

These notes are intended to give a summary of relevant concepts from the lectures which are helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning this content is not a replacement for working through the lecture material and the exercises.

Factor graph — A factor graph represents an arbitrary function in terms of factors and their connections with variables. For example, a factor graph can represent a distribution written as a Gibbs distribution $-p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \phi_{c}(\mathcal{X}_{c})$ – where variables $x_{i} \in \mathbf{x}$ are represented with variable nodes (circles) and potentials ϕ_{c} are represented with factor nodes (squares). Edges connect each factor node ϕ_{c} to all its variable nodes $x_{i} \in \mathcal{X}_{c}$.

Variable elimination — Given $p(\mathcal{X}) \propto \prod_c \phi_c(\mathcal{X}_c)$, we compute the marginal $p(\mathcal{X} \setminus x^*)$ via the sum rule by exploiting the factorisation by means of the distributive law.

We sum out the variable x^* by first finding all factors $\phi_i(\mathcal{X}_i)$ such that $x^* \in \mathcal{X}_i$, and forming the compound factor $\phi^*(\mathcal{X}^*) = \prod_{i:x^* \in \mathcal{X}_i} \phi_i(\mathcal{X}_i)$, with $\mathcal{X}^* = \bigcup_{i:x^* \in \mathcal{X}_i} \mathcal{X}_i$. Summing out x^* then produces a new factor $\tilde{\phi}^*(\tilde{\mathcal{X}}^*) = \sum_{x^*} \phi^*(\mathcal{X}^*)$ that does not depend on x^* , i.e. $\tilde{\mathcal{X}}^* = \mathcal{X}^* \setminus x^*$. This is possible as products are commutative, and a sum can be distributed within a product as long as all terms depending on the variable(s) being summed come to the right of the sum.

$$p(\mathcal{X} \setminus x^*) \propto \sum_{x^*} \prod_c \phi_c(\mathcal{X}_c) \propto \left[\prod_{i:x^* \notin \mathcal{X}_i} \phi_i(\mathcal{X}_i) \right] \left[\sum_{x^*} \prod_{i:x^* \in \mathcal{X}_i} \phi_i(\mathcal{X}_i) \right]$$
(1)

$$\propto \left[\prod_{i:x^* \notin \mathcal{X}_i} \phi_i(\mathcal{X}_i) \right] \tilde{\phi}^*(\tilde{\mathcal{X}}^*)$$
(2)

When eliminating variables, order of elimination matters. However, optimal choice of elimination order is difficult. Picking variables greedily is a common heuristic, where the "best" x^* is the one that fewest factors ϕ_c depend upon.

Sum-product algorithm — Variable elimination for factor trees reformulated with "messages" which allows for re-use of computations already done. See table on following page.

Max-product algorithm — Same as the sum-product algorithm, but max replaces \sum .

Max-sum algorithm — Max-product algorithm in the log-domain. See table on following page.

Sum-product algorithm

$\mu_{\phi o x}(x)$	Factor to variable $\mu_{\phi \to x}(x) = \sum_{x_1, \dots, x_j} \phi(x_1, \dots, x_j, x) \prod_{i=1}^j \mu_{x_i \to \phi}(x_i)$ where $\{x_1, \dots, x_j\} = \operatorname{ne}(\phi) \setminus \{x\}$	(x_1) $\phi \longrightarrow (x)$ (x_2)
$\mu_{x \to \phi}(x)$	Variable to factor $\mu_{x \to \phi}(x) = \prod_{i=1}^{j} \mu_{\phi_i \to x}(x)$ where $\{\phi_1, \dots, \phi_j\} = \operatorname{ne}(x) \setminus \{\phi\}$	$ \begin{array}{c} \phi_1 \\ & & \\ \phi_2 \end{array} \xrightarrow{\phi} \phi \end{array} $
$ ilde{p}(x)$	Univariate marginals – unnormalised $p(x) \propto \prod_{i=1}^{j} \mu_{\phi_i \to x}(x)$ where $\{\phi_1, \dots, \phi_j\} = \operatorname{ne}(x)$	$\phi_1 \longrightarrow \phi_3 $ $\phi_2 \longrightarrow \phi_3$
$\tilde{p}(x_1,\ldots,x_j)$	Joint marginals of variables sharing a factor- unnormalised $p(x_1, \ldots, x_j) \propto \phi(x_1, \ldots, x_j) \prod_{i=1}^j \mu_{x_i \to \phi}(x_i)$ where $\{x_1, \ldots, x_j\} = \operatorname{ne}(\phi)$	x_1 ϕ \leftarrow x_3
Max-sum al	gorithm	
$\gamma_{\phi o x}(x)$	Factor to variable $\gamma_{\phi \to x}(x) = \max_{x_1, \dots, x_j} \log \phi(x_1, \dots, x_j, x) + \sum_{i=1}^j \gamma_{x_i \to \phi}(x_i)$ $\gamma_{\phi \to x}^*(x) = \operatorname{argmax}_{x_1, \dots, x_j} \log \phi(x_1, \dots, x_j, x) + \sum_{i=1}^j \gamma_{x_i \to \phi}(x_i)$ where $\{x_1, \dots, x_j\} = \operatorname{ne}(\phi) \setminus \{x\}$	x_1 ϕ \rightarrow x
$\gamma_{x \to \phi}(x)$	Variable to factor $\gamma_{x \to \phi}(x) = \sum_{i=1}^{j} \gamma_{\phi_i \to x}(x)$ where $\{\phi_1, \dots, \phi_j\} = \operatorname{ne}(x) \setminus \{\phi\}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\log p_{\max}$	Maximum probability $\log p_{\max} = \max_{x} \gamma^{*}(x), \gamma^{*}(x) = -\log Z + \sum_{i=1}^{j} \gamma_{\phi_{i} \to x}(x)$ where $\{\phi_{1}, \dots, \phi_{j}\} = \operatorname{ne}(x)$	$\phi_1 \longrightarrow \phi_3 \longrightarrow \phi_2 \longrightarrow \phi_3$
$\operatorname{argmax}_{\mathbf{x}} \tilde{p}(\mathbf{x})$	Maximum probability states – no need for normalisation Init: $\hat{x} = \operatorname{argmax}_{x} \gamma^{*}(x) = \operatorname{argmax}_{x} \sum_{i=1}^{j} \gamma_{\phi_{i} \to x}(x)$ Backtrack to leaves via $\gamma^{*}_{\phi \to x}(x)$	x_1 ϕ \leftarrow x