
Probabilistic Modelling and Reasoning

Exercises 4 — Notes
Spring 2024

Hodari & Gutmann

These notes are intended to give a summary of relevant concepts from the lectures which are
helpful to complete the exercises. It is not intended to cover the lectures thoroughly. Learning
this content is not a replacement for working through the lecture material and the exercises.

Factor graph — A factor graph represents an arbitrary function in terms of factors and their
connections with variables. For example, a factor graph can represent a distribution written as a
Gibbs distribution – p(x) = 1

Z

∏
c φc(Xc) – where variables xi ∈ x are represented with variable

nodes (circles) and potentials φc are represented with factor nodes (squares). Edges connect
each factor node φc to all its variable nodes xi ∈ Xc.

p(x1, x2, x3, x4) = 1
Zφ1(x1, x2, x3)φ2(x3, x4)φ3(x4)

x1

φ1

x2

x3

φ2
x4

φ3

Variable elimination — Given p(X ) ∝
∏
c φc(Xc), we compute the marginal p(X \ x∗) via

the sum rule by exploiting the factorisation by means of the distributive law.

We sum out the variable x∗ by first finding all factors φi(Xi) such that x∗ ∈ Xi, and forming
the compound factor φ∗(X ∗) =

∏
i:x∗∈Xi

φi(Xi), with X ∗ =
⋃
i:x∗∈Xi

Xi. Summing out x∗ then

produces a new factor φ̃∗(X̃ ∗) =
∑

x∗ φ
∗(X ∗) that does not depend on x∗, i.e. X̃ ∗ = X ∗ \ x∗.

This is possible as products are commutative, and a sum can be distributed within a product
as long as all terms depending on the variable(s) being summed come to the right of the sum.

p(X \ x∗) ∝
∑
x∗

∏
c

φc(Xc) ∝

 ∏
i:x∗ /∈Xi

φi(Xi)

∑
x∗

∏
i:x∗∈Xi

φi(Xi)

 (1)

∝

 ∏
i:x∗ /∈Xi

φi(Xi)

 φ̃∗(X̃ ∗) (2)

When eliminating variables, order of elimination matters. However, optimal choice of elimination
order is difficult. Picking variables greedily is a common heuristic, where the “best” x∗ is the
one that fewest factors φc depend upon.

Sum-product algorithm — Variable elimination for factor trees reformulated with “mes-
sages” which allows for re-use of computations already done. See table on following page.

Max-product algorithm — Same as the sum-product algorithm, but max replaces
∑

.

Max-sum algorithm — Max-product algorithm in the log-domain. See table on following
page.

1



Sum-product algorithm

x1

x2

φ
x

−→

−→

−→µφ→x(x) Factor to variable

µφ→x(x) =
∑

x1,...,xj
φ(x1, . . . , xj , x)

∏j
i=1 µxi→φ(xi)

where {x1, . . . , xj} = ne(φ) \ {x}

φ1

φ2

x
φ

−→

−→

−→µx→φ(x) Variable to factor

µx→φ(x) =
∏j
i=1 µφi→x(x)

where {φ1, . . . , φj} = ne(x) \ {φ}

φ1

φ2

x
φ3

−→

−→

←−p̃(x) Univariate marginals – unnormalised

p(x) ∝
∏j
i=1 µφi→x(x)

where {φ1, . . . , φj} = ne(x)

x1

x2

φ
x3

−→

−→

←−p̃(x1, . . . , xj) Joint marginals of variables sharing a factor– unnormalised

p(x1, . . . , xj) ∝ φ(x1, . . . , xj)
∏j
i=1 µxi→φ(xi)

where {x1, . . . , xj} = ne(φ)

Max-sum algorithm

x1

x2

φ
x

−→

−→

−→γφ→x(x) Factor to variable

γφ→x(x) = maxx1,...,xj log φ(x1, . . . , xj , x) +
∑j

i=1 γxi→φ(xi)

γ∗φ→x(x) = argmaxx1,...,xj log φ(x1, . . . , xj , x) +
∑j

i=1 γxi→φ(xi)

where {x1, . . . , xj} = ne(φ) \ {x}

φ1

φ2

x
φ

−→

−→

−→γx→φ(x) Variable to factor

γx→φ(x) =
∑j

i=1 γφi→x(x)
where {φ1, . . . , φj} = ne(x) \ {φ}

φ1

φ2

x
φ3

−→

−→

←−log pmax Maximum probability

log pmax = maxx γ
∗(x), γ∗(x) = − logZ +

∑j
i=1 γφi→x(x)

where {φ1, . . . , φj} = ne(x)

x1

x2

φ
x

←−

←−

←−argmaxx p̃(x) Maximum probability states – no need for normalisation

Init: x̂ = argmaxx γ
∗(x) = argmaxx

∑j
i=1 γφi→x(x)

Backtrack to leaves via γ∗φ→x(x)

2


