1 | y2, x1

(b) Is there an undirected perfect map for the independencies satisfied by p(y1, y2, x1, x2)?

(c) Is there a directed perfect map for the independencies satisfied by p(y1, y2, x1, x2)?

(d) (optional, not examinable) The following factor graph represents p(y1, y2, x1, x2):
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Use the separation rules for factor graphs to verify that we can find all independence
relations. The separation rules are (see Barber, section 4.4.1, or the original paper by
Brendan Frey: https://arxiv.org/abs/1212.2486):

“If all paths are blocked, the variables are conditionally independent. A path is blocked if
one or more of the following conditions is satisfied:

1. One of the variables in the path is in the conditioning set.

2. One of the variables or factors in the path has two incoming edges that are part of
the path (variable or factor collider), and neither the variable or factor nor any of its
descendants are in the conditioning set.”

Remarks:

• “one or more of the following” should best be read as “one of the following”.

• “incoming edges” means directed incoming edges

• the descendants of a variable or factor node are all the variables that you can reach
by following a path (containing directed or directed edges, but for directed edges, all
directions have to be consistent)

• In the graph we have dashed directed edges: they do count when you determine the
descendants but they do not contribute to paths. For example, y1 is a descendant of
the n(x1, x2) factor node but x1 − n− y2 is not a path.
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