Exercises for the tutorials: 1, 3 .
The other exercises are for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Predictive distributions for hidden Markov models

For the hidden Markov model

$$
p\left(h_{1: d}, v_{1: d}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \prod_{i=2}^{d} p\left(v_{i} \mid h_{i}\right) p\left(h_{i} \mid h_{i-1}\right)
$$

assume you have observations for $v_{i}, i=1, \ldots, u<d$.
(a) Use message passing to compute $p\left(h_{t} \mid v_{1: u}\right)$ for $u<t \leq d$. For the sake of concreteness, you may consider the case $d=6, u=2, t=4$.

Solution. The factor graph for $d=6, u=2$, with messages that are required for the computation of $p\left(h_{t} \mid v_{1: u}\right)$ for $t=4$, is as follows.

The messages from the unobserved visibles v_{i} to their corresponding h_{i}, e.g. v_{3} to h_{3}, are all one. Moreover, the message from the $p\left(h_{5} \mid h_{4}\right)$ node to h_{4} equals one as well. This is because all involved factors, $p\left(v_{i} \mid h_{i}\right)$ and $p\left(h_{i} \mid h_{i-1}\right)$, sum to one. Hence the factor graph reduces to a chain:

Since the variable nodes copy the messages in case of a chain, we only show the factor-tovariable messages.
The graph shows that we are essentially in the same situation as in filtering, with the difference that we use the factors $p\left(h_{s} \mid h_{s-1}\right)$ for $s \geq u+1$. Hence, we can use filtering to compute the messages until time $s=u$ and then compute the further messages with the $p\left(h_{s} \mid h_{s-1}\right)$ as factors. This gives the following algorithm:

1. Compute $\alpha\left(h_{u}\right)$ by filtering.
2. For $s=u+1, \ldots, t$, compute

$$
\begin{equation*}
\alpha\left(h_{s}\right)=\sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \tag{S.1}
\end{equation*}
$$

3. The required predictive distribution is

$$
\begin{equation*}
p\left(h_{t} \mid v_{1: u}\right)=\frac{1}{Z} \alpha\left(h_{t}\right) \quad Z=\sum_{h_{t}} \alpha\left(h_{t}\right) \tag{S.2}
\end{equation*}
$$

For $s \geq u+1$, we have that

$$
\begin{align*}
\sum_{h_{s}} \alpha\left(h_{s}\right) & =\sum_{h_{s}} \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \tag{S.3}\\
& =\sum_{h_{s-1}} \alpha\left(h_{s-1}\right) \tag{S.4}
\end{align*}
$$

since $p\left(h_{s} \mid h_{s-1}\right)$ is normalised. This means that the normalising constant Z above equals

$$
\begin{equation*}
Z=\sum_{h_{u}} \alpha\left(h_{u}\right)=p\left(v_{1: u}\right) \tag{S.5}
\end{equation*}
$$

which is the likelihood.
For filtering, we have seen that $\alpha\left(h_{s}\right) \propto p\left(h_{s} \mid v_{1: s}\right), s \leq u$. The $\alpha\left(h_{s}\right)$ for all $s>u$ are proportional to $p\left(h_{s} \mid v_{1: u}\right)$. This may be seen by noting that the above arguments hold for any $t>u$.
(b) Use message passing to compute $p\left(v_{t} \mid v_{1: u}\right)$ for $u<t \leq d$. For the sake of concreteness, you may consider the case $d=6, u=2, t=4$.

Solution. The factor graph for $d=6, u=2$, with messages that are required for the computation of $p\left(v_{t} \mid v_{1: u}\right)$ for $t=4$, is as follows.

Due to the normalised factors, as above, the messages to the right of h_{t} are all one. Moreover the messages that go up from the v_{i} to the $h_{i}, i \neq t$, are also all one. Hence the graph simplifies to a chain.

The message in blue is proportional to $p\left(h_{t} \mid v_{1: u}\right)$ computed in question (a). Thus assume that we have computed $p\left(h_{t} \mid v_{1: u}\right)$. The predictive distribution on the level of the visibles thus is

$$
\begin{equation*}
p\left(v_{t} \mid v_{1: u}\right)=\sum_{h_{t}} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid v_{1: u}\right) \tag{S.6}
\end{equation*}
$$

This follows from message passing since the last node (h_{4} in the graph) just copies the (normalised) message and the next factor equals $p\left(v_{t} \mid h_{t}\right)$.

An alternative derivation follows from basic definitions and operations, together with the independencies in HMMs:

$$
\begin{align*}
& \text { (sum rule) } \\
& \text { (product rule) } \tag{S.8}\\
& \left(v_{t} \Perp v_{1: u} \mid h_{t}\right) \tag{S.9}
\end{align*}
$$

$$
\begin{align*}
p\left(v_{t} \mid v_{1: u}\right) & =\sum_{h_{t}} p\left(v_{t}, h_{t} \mid v_{1: u}\right) \tag{S.7}\\
& =\sum_{h_{t}} p\left(v_{t} \mid h_{t}, v_{1: u}\right) p\left(h_{t} \mid v_{1: u}\right) \\
& =\sum_{h_{t}} p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid v_{1: u}\right)
\end{align*}
$$

Exercise 2. Viterbi algorithm

For the hidden Markov model

$$
p\left(h_{1: t}, v_{1: t}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) \prod_{i=2}^{t} p\left(v_{i} \mid h_{i}\right) p\left(h_{i} \mid h_{i-1}\right)
$$

assume you have observations for $v_{i}, i=1, \ldots, t$. Use the max-sum algorithm to derive an iterative algorithm to compute

$$
\begin{equation*}
\hat{\mathbf{h}}=\underset{h_{1}, \ldots, h_{t}}{\operatorname{argmax}} p\left(h_{1: t} \mid v_{1: t}\right) \tag{1}
\end{equation*}
$$

Assume that the latent variables h_{i} can take K different values, e.g. $h_{i} \in\{0, \ldots, K-1\}$. The resulting algorithm is known as Viterbi algorithm.

Solution. We first form the factors

$$
\begin{align*}
\phi_{1}\left(h_{1}\right)=p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) & \phi_{2}\left(h_{1}, h_{2}\right) & =p\left(v_{2} \mid h_{2}\right) p\left(h_{2} \mid h_{1}\right) \tag{S.10}\\
\ldots & \phi_{t}\left(h_{t-1}, h_{t}\right) & =p\left(v_{t} \mid h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) \tag{S.11}
\end{align*}
$$

where the v_{i} are known and fixed. The posterior $p\left(h_{1}, \ldots, h_{t} \mid v_{1}, \ldots, v_{t}\right)$ is then represented by the following factor graph (assuming $t=4$).

For the max-sum algorithm, we here choose h_{t} to be the root. We thus initialise the algorithm with $\gamma_{\phi_{1} \rightarrow h_{1}}\left(h_{1}\right)=\log \phi_{1}\left(h_{1}\right)=\log p\left(v_{1} \mid h_{1}\right)+\log p\left(h_{1}\right)$ and then compute the messages from left to right, moving from the leaf ϕ_{1} to the root h_{t}.

Since we are dealing with a chain, the variable nodes, much like in the sum-product algorithm, just copy the incoming messages. It thus suffices to compute the factor to variable messages shown in the graph, and then backtrack to h_{1}.

With $\gamma_{h_{i-1} \rightarrow \phi_{i}}\left(h_{i-1}\right)=\gamma_{\phi_{i-1} \rightarrow h_{i-1}}\left(h_{i-1}\right)$, the factor-to-variable update equation is

$$
\begin{align*}
\gamma_{\phi_{i} \rightarrow h_{i}}\left(h_{i}\right) & =\max _{h_{i-1}} \log \phi_{i}\left(h_{i-1}, h_{i}\right)+\gamma_{h_{i-1} \rightarrow \phi_{i}}\left(h_{i-1}\right) \tag{S.12}\\
& =\max _{h_{i-1}} \log \phi_{i}\left(h_{i-1}, h_{i}\right)+\gamma_{\phi_{i-1} \rightarrow h_{i-1}}\left(h_{i-1}\right) \tag{S.13}
\end{align*}
$$

To simplify notation, denote $\gamma_{\phi_{i} \rightarrow h_{i}}\left(h_{i}\right)$ by $V_{i}\left(h_{i}\right)$. We thus have

$$
\begin{align*}
V_{1}\left(h_{1}\right) & =\log p\left(v_{1} \mid h_{1}\right)+\log p\left(h_{1}\right) \tag{S.14}\\
V_{i}\left(h_{i}\right) & =\max _{h_{i-1}} \log \phi_{i}\left(h_{i-1}, h_{i}\right)+V_{i-1}\left(h_{i-1}\right) \quad i=2, \ldots, t \tag{S.15}
\end{align*}
$$

In general, $V_{1}\left(h_{1}\right)$ and $V_{i}\left(h_{i}\right)$ are functions that depend on h_{1} and h_{i}, respectively. Assuming that the h_{i} can take on the values $0, \ldots, K-1$, the above equations can be written as

$$
\begin{array}{rlrl}
v_{1, k} & =\log p\left(v_{1} \mid k\right)+\log p(k) & k & =0, \ldots, K-1 \\
v_{i, k} & =\max _{m \in 0, \ldots, K-1} \log \phi_{i}(m, k)+v_{i-1, m} & k & =0, \ldots, K-1, \quad i=2, \ldots, t \tag{S.17}
\end{array}
$$

At the end of the algorithm, we thus have a $t \times K$ matrix \mathbf{V} with elements $v_{i, k}$.
The maximisation can be performed by computing the temporary matrix \mathbf{A} (via broadcasting) where the (m, k)-th element is $\log \phi_{i}(m, k)+v_{i-1, m}$. Maximisation then corresponds to determining the maximal value in each column.

To support the backtracking, when we compute $V_{i}\left(h_{i}\right)$ by maximising over h_{i-1}, we compute at the same time the look-up table

$$
\begin{equation*}
\gamma_{i}^{*}\left(h_{i}\right)=\underset{h_{i-1}}{\operatorname{argmax}} \log \phi_{i}\left(h_{i-1}, h_{i}\right)+V_{i-1}\left(h_{i-1}\right) \tag{S.18}
\end{equation*}
$$

When h_{i} takes on the values $0, \ldots, K-1$, this can be written as

$$
\begin{equation*}
\gamma_{i, k}^{*}=\underset{m \in 0, \ldots, K-1}{\operatorname{argmax}} \log \phi_{i}(m, k)+v_{i-1, m} \tag{S.19}
\end{equation*}
$$

This is the (row) index of the maximal element in each column of the temporary matrix \mathbf{A}.
After computing $v_{t, k}$ and $\gamma_{t, k}^{*}$, we then perform backtracking via

$$
\begin{align*}
& \hat{h}_{t}=\underset{k}{\operatorname{argmax}} v_{t, k} \tag{S.20}\\
& \hat{h}_{i}=\gamma_{i+1, \hat{h}_{i+1}}^{*} \quad i=t-1, \ldots, 1 \tag{S.21}
\end{align*}
$$

This gives recursively $\hat{\mathbf{h}}=\left(\hat{h}_{1}, \ldots, \hat{h}_{t}\right)=\operatorname{argmax}_{h_{1}, \ldots, h_{t}} p\left(h_{1: t} \mid v_{1: t}\right)$.

Exercise 3. Forward filtering backward sampling for hidden Markov models

Consider the hidden Markov model specified by the following DAG.

We assume that have already run the alpha-recursion (filtering) and can compute $p\left(h_{t} \mid v_{1: t}\right)$ for all t. The goal is now to generate samples $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$, i.e. entire trajectories $\left(h_{1}, \ldots, h_{n}\right)$ from the posterior. Note that this is not the same as sampling from the n filtering distributions $p\left(h_{t} \mid v_{1: t}\right)$. Moreover, compared to the Viterbi algorithm, the sampling approach generates samples from the full posterior rather than just returning the most probable state and its corresponding probability.
(a) Show that $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$ forms a first-order Markov chain.

Solution. There are several ways to show this. The simplest is to notice that the undirected graph for the hidden Markov model is the same as the DAG but with the arrows removed as there are no colliders in the DAG. Moreover, conditioning corresponds to removing nodes from an undirected graph. This leaves us with a chain that connects the h_{i}.

By graph separation, we see that $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$ forms a first-order Markov chain so that e.g. $h_{1: t-1} \Perp h_{t+1: n} \mid h_{t}$ (past independent from the future given the present).
(b) Since $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$ is a first-order Markov chain, it suffices to determine $p\left(h_{t-1} \mid h_{t}, v_{1: n}\right)$, the probability mass function for h_{t-1} given h_{t} and all the data $v_{1: n}$. Use message passing to show that

$$
\begin{equation*}
p\left(h_{t-1}, h_{t} \mid v_{1: n}\right) \propto \alpha\left(h_{t-1}\right) \beta\left(h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right) \tag{2}
\end{equation*}
$$

Solution. Since all visibles are in the conditioning set, i.e. assumed observed, we can represent the conditional model $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$ as a chain factor tree, e.g. as follows in case of $n=4$

Combining the emission distributions $p\left(v_{s} \mid h_{s}\right)$ (and marginal $p\left(h_{1}\right)$) with the transition distributions $p\left(h_{s} \mid h_{s-1}\right)$ we obtain the factors

$$
\begin{align*}
\phi_{1}\left(h_{1}\right) & =p\left(h_{1}\right) p\left(v_{1} \mid h_{1}\right) \tag{S.22}\\
\phi_{s}\left(h_{s-1}, h_{s}\right) & =p\left(h_{s} \mid h_{s-1}\right) p\left(v_{s} \mid h_{s}\right) \quad \text { for } t=2, \ldots, n \tag{S.23}
\end{align*}
$$

We see from the factor tree that h_{t-1} and h_{t} are neighbours, being attached to the same factor node $\phi_{t}\left(h_{t-1}, h_{t}\right)$, e.g. ϕ_{3} in case of $p\left(h_{2}, h_{3} \mid v_{1: 4}\right)$.
By the rules of message passing, the joint $p\left(h_{t-1}, h_{t} \mid v_{1: n}\right)$ is thus proportional to ϕ_{t} times the messages into ϕ_{t}. The following graph shows the messages for the case of $p\left(h_{2}, h_{3} \mid v_{1: 4}\right)$.

Since the variable nodes only receive single messages from any direction, they copy the messages so that the messages into ϕ_{t} are given by $\alpha\left(h_{t-1}\right)$ and $\beta\left(h_{t}\right)$ shown below in red and blue, respectively.

Hence,

$$
\begin{align*}
p\left(h_{t-1}, h_{t} \mid v_{1: n}\right) & \propto \alpha\left(h_{t-1}\right) \beta\left(h_{t}\right) \phi_{t}\left(h_{t-1}, h_{t}\right) \tag{S.24}\\
& \propto \alpha\left(h_{t-1}\right) \beta\left(h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right) \tag{S.25}
\end{align*}
$$

which is the result that we want to show.
(c) Show that $p\left(h_{t-1} \mid h_{t}, v_{1: n}\right)=\frac{\alpha\left(h_{t-1}\right)}{\alpha\left(h_{t}\right)} p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right)$.

Solution. Above, we have shown that

$$
\begin{equation*}
p\left(h_{t-1}, h_{t} \mid v_{1: n}\right) \propto \alpha\left(h_{t-1}\right) \beta\left(h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right), \tag{S.26}
\end{equation*}
$$

that is

$$
\begin{equation*}
p\left(h_{t-1}, h_{t} \mid v_{1: n}\right)=\frac{1}{Z\left(v_{1: n}\right)} \alpha\left(h_{t-1}\right) \beta\left(h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right), \tag{S.27}
\end{equation*}
$$

where $Z\left(v_{1: n}\right)$ is the normalising constant. It follows that

$$
\begin{align*}
p\left(h_{t-1} \mid h_{t}, v_{1: n}\right) & =\frac{p\left(h_{t-1}, h_{t} \mid v_{1: n}\right)}{\sum_{h t-1} p\left(h_{t-1}, h_{t} \mid v_{1: n}\right)} \tag{S.28}\\
& =\frac{\frac{1}{Z\left(v_{1: n}\right)} \alpha\left(h_{t-1}\right) \beta\left(h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right)}{\sum_{h_{t-1}} \frac{1}{Z\left(v_{1: n}\right)} \alpha\left(h_{t-1}\right) \beta\left(h_{t}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right)} \tag{S.29}\\
& =\frac{\alpha\left(h_{t-1}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right)}{\sum_{h_{t-1}} \alpha\left(h_{t-1}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right)} \tag{S.30}
\end{align*}
$$

where we have cancelled out $Z\left(v_{1: n}\right)$ and $\beta\left(h_{t}\right)$ that appear both in the numerator and denominator, and do not depend on h_{t-1}.
We recognise the update rule from the alpha-recursion in the denominator:

$$
\begin{equation*}
\alpha\left(h_{t}\right)=\sum_{h_{t-1}} \alpha\left(h_{t-1}\right) p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right) . \tag{S.31}
\end{equation*}
$$

We thus obtain the desired result:

$$
\begin{equation*}
p\left(h_{t-1} \mid h_{t}, v_{1: n}\right)=\frac{\alpha\left(h_{t-1}\right)}{\alpha\left(h_{t}\right)} p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right) . \tag{S.32}
\end{equation*}
$$

We thus obtain the following algorithm to generate samples from $p\left(h_{1}, \ldots, h_{n} \mid v_{1: n}\right)$:

1. Run the alpha-recursion (filtering) to determine all $\alpha\left(h_{t}\right)$ forward in time for $t=1, \ldots, n$.
2. Sample h_{n} from $p\left(h_{n} \mid v_{1: n}\right) \propto \alpha\left(h_{n}\right)$
3. Go backwards in time using

$$
\begin{equation*}
p\left(h_{t-1} \mid h_{t}, v_{1: n}\right)=\frac{\alpha\left(h_{t-1}\right)}{\alpha\left(h_{t}\right)} p\left(h_{t} \mid h_{t-1}\right) p\left(v_{t} \mid h_{t}\right) \tag{3}
\end{equation*}
$$

to generate samples $h_{t-1} \mid h_{t}, v_{1: n}$ for $t=n, \ldots, 2$.
This algorithm is known as forward filtering backward sampling (FFBS).

Exercise 4. Prediction exercise

Consider a hidden Markov model with three visibles v_{1}, v_{2}, v_{3} and three hidden variables h_{1}, h_{2}, h_{3} which can be represented with the following factor graph:

This question is about computing the predictive probability $p\left(v_{3}=1 \mid v_{1}=1\right)$.
(a) The factor graph below represents $p\left(h_{1}, h_{2}, h_{3}, v_{2}, v_{3} \mid v_{1}=1\right)$. Provide an equation that defines ϕ_{A} in terms of the factors in the factor graph above.

Solution. $\quad \phi_{A}\left(h_{1}, h_{2}\right) \propto p\left(v_{1} \mid h_{1}\right) p\left(h_{1}\right) p\left(h_{2} \mid h_{1}\right)$ with $v_{1}=1$.
(b) Assume further that all variables are binary, $h_{i} \in\{0,1\}, v_{i} \in\{0,1\}$; that $p\left(h_{1}=1\right)=0.5$, and that the transition and emission distributions are, for all i, given by:

$p\left(h_{i+1} \mid h_{i}\right)$	h_{i+1}	h_{i}
0	0	0
1	1	0
1	0	1
0	1	1

$p\left(v_{i} \mid h_{i}\right)$	v_{i}	h_{i}
0.6	0	0
0.4	1	0
0.4	0	1
0.6	1	1

Compute the numerical values of the factor ϕ_{A}.
(c) Given the definition of the transition and emission probabilities, we have $\phi_{A}\left(h_{1}, h_{2}\right)=0$ if $h_{1}=h_{2}$. For $h_{1}=0, h_{2}=1$, we obtain

$$
\begin{align*}
\phi_{A}\left(h_{1}=0, h_{2}=1\right) & =p\left(v_{1}=1 \mid h_{1}=0\right) p\left(h_{1}=0\right) p\left(h_{2}=1 \mid h_{1}=0\right) \tag{S.33}\\
& =0.4 \cdot 0.5 \cdot 1 \tag{S.34}\\
& =\frac{4}{10} \cdot \frac{1}{2} \tag{S.35}\\
& =\frac{2}{10}=0.2 \tag{S.36}
\end{align*}
$$

For $h_{1}=1, h_{2}=0$, we obtain

$$
\begin{align*}
\phi_{A}\left(h_{1}=1, h_{2}=0\right) & =p\left(v_{1}=1 \mid h_{1}=1\right) p\left(h_{1}=1\right) p\left(h_{2}=0 \mid h_{1}=1\right) \tag{S.37}\\
& =0.6 \cdot 0.5 \cdot 1 \tag{S.38}\\
& =\frac{6}{10} \cdot \frac{1}{2} \tag{S.39}\\
& =\frac{3}{10}=0.3 \tag{S.40}
\end{align*}
$$

Hence

$\phi_{A}\left(h_{1}, h_{2}\right)$	h_{1}	h_{2}
0	0	0
0.3	1	0
0.2	0	1
0	1	1

(d) Denote the message from variable node h_{2} to factor node $p\left(h_{3} \mid h_{2}\right)$ by $\alpha\left(h_{2}\right)$. Use message passing to compute $\alpha\left(h_{2}\right)$ for $h_{2}=0$ and $h_{2}=1$. Report the values of any intermediate messages that need to be computed for the computation of $\alpha\left(h_{2}\right)$.

Solution. The message from h_{1} to ϕ_{A} is one. The message from ϕ_{A} to h_{2} is

$$
\begin{align*}
\mu_{\phi_{A} \rightarrow h_{2}}\left(h_{2}=0\right) & =\sum_{h_{1}} \phi_{A}\left(h_{1}, h_{2}=0\right) \tag{S.41}\\
& =0.3 \tag{S.42}\\
\mu_{\phi_{A} \rightarrow h_{2}}\left(h_{2}=1\right) & =\sum_{h_{1}} \phi_{A}\left(h_{1}, h_{2}=1\right) \tag{S.43}\\
& =0.2 \tag{S.44}
\end{align*}
$$

Since v_{2} is not observed and $p\left(v_{2} \mid h_{2}\right)$ normalised, the message from $p\left(v_{2} \mid h_{2}\right)$ to h_{2} equals one.
This means that the message from h_{2} to $p\left(h_{3} \mid h_{2}\right)$, which is $\alpha\left(h_{2}\right)$ equals $\mu_{\phi_{A} \rightarrow h_{2}}\left(h_{2}\right)$, i.e.

$$
\begin{align*}
& \alpha\left(h_{2}=0\right)=0.3 \tag{S.45}\\
& \alpha\left(h_{2}=1\right)=0.2 \tag{S.46}
\end{align*}
$$

(e) With $\alpha\left(h_{2}\right)$ defined as above, use message passing to show that the predictive probability $p\left(v_{3}=\right.$ $1 \mid v_{1}=1$) can be expressed in terms of $\alpha\left(h_{2}\right)$ as

$$
\begin{equation*}
p\left(v_{3}=1 \mid v_{1}=1\right)=\frac{x \alpha\left(h_{2}=1\right)+y \alpha\left(h_{2}=0\right)}{\alpha\left(h_{2}=1\right)+\alpha\left(h_{2}=0\right)} \tag{4}
\end{equation*}
$$

and report the values of x and y.

Solution. Given the definition of $p\left(h_{3} \mid h_{2}\right)$, the message $\mu_{p\left(h_{3} \mid h_{2}\right) \rightarrow h_{3}}\left(h_{3}\right)$ is

$$
\begin{align*}
& \mu_{p\left(h_{3} \mid h_{2}\right) \rightarrow h_{3}}\left(h_{3}=0\right)=\alpha\left(h_{2}=1\right) \tag{S.47}\\
& \mu_{p\left(h_{3} \mid h_{2}\right) \rightarrow h_{3}}\left(h_{3}=1\right)=\alpha\left(h_{2}=0\right) \tag{S.48}
\end{align*}
$$

The variable node h_{3} copies the message so that we have

$$
\begin{align*}
\mu_{p\left(v_{3} \mid h_{3}\right) \rightarrow v_{3}}\left(v_{3}=0\right) & =\sum_{h_{3}} p\left(v_{3}=0 \mid h_{3}\right) \mu_{p\left(h_{3} \mid h_{2}\right) \rightarrow h_{3}}\left(h_{3}\right) \tag{S.49}\\
& =p\left(v_{3}=0 \mid h_{3}=0\right) \alpha\left(h_{2}=1\right)+p\left(v_{3}=0 \mid h_{3}=1\right) \alpha\left(h_{2}=0\right) \tag{S.50}\\
& =0.6 \alpha\left(h_{2}=1\right)+0.4 \alpha\left(h_{2}=0\right) \tag{S.51}\\
\mu_{p\left(v_{3} \mid h_{h} 3\right) \rightarrow v_{3}}\left(v_{3}=1\right) & \left.=\sum_{h_{3}} p\left(v_{3}=1 \mid h_{3}\right)\right) \mu_{p\left(h_{3} \mid h_{2}\right) \rightarrow h_{3}}\left(h_{3}\right) \tag{S.52}\\
& =p\left(v_{3}=1 \mid h_{3}=0\right) \alpha\left(h_{2}=1\right)+p\left(v_{3}=1 \mid h_{3}=1\right) \alpha\left(h_{2}=0\right) \tag{S.53}\\
& =0.4 \alpha\left(h_{2}=1\right)+0.6 \alpha\left(h_{2}=0\right) \tag{S.54}
\end{align*}
$$

We thus have

$$
\begin{align*}
p\left(v_{3}=1 \mid v_{1}=1\right) & =\frac{0.4 \alpha\left(h_{2}=1\right)+0.6 \alpha\left(h_{2}=0\right)}{0.4 \alpha\left(h_{2}=1\right)+0.6 \alpha\left(h_{2}=0\right)+0.6 \alpha\left(h_{2}=1\right)+0.4 \alpha\left(h_{2}=0\right)} \tag{S.55}\\
& =\frac{0.4 \alpha\left(h_{2}=1\right)+0.6 \alpha\left(h_{2}=0\right)}{\alpha\left(h_{2}=1\right)+\alpha\left(h_{2}=0\right)} \tag{S.56}
\end{align*}
$$

The requested x and y are thus: $x=0.4, y=0.6$.
(f) Compute the numerical value of $p\left(v_{3}=1 \mid v_{1}=1\right)$.

Solution. Inserting the numbers gives $\alpha\left(h_{2}=0\right)+\alpha\left(h_{2}=1\right)=5 / 10=1 / 2$ so that

$$
\begin{align*}
p\left(v_{3}=1 \mid v_{1}=1\right) & =\frac{0.4 \cdot 0.2+0.6 \cdot 0.3}{\frac{1}{2}} \tag{S.57}\\
& =2 \cdot\left(\frac{4}{10} \cdot \frac{2}{10}+\frac{6}{10} \frac{3}{10}\right) \tag{S.58}\\
& =\frac{4}{10} \cdot \frac{4}{10}+\frac{6}{10} \frac{6}{10} \tag{S.59}\\
& =\frac{1}{100}(16+36) \tag{S.60}\\
& =\frac{1}{100} 52 \tag{S.61}\\
& =\frac{52}{100}=0.52 \tag{S.62}
\end{align*}
$$

Exercise 5. Hidden Markov models and change of measure

We take here a change of measure perspective on the alpha-recursion.
Consider the following directed graph for a hidden Markov model where the y_{i} correspond to observed (visible) variables and the x_{i} to unobserved (hidden/latent) variables.

The joint model for $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$ thus is

$$
\begin{equation*}
p(\mathbf{x}, \mathbf{y})=p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right) \tag{5}
\end{equation*}
$$

(a) Show that

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{t}\right)=f_{1}\left(x_{1}\right) \prod_{i=2}^{n} f_{i}\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} p\left(y_{i} \mid x_{i}\right) \tag{6}
\end{equation*}
$$

for $t=0, \ldots, n$. We take the case $t=0$ to correspond to $p\left(x_{1}, \ldots, x_{n}\right)$,

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right) \prod_{i=2}^{n} f_{i}\left(x_{i} \mid x_{i-1}\right) \tag{7}
\end{equation*}
$$

Solution. The result follows by integrating/summing out $y_{t+1} \ldots n$.

$$
\begin{align*}
p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{t}\right) & =\int p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mathrm{d} y_{t+1} \ldots \mathrm{~d} y_{n} \tag{S.63}\\
& =\int p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{n} p\left(y_{i} \mid x_{i}\right) \mathrm{d} y_{t+1} \ldots \mathrm{~d} y_{n} \tag{S.64}\\
& =p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} p\left(y_{i} \mid x_{i}\right) \int \prod_{i=t+1}^{n} p\left(y_{i} \mid x_{i}\right) \mathrm{d} y_{t+1} \ldots \mathrm{~d} y_{n} \tag{S.65}\\
& =p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} p\left(y_{i} \mid x_{i}\right) \prod_{i=t+1}^{n} \underbrace{\int p\left(y_{i} \mid x_{i}\right) \mathrm{d} y_{i}}_{=1} \tag{S.66}\\
& =p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} p\left(y_{i} \mid x_{i}\right) \tag{S.67}
\end{align*}
$$

The result for $p\left(x_{1}, \ldots, x_{n}\right)$ is obtained when we integrate out all y 's.
(b) Show that $p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t}\right), t=0, \ldots, n$, factorises as

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t}\right) \propto p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} g_{i}\left(x_{i}\right) \tag{8}
\end{equation*}
$$

where $g_{i}\left(x_{i}\right)=p\left(y_{i} \mid x_{i}\right)$ for a fixed value of y_{i}, and that its normalising constant Z_{t} equals the likelihood $p\left(y_{1}, \ldots, y_{t}\right)$

Solution. The result follows from the basic definition of the conditional

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t}\right)=\frac{p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{t}\right)}{p\left(y_{1}, \ldots, y_{t}\right)} \tag{S.68}
\end{equation*}
$$

together with the expression for $p\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{t}\right)$ when the y_{i} are kept fixed.
(c) Denote $p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t}\right)$ by $p_{t}\left(x_{1}, \ldots, x_{n}\right)$. The index $t \leq n$ thus indicates the time of the last y-variable we are conditioning on. Show the following recursion for $1 \leq t \leq n$:

$$
\begin{array}{rll}
p_{t-1}\left(x_{1}, \ldots, x_{t}\right) & =\left\{\begin{array}{lll}
p\left(x_{1}\right) & \text { if } t=1 \\
p_{t-1}\left(x_{1}, \ldots, x_{t-1}\right) p\left(x_{t} \mid x_{t-1}\right) & \text { otherwise }
\end{array}\right. & \text { (extension) } \\
p_{t}\left(x_{1}, \ldots, x_{t}\right) & =\frac{1}{Z_{t}} p_{t-1}\left(x_{1}, \ldots, x_{t}\right) g_{t}\left(x_{t}\right) & \text { (change of measure) } \\
Z_{t} & =\int p_{t-1}\left(x_{t}\right) g_{t}\left(x_{t}\right) \mathrm{d} x_{t} & \tag{11}
\end{array}
$$

By iterating from $t=1$ to $t=n$, we can thus recursively compute $p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right)$, including its normalising constant Z_{n}, which equals the likelihood $Z_{n}=p\left(y_{1}, \ldots, y_{n}\right)$

Solution. We start with (8) which shows that by definition of $p_{t}\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
\begin{align*}
p_{t}\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t}\right) \tag{S.69}\\
& \propto p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t} g_{i}\left(x_{i}\right) \tag{S.70}
\end{align*}
$$

For $t=1$, we thus have

$$
\begin{equation*}
p_{1}\left(x_{1}, \ldots, x_{n}\right) \propto p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) g_{1}\left(x_{1}\right) \tag{S.71}
\end{equation*}
$$

Integrating out x_{2}, \ldots, x_{n} gives

$$
\begin{align*}
p_{1}\left(x_{1}\right) & =\int p_{1}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{2} \ldots \mathrm{~d} x_{n} \tag{S.72}\\
& \propto \int p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) g_{1}\left(x_{1}\right) \mathrm{d} x_{2} \ldots \mathrm{~d} x_{n} \tag{S.73}\\
& \propto p\left(x_{1}\right) g_{1}\left(x_{1}\right) \int \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \mathrm{d} x_{2} \ldots \mathrm{~d} x_{n} \tag{S.74}\\
& \propto p\left(x_{1}\right) g_{1}\left(x_{1}\right) \underbrace{\prod_{i=2}^{n} \int p\left(x_{i} \mid x_{i-1}\right) \mathrm{d} x_{i}}_{=1} \tag{S.75}\\
& \propto p\left(x_{1}\right) g_{1}\left(x_{1}\right) \tag{S.76}
\end{align*}
$$

The normalising constant is

$$
\begin{equation*}
Z_{1}=\int p\left(x_{1}\right) g_{1}\left(x_{1}\right) \mathrm{d} x_{1} \tag{S.77}
\end{equation*}
$$

This establishes the result for $t=1$.

From (8), we further have

$$
\begin{align*}
p_{t-1}\left(x_{1}, \ldots, x_{n}\right) & =p\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{t-1}\right) \tag{S.78}\\
& \propto p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t-1} g_{i}\left(x_{i}\right) \tag{S.79}
\end{align*}
$$

Integrating out x_{t+1}, \ldots, x_{n} thus gives

$$
\begin{align*}
p_{t-1}\left(x_{1}, \ldots, x_{t}\right) & =\int p_{t-1}\left(x_{1}, \ldots, x_{n}\right) \mathrm{d} x_{t+1} \ldots \mathrm{~d} x_{n} \tag{S.80}\\
& \propto \int p\left(x_{1}\right) \prod_{i=2}^{n} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t-1} g_{i}\left(x_{i}\right) \mathrm{d} x_{t+1} \ldots \mathrm{~d} x_{n} \tag{S.81}\\
& \propto p\left(x_{1}\right) \prod_{i=2}^{t} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t-1} g_{i}\left(x_{i}\right) \int \prod_{i=t+1}^{n} p\left(x_{i} \mid x_{i-1}\right) \mathrm{d} x_{t+1} \ldots \mathrm{~d} x_{n} \tag{S.82}\\
& \propto p\left(x_{1}\right) \prod_{i=2}^{t} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t-1} g_{i}\left(x_{i}\right) \prod_{i=t+1}^{n} \int p\left(x_{i} \mid x_{i-1}\right) \mathrm{d} x_{i} \tag{S.83}\\
& \propto p\left(x_{1}\right) \prod_{i=2}^{t} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t-1} g_{i}\left(x_{i}\right) \tag{S.84}
\end{align*}
$$

Noting that the product over the g_{i} does not involve x_{t} and that $p\left(x_{t} \mid x_{t-1}\right)$ is a pdf, we have further

$$
\begin{align*}
p_{t-1}\left(x_{1}, \ldots, x_{t-1}\right) & =\int p_{t-1}\left(x_{1}, \ldots, x_{t}\right) \mathrm{d} x_{t} \tag{S.85}\\
& \propto p\left(x_{1}\right) \prod_{i=2}^{t-1} p\left(x_{i} \mid x_{i-1}\right) \prod_{i=1}^{t-1} g_{i}\left(x_{i}\right) \tag{S.86}
\end{align*}
$$

Hence

$$
\begin{equation*}
p_{t-1}\left(x_{1}, \ldots, x_{t}\right)=p_{t-1}\left(x_{1}, \ldots, x_{t-1}\right) p\left(x_{t} \mid x_{t-1}\right) \tag{S.87}
\end{equation*}
$$

Note that we can have an equal sign since $p\left(x_{t} \mid x_{t-1}\right)$ is a pdf and hence integrates to one. This is sometimes called the "extension" since the inputs for p_{t-1} are extended from $\left(x_{1}, \ldots, x_{t-1}\right)$ to x_{1}, \ldots, x_{t}.
From (S.70), we further have

$$
\begin{equation*}
p_{t}\left(x_{1}, \ldots, x_{n}\right) \propto p_{t-1}\left(x_{1}, \ldots, x_{n}\right) g_{t}\left(x_{t}\right) \tag{S.88}
\end{equation*}
$$

Integrating out x_{t+1}, \ldots, x_{n} thus gives

$$
\begin{equation*}
p_{t}\left(x_{1}, \ldots, x_{t}\right) \propto p_{t-1}\left(x_{1}, \ldots, x_{t}\right) g_{t}\left(x_{t}\right) \tag{S.89}
\end{equation*}
$$

This is a change of measure from $p_{t-1}\left(x_{1}, \ldots, x_{t}\right)$ to $p_{t}\left(x_{1}, \ldots, x_{t}\right)$. Note that $p_{t-1}\left(x_{1}, \ldots, x_{t}\right)$ only involves g_{i}, and hence observations y_{i}, up to index (time) $t-1$. The change of measure multiplies-in the additional factor $g_{t}\left(x_{t}\right)=p\left(y_{t} \mid x_{t}\right)$, and thereby incorporates the observation at index (time) t into the model.

The stated recursion is complete by computing the normalising constant Z_{t} for $p_{t}\left(x_{1}, \ldots, x_{t}\right)$, which equals

$$
\begin{align*}
Z_{t} & =\int p_{t-1}\left(x_{1}, \ldots, x_{t}\right) g_{t}\left(x_{t}\right) \mathrm{d} x_{1}, \ldots \mathrm{~d} x_{t} \tag{S.90}\\
& =\int g_{t}\left(x_{t}\right)\left[\int p_{t-1}\left(x_{1}, \ldots, x_{t}\right) \mathrm{d} x_{1}, \ldots \mathrm{~d} x_{t-1}\right] \mathrm{d} x_{t} \tag{S.91}\\
& =\int g_{t}\left(x_{t}\right) p_{t-1}\left(x_{t}\right) \mathrm{d} x_{t} \tag{S.92}
\end{align*}
$$

This recursion, and some slight generalisations, forms the basis for what is known as the "forward recursion" in particle filtering and sequential Monte Carlo. These topics are out of scope of the course but an excellent introduction would be the book An Introduction to Sequential Monte Carlo by Chopin and Papaspiliopoulos.
(d) Use the recursion above to derive the following form of the alpha recursion:

$$
\begin{align*}
p_{t-1}\left(x_{t-1}, x_{t}\right) & =p_{t-1}\left(x_{t-1}\right) p\left(x_{t} \mid x_{t-1}\right) & & \text { (extension) } \tag{12}\\
p_{t-1}\left(x_{t}\right) & =\int p_{t-1}\left(x_{t-1}, x_{t}\right) \mathrm{d} x_{t-1} & & \text { (marginalisation) } \tag{13}\\
p_{t}\left(x_{t}\right) & =\frac{1}{Z_{t}} p_{t-1}\left(x_{t}\right) g_{t}\left(x_{t}\right) & & \text { (change of measure) } \tag{14}\\
Z_{t} & =\int p_{t-1}\left(x_{t}\right) g_{t}\left(x_{t}\right) \mathrm{d} x_{t} & & \tag{15}
\end{align*}
$$

with $p_{0}\left(x_{1}\right)=p\left(x_{1}\right)$.
The term $p_{t}\left(x_{t}\right)$ corresponds to $\alpha\left(x_{t}\right)$ from the alpha-recursion after normalisation. As in the lecture, we see that $p_{t-1}\left(x_{t}\right)$ is a predictive distribution for x_{t} given observations until time $t-1$. Multiplying $p_{t-1}\left(x_{t}\right)$ with $g_{t}\left(x_{t}\right)$ gives the new $\alpha\left(x_{t}\right)$. In the lecture we called $g_{t}\left(x_{t}\right)=p\left(y_{t} \mid x_{t}\right)$ the "correction". We see here that the correction has the effect of a change of measure, changing the predictive distribution $p_{t-1}\left(x_{t}\right)$ into the filtering distribution $p_{t}\left(x_{t}\right)$.

Solution. Let $t>1$. With (9), we have

$$
\begin{align*}
p_{t-1}\left(x_{t-1}, x_{t}\right) & =\int p_{t-1}\left(x_{1}, \ldots, x_{t}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{t-2} \tag{S.93}\\
& =\int p_{t-1}\left(x_{1}, \ldots, x_{t-1}\right) p\left(x_{t} \mid x_{t-1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{t-2} \tag{S.94}\\
& =p\left(x_{t} \mid x_{t-1}\right) \int p_{t-1}\left(x_{1}, \ldots, x_{t-1}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{t-2} \tag{S.95}\\
& =p\left(x_{t} \mid x_{t-1}\right) p_{t-1}\left(x_{t-1}\right) \tag{S.96}
\end{align*}
$$

which proves the "extension".
With (10), we have

$$
\begin{align*}
p_{t}\left(x_{t}\right) & =\int p_{t}\left(x_{1}, \ldots, x_{t}\right) \mathrm{d} x_{1}, \ldots \mathrm{~d} x_{t-1} \tag{S.97}\\
& =\frac{1}{Z_{t}} \int p_{t-1}\left(x_{1}, \ldots, x_{t}\right) g_{t}\left(x_{t}\right) \mathrm{d} x_{1}, \ldots \mathrm{~d} x_{t-1} \tag{S.98}\\
& =\frac{1}{Z_{t}} g_{t}\left(x_{t}\right) \int p_{t-1}\left(x_{1}, \ldots, x_{t}\right) \mathrm{d} x_{1}, \ldots \mathrm{~d} x_{t-1} \tag{S.99}\\
& =\frac{1}{Z_{t}} g_{t}\left(x_{t}\right) p_{t-1}\left(x_{t}\right) \tag{S.100}
\end{align*}
$$

which proves the "change of measure". Moreover, the normalising constant Z_{t} is the same as before. Hence completing the iteration until $t=n$ yields the likelihood $p\left(y_{1}, \ldots, y_{n}\right)=$ Z_{n} as a by-product of the recursion. The initialisation of the recursion with $p_{0}\left(x_{1}\right)=p\left(x_{1}\right)$ is also the same as above.

Exercise 6. Reject option

[Murphy PML1 (2022) Ex 5.1] Consider a K-class discrete variable Y with labels $\mathcal{Y}=\{1, \ldots, C\}$. The actions are $\mathcal{A}=\mathcal{Y} \cup\{0\}$, where $a=0$ denotes the reject option, and choosing action $a=i$ for $i \in \mathcal{Y}$ denotes selecting label i. Define the loss function as follows:

$$
\ell(y=j, a=i)= \begin{cases}0 & \text { if } i=j \text { and } a \in\{1, \ldots, C\} \tag{16}\\ \lambda_{r} & \text { if } a=0 \\ \lambda_{c} & \text { otherwise },\end{cases}
$$

where λ_{r} is the cost of a reject, λ_{c} the cost of an error.
Given information \mathbf{x} we obtain the posterior $p(Y \mid \mathbf{x})$. Show the the minimum risk is obtained if we decide $Y=j$ if $p(Y=j \mid \mathbf{x}) \geq p(Y=k \mid \mathbf{x})$ for all k (i.e. j is the most probable label) and if $p(Y=j \mid \mathbf{x}) \geq 1-\lambda_{r} / \lambda_{c}$, otherwise we decide to reject.

Solution. The risk for the action $a=i$ for $i=1, \ldots, C$ is given by

$$
\begin{aligned}
R(a=i \mid \mathbf{x}) & =\sum_{k} p(Y=k \mid \mathbf{x}) \ell(Y=k, a=i) \\
& =p(Y=i \mid \mathbf{x}) \cdot 0+\lambda_{c} \sum_{k \neq i} p(Y=k \mid \mathbf{x}) \\
& =\lambda_{c}(1-p(Y=i \mid \mathbf{x}))
\end{aligned}
$$

This risk is minimized by choosing the most probable label j. The risk $R(a=0 \mid \mathbf{x})=\lambda_{r}$. We choose the reject option when

$$
\begin{aligned}
R(a=0 \mid \mathbf{x}) & \leq R(a=j \mid \mathbf{x}), \text { i.e. } \\
\lambda_{r} & \leq \lambda_{c}(1-p(Y=j \mid \mathbf{x}))
\end{aligned}
$$

which can be rearranged to give $p(Y=j \mid \mathbf{x}) \geq 1-\lambda_{r} / \lambda_{c}$.

Exercise 7. Utility of money

[Based on Koller and Friedman (2009) sec 22.2.2]. Suppose that your utility $U(x)$ for having a bank balance of $£ x$ is given by $U(x)=\log _{10}(1+x)$. Sketch the utility curve.

Suppose you have $£ 50$, and are offered a bet π where you double your money with probability 0.5 , and lose it all with probability 0.5.

Compute the expected utility of the bet. Show graphically on your sketch graph why the bet has an inferior expected utility compared to having $£ 50$ with certainty.

Suppose now that the bet is modified so that you obtain £ 100 with probability $p>0.5$, and $£ 0$ with probability $1-p$. Determine p so that your expected utility is indifferent to making the bet or not. Identify p on your sketch graph.

Figure 1: Utility plotted against cash value x for $U(x)=\log _{10}(1+x)$. The dashed line interpolates between $U(0)$ and $U(100) . U(\pi)$ denotes the utility of the $50 / 50$ bet.

Solution. For the bet we have

$$
U(\pi)=0.5 \cdot U(100)+0.5 \cdot U(0)=0.5 \cdot 2.0043+0=1.0022 .
$$

Otherwise without betting we have $U(50)=1.7076$. The value of $U(\pi)$ lies halfway along the diagonal line joining $U(0)=0$ and $U(100)$, and clearly lies below $U(50)$. This follows from the concavity of the utility function.

For the last part we require that $p \cdot U(100)=U(50)$, so $p=U(50) / U(100)=0.8519$. p can be identified graphically by drawing a horizontal line from $U(50)$ to meet the diagonal line. Let the corresponding cash value of this intercept be c. Then $p=c / 100$.

The solution is illustrated in Fig. 1.

Exercise 8. Kalman filtering (optional, not examinable)

We here consider filtering for hidden Markov models with Gaussian transition and emission distributions. For simplicity, we assume one-dimensional hidden variables and observables. We denote the probability density function of a Gaussian random variable x with mean μ and variance σ^{2} by $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)$,

$$
\begin{equation*}
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \tag{17}
\end{equation*}
$$

The transition and emission distributions are assumed to be

$$
\begin{align*}
p\left(h_{s} \mid h_{s-1}\right) & =\mathcal{N}\left(h_{s} \mid A_{s} h_{s-1}, B_{s}^{2}\right) \tag{18}\\
p\left(v_{s} \mid h_{s}\right) & =\mathcal{N}\left(v_{s} \mid C_{s} h_{s}, D_{s}^{2}\right) . \tag{19}
\end{align*}
$$

The distribution $p\left(h_{1}\right)$ is assumed Gaussian with known parameters. The $A_{s}, B_{s}, C_{s}, D_{s}$ are also assumed known.
(a) Show that h_{s} and v_{s} as defined in the following update and observation equations

$$
\begin{align*}
h_{s} & =A_{s} h_{s-1}+B_{s} \xi_{s} \tag{20}\\
v_{s} & =C_{s} h_{s}+D_{s} \eta_{s} \tag{21}
\end{align*}
$$

follow the conditional distributions in (18) and (19). The random variables ξ_{s} and η_{s} are independent from the other variables in the model and follow a standard normal Gaussian distribution, e.g. $\xi_{s} \sim \mathcal{N}\left(\xi_{s} \mid 0,1\right)$.

Hint: For two constants c_{1} and $c_{2}, y=c_{1}+c_{2} x$ is Gaussian if x is Gaussian. In other words, an affine transformation of a Gaussian is Gaussian.
The equations mean that h_{s} is obtained by scaling h_{s-1} and by adding noise with variance B_{s}^{2}. The observed value v_{s} is obtained by scaling the hidden h_{s} and by corrupting it with Gaussian observation noise of variance D_{s}^{2}.

Solution. By assumption, ξ_{s} is Gaussian. Since we condition on $h_{s-1}, A_{s} h_{s-1}$ in (20) is a constant, and since B_{s} is a constant too, h_{s} is Gaussian.

What we have to show next is that (20) defines the same conditional mean and variance as the conditional Gaussian in (18): The conditional expectation of h_{s} given h_{s-1} is

$$
\begin{align*}
\mathbb{E}\left(h_{s} \mid h_{s-1}\right) & =A_{s} h_{s-1}+\mathbb{E}\left(B_{s} \xi_{s}\right) & & \left(\text { since we condition on } h_{s-1}\right) \tag{S.101}\\
& =A_{s} h_{s-1}+B_{s} \mathbb{E}\left(\xi_{s}\right) & & (\text { by linearity of expectation) } \tag{S.102}\\
& =A_{s} h_{s-1} & & \left(\text { since } \xi_{s}\right. \text { has zero mean) } \tag{S.103}
\end{align*}
$$

The conditional variance of h_{s} given h_{s-1} is

$$
\begin{align*}
\mathbb{V}\left(h_{s} \mid h_{s-1}\right) & =\mathbb{V}\left(B_{s} \xi_{s}\right) & & \left(\text { since we condition on } h_{s-1}\right) \tag{S.104}\\
& =B_{s}^{2} \mathbb{V}\left(\xi_{s}\right) & & (\text { by properties of the variance) } \tag{S.105}\\
& =B_{s}^{2} & & \text { (since } \xi_{s} \text { has variance one) } \tag{S.106}
\end{align*}
$$

We see that the conditional mean and variance of h_{s} given h_{s-1} match those in (18). And since h_{s} given h_{s-1} is Gaussian as argued above, the result follows.
Exactly the same reasoning also applies to the case of (21). Conditional on h_{s}, v_{s} is Gaussian because it is an affine transformation of a Gaussian. The conditional mean of v_{s} given h_{s} is:

$$
\begin{align*}
\mathbb{E}\left(v_{s} \mid h_{s}\right) & =C_{s} h_{s}+\mathbb{E}\left(D_{s} \eta_{s}\right) & & \text { (since we condition on } \left.h_{s}\right) \tag{S.107}\\
& =C_{s} h_{s}+D_{s} \mathbb{E}\left(\eta_{s}\right) & & (\text { by linearity of expectation) } \tag{S.108}\\
& =C_{s} h_{s} & & \left(\text { since } \eta_{s}\right. \text { has zero mean) } \tag{S.109}
\end{align*}
$$

The conditional variance of v_{s} given h_{s} is

$$
\begin{align*}
\mathbb{V}\left(v_{s} \mid h_{s}\right) & =\mathbb{V}\left(D_{s} \eta_{s}\right) & & \text { (since we condition on } \left.h_{s}\right) \tag{S.110}\\
& =D_{s}^{2} \mathbb{V}\left(\eta_{s}\right) & & \text { (by properties of the variance) } \tag{S.111}\\
& =D_{s}^{2} & & \text { (since } \eta_{s} \text { has variance one) } \tag{S.112}
\end{align*}
$$

Hence, conditional on h_{s}, v_{s} is Gaussian with mean and variance as in (19).
(b) Show that

$$
\begin{equation*}
\int \mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right) \mathrm{d} x \propto \mathcal{N}\left(y \mid A \mu, A^{2} \sigma^{2}+B^{2}\right) \tag{22}
\end{equation*}
$$

Hint: While this result can be obtained by integration, an approach that avoids this is as follows: First note that $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right)$ is proportional to the joint pdf of x and y. We can thus consider the integral to correspond to the computation of the marginal of y from the joint. Using the equivalence of Equations (18)-(19) and (20)-(21), and the fact that the weighted sum of two Gaussian random variables is a Gaussian random variable then allows one to obtain the result.

Solution. We follow the procedure outlined above. The two Gaussian densities correspond to the equations

$$
\begin{align*}
& x=\mu+\sigma \xi \tag{S.113}\\
& y=A x+B \eta \tag{S.114}
\end{align*}
$$

where ξ and η are independent standard normal random variables. The mean of y is

$$
\begin{align*}
\mathbb{E}(y) & =A \mathbb{E}(x)+B \mathbb{E}(\eta) \tag{S.115}\\
& =A \mu \tag{S.116}
\end{align*}
$$

where we have use the linearity of expectation and $\mathbb{E}(\eta)=0$. The variance of y is

$$
\begin{array}{rlr}
\mathbb{V}(y) & =\mathbb{V}(A x)+\mathbb{V}(B \eta) \quad \text { (since } x \text { and } \eta \text { are independent) } \\
& =A^{2} \mathbb{V}(x)+B^{2} \mathbb{V}(\eta) \quad \text { (by properties of the variance) } \\
& =A^{2} \sigma^{2}+B^{2} \tag{S.119}
\end{array}
$$

Since y is the (weighted) sum of two Gaussians, it is Gaussian itself, and hence its distribution is completely defined by its mean and variance, so that

$$
\begin{equation*}
y \sim \mathcal{N}\left(y \mid A \mu, A^{2} \sigma^{2}+B^{2}\right) \tag{S.120}
\end{equation*}
$$

Now, the product $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right) \mathcal{N}\left(y \mid A x, B^{2}\right)$ is proportional to the joint pdf of x and y, so that the integral can be considered to correspond to the marginalisation of x, and hence its result is proportional to the density of y, which is $\mathcal{N}\left(y \mid A \mu, A^{2} \sigma^{2}+B^{2}\right)$.
(c) Show that

$$
\begin{equation*}
\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right) \propto \mathcal{N}\left(x \mid m_{3}, \sigma_{3}^{2}\right) \tag{23}
\end{equation*}
$$

where

$$
\begin{align*}
\sigma_{3}^{2} & =\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)^{-1}=\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{24}\\
m_{3} & =\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)=m_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(m_{2}-m_{1}\right) \tag{25}
\end{align*}
$$

Hint: Work in the negative log domain.

Solution. We show the result using a classical technique called "completing the square", see e.g. https://en.wikipedia.org/wiki/Completing_the_square.
We work in the (negative) log-domain and use that

$$
\begin{align*}
-\log \left[\mathcal{N}\left(x \mid m, \sigma^{2}\right)\right] & =\frac{(x-m)^{2}}{2 \sigma^{2}}+\mathrm{const} \tag{S.121}\\
& =\frac{x^{2}}{2 \sigma^{2}}-x \frac{m}{\sigma^{2}}+\frac{m^{2}}{2 \sigma^{2}}+\mathrm{const} \tag{S.122}\\
& =\frac{x^{2}}{2 \sigma^{2}}-x \frac{m}{\sigma^{2}}+\mathrm{const} \tag{S.123}
\end{align*}
$$

where const indicates terms not depending on x. We thus obtain

$$
\begin{align*}
-\log \left[\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right)\right] & =-\log \left[\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right)\right]-\log \left[\mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right)\right] \tag{S.124}\\
& =\frac{\left(x-m_{1}\right)^{2}}{2 \sigma_{1}^{2}}+\frac{\left(x-m_{2}\right)^{2}}{2 \sigma_{2}^{2}}+\mathrm{const} \tag{S.125}\\
& =\frac{x^{2}}{2 \sigma_{1}^{2}}-x \frac{m_{1}}{\sigma_{1}^{2}}+\frac{x^{2}}{2 \sigma_{2}^{2}}-x \frac{m_{2}}{\sigma_{2}^{2}}+\mathrm{const} \tag{S.126}\\
& =\frac{x^{2}}{2}\left(\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}}\right)-x\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)+\mathrm{const} \tag{S.127}\\
& =\frac{x^{2}}{2 \sigma_{3}^{2}}-\frac{x}{\sigma_{3}^{2}} \sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)+\mathrm{const} \tag{S.128}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{1}{\sigma_{3}^{2}}=\frac{1}{\sigma_{1}^{2}}+\frac{1}{\sigma_{2}^{2}} \tag{S.129}
\end{equation*}
$$

Comparison with (S.123) shows that we can further write

$$
\begin{equation*}
\frac{x^{2}}{2 \sigma_{3}^{2}}-\frac{x}{\sigma_{3}^{2}} \sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)=\frac{\left(x-m_{3}\right)^{2}}{2 \sigma_{3}^{2}}+\mathrm{const} \tag{S.130}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{3}=\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right) \tag{S.131}
\end{equation*}
$$

so that

$$
\begin{equation*}
-\log \left[\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right)\right]=\frac{\left(x-m_{3}\right)^{2}}{2 \sigma_{3}^{2}}+\text { const } \tag{S.132}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\mathcal{N}\left(x \mid m_{1}, \sigma_{1}^{2}\right) \mathcal{N}\left(x \mid m_{2}, \sigma_{2}^{2}\right) \propto \mathcal{N}\left(x \mid m_{3}, \sigma_{3}^{2}\right) \tag{S.133}
\end{equation*}
$$

Note that the identity

$$
\begin{equation*}
m_{3}=\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right)=m_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(m_{2}-m_{1}\right) \tag{S.134}
\end{equation*}
$$

is obtained as follows

$$
\begin{align*}
\sigma_{3}^{2}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right) & =\frac{\sigma_{1}^{2} \sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(\frac{m_{1}}{\sigma_{1}^{2}}+\frac{m_{2}}{\sigma_{2}^{2}}\right) \tag{S.135}\\
& =m_{1} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}+m_{2} \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{S.136}\\
& =m_{1}\left(1-\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)+m_{2} \frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}} \tag{S.137}\\
& =m_{1}+\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\sigma_{2}^{2}}\left(m_{2}-m_{1}\right) \tag{S.138}
\end{align*}
$$

(d) In the lecture, we have seen that $p\left(h_{t} \mid v_{1: t}\right) \propto \alpha\left(h_{t}\right)$ where $\alpha\left(h_{t}\right)$ can be computed recursively via the "alpha-recursion"

$$
\begin{equation*}
\alpha\left(h_{1}\right)=p\left(h_{1}\right) \cdot p\left(v_{1} \mid h_{1}\right) \quad \alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \sum_{h_{s-1}} p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \tag{26}
\end{equation*}
$$

For continuous random variables, the sum above becomes an integral so that

$$
\begin{equation*}
\alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) \int p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \mathrm{d} h_{s-1} . \tag{27}
\end{equation*}
$$

For reference, let us denote the integral by $I\left(h_{s}\right)$,

$$
\begin{equation*}
I\left(h_{s}\right)=\int p\left(h_{s} \mid h_{s-1}\right) \alpha\left(h_{s-1}\right) \mathrm{d} h_{s-1} \tag{28}
\end{equation*}
$$

In the lecture, it was pointed out that $I\left(h_{s}\right)$ is proportional to the predictive distribution $p\left(h_{s} \mid v_{1: s-1}\right)$. For a Gaussian prior distribution for h_{1} and Gaussian emission probability $p\left(v_{1} \mid h_{1}\right), \alpha\left(h_{1}\right)=$ $p\left(h_{1}\right) \cdot p\left(v_{1} \mid h_{1}\right) \propto p\left(h_{1} \mid v_{1}\right)$ is proportional to a Gaussian. We denote its mean by μ_{1} and its variance by σ_{1}^{2} so that

$$
\begin{equation*}
\alpha\left(h_{1}\right) \propto \mathcal{N}\left(h_{1} \mid \mu_{1}, \sigma_{1}^{2}\right) . \tag{29}
\end{equation*}
$$

Assuming $\alpha\left(h_{s-1}\right) \propto \mathcal{N}\left(h_{s-1} \mid \mu_{s-1}, \sigma_{s-1}^{2}\right)$ (which holds for $s=2$), use Equation (22) to show that

$$
\begin{equation*}
I\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, P_{s}\right) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{s}=A_{s}^{2} \sigma_{s-1}^{2}+B_{s}^{2} . \tag{31}
\end{equation*}
$$

Solution. We can set $\alpha\left(h_{s-1}\right) \propto \mathcal{N}\left(h_{s-1} \mid \mu_{s-1}, \sigma_{s-1}^{2}\right)$. Since $p\left(h_{s} \mid h_{s-1}\right)$ is Gaussian, see Equation (18), Equation (28) becomes

$$
\begin{equation*}
I\left(h_{s}\right) \propto \int \mathcal{N}\left(h_{s} \mid A_{s} h_{s-1}, B_{s}^{2}\right) \mathcal{N}\left(h_{s-1} \mid \mu_{s-1}, \sigma_{s-1}^{2}\right) \mathrm{d} h_{s-1} \tag{S.139}
\end{equation*}
$$

Equation (22) with $x \equiv h_{s-1}$ and $y \equiv h_{s}$ yields the desired result,

$$
\begin{equation*}
I\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, A_{s}^{2} \sigma_{s-1}^{2}+B_{s}^{2}\right) \tag{S.140}
\end{equation*}
$$

We can understand the equation as follows: To compute the predictive mean of h_{s} given $v_{1: s-1}$, we forward propagate the mean of $h_{s-1} \mid v_{1: s-1}$ using the update equation (20). This gives the mean term $A_{s} \mu_{s-1}$. Since $h_{s-1} \mid v_{1: s-1}$ has variance σ_{s-1}^{2}, the variance of $h_{s} \mid v_{1: s-1}$ is given by $A_{s}^{2} \sigma_{s-1}^{2}$ plus an additional term, B_{s}^{2}, due to the noise in the forward propagation. This gives the variance term $A_{s}^{2} \sigma_{s-1}^{2}+B_{s}^{2}$.
(e) Use Equation (23) to show that

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid \mu_{s}, \sigma_{s}^{2}\right) \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{33}\\
\sigma_{s}^{2} & =\frac{P_{s} D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} \tag{34}
\end{align*}
$$

Solution. Having computed $I\left(h_{s}\right)$, the final step in the alpha-recursion is

$$
\begin{equation*}
\alpha\left(h_{s}\right)=p\left(v_{s} \mid h_{s}\right) I\left(h_{s}\right) \tag{S.141}
\end{equation*}
$$

With Equation (19) we obtain

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(v_{s} \mid C_{s} h_{s}, D_{s}^{2}\right) \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, P_{s}\right) . \tag{S.142}
\end{equation*}
$$

We further note that

$$
\begin{equation*}
\mathcal{N}\left(v_{s} \mid C_{s} h_{s}, D_{s}^{2}\right) \propto \mathcal{N}\left(h_{s} \mid C_{s}^{-1} v_{s}, \frac{D_{s}^{2}}{C_{s}^{2}}\right) \tag{S.143}
\end{equation*}
$$

so that we can apply Equation (23) (with $m_{1}=A \mu_{s-1}, \sigma_{1}^{2}=P_{s}$)

$$
\begin{align*}
\alpha\left(h_{s}\right) & \propto \mathcal{N}\left(h_{s} \mid C_{s}^{-1} v_{s}, \frac{D_{s}^{2}}{C_{s}^{2}}\right) \mathcal{N}\left(h_{s} \mid A_{s} \mu_{s-1}, P_{s}\right) \tag{S.144}\\
& \propto \mathcal{N}\left(h_{s}, \mu_{s}, \sigma_{s}^{2}\right) \tag{S.145}
\end{align*}
$$

with

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+\frac{P_{s}}{P_{s}+\frac{D_{s}^{2}}{C_{s}^{2}}}\left(C_{s}^{-1} v_{s}-A_{s} \mu_{s-1}\right) \tag{S.146}\\
& =A_{s} \mu_{s-1}+\frac{P_{s} C_{s}^{2}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(C_{s}^{-1} v_{s}-A_{s} \mu_{s-1}\right) \tag{S.147}\\
& =A_{s} \mu_{s-1}+\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{S.148}\\
\sigma_{s}^{2} & =\frac{P_{s} \frac{D_{s}^{2}}{C_{s}^{2}}}{P_{s}+\frac{D_{s}^{2}}{C_{s}^{2}}} \tag{S.149}\\
& =\frac{P_{s} D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} \tag{S.150}
\end{align*}
$$

(f) Show that $\alpha\left(h_{s}\right)$ can be re-written as

$$
\begin{equation*}
\alpha\left(h_{s}\right) \propto \mathcal{N}\left(h_{s} \mid \mu_{s}, \sigma_{s}^{2}\right) \tag{35}
\end{equation*}
$$

where

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+K_{s}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{36}\\
\sigma_{s}^{2} & =\left(1-K_{s} C_{s}\right) P_{s} \tag{37}\\
K_{s} & =\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}} \tag{38}
\end{align*}
$$

These are the Kalman filter equations and K_{s} is called the Kalman filter gain.

Solution. We start from

$$
\begin{equation*}
\mu_{s}=A_{s} \mu_{s-1}+\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right), \tag{S.152}
\end{equation*}
$$

and see that

$$
\begin{equation*}
\frac{P_{s} C_{s}}{C_{s}^{2} P_{s}+D_{s}^{2}}=K_{s} \tag{S.153}
\end{equation*}
$$

so that

$$
\begin{equation*}
\mu_{s}=A_{s} \mu_{s-1}+K_{s}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) . \tag{S.154}
\end{equation*}
$$

For the variance σ_{s}^{2}, we have

$$
\begin{align*}
\sigma_{s}^{2} & =\frac{P_{s} D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} \tag{S.155}\\
& =\frac{D_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}} P_{s} \tag{S.156}\\
& =\left(1-\frac{P_{s} C_{s}^{2}}{P_{s} C_{s}^{2}+D_{s}^{2}}\right) P_{s} \tag{S.157}\\
& =\left(1-K_{s} C_{s}\right) P_{s}, \tag{S.158}
\end{align*}
$$

which is the desired result.
The filtering result generalises to vector valued latents and visibles where the transition and emission distributions in (18) and (19) become

$$
\begin{align*}
p\left(\mathbf{h}_{s} \mid \mathbf{h}_{s-1}\right) & =\mathcal{N}\left(\mathbf{h}_{s} \mid \mathbf{A h}_{s-1}, \boldsymbol{\Sigma}^{h}\right), \tag{S.159}\\
p\left(\mathbf{v}_{s} \mid \mathbf{h}_{s}\right) & =\mathcal{N}\left(\mathbf{v}_{s} \mid \mathbf{C}_{s} \mathbf{h}_{s}, \boldsymbol{\Sigma}^{v}\right), \tag{S.160}
\end{align*}
$$

where $\mathcal{N}()$ denotes multivariate Gaussian pdfs, e.g.

$$
\begin{equation*}
\mathcal{N}\left(\mathbf{v}_{s} \mid \mathbf{C}_{s} \mathbf{h}_{s}, \boldsymbol{\Sigma}^{v}\right)=\frac{1}{\left|\operatorname{det}\left(2 \pi \boldsymbol{\Sigma}^{v}\right)\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(\mathbf{v}_{s}-\mathbf{C}_{s} \mathbf{h}_{s}\right)^{\top}\left(\boldsymbol{\Sigma}^{v}\right)^{-1}\left(\mathbf{v}_{s}-\mathbf{C}_{s} \mathbf{h}_{s}\right)\right) . \tag{S.161}
\end{equation*}
$$

We then have

$$
\begin{equation*}
p\left(\mathbf{h}_{t} \mid \mathbf{v}_{1: t}\right)=\mathcal{N}\left(\mathbf{h}_{t} \mid \boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t}\right) \tag{S.162}
\end{equation*}
$$

where the posterior mean and variance are recursively computed as

$$
\begin{align*}
\boldsymbol{\mu}_{s} & =\mathbf{A}_{s} \boldsymbol{\mu}_{s-1}+\mathbf{K}_{s}\left(\mathbf{v}_{s}-\mathbf{C}_{s} \mathbf{A}_{s} \boldsymbol{\mu}_{s-1}\right) \tag{S.163}\\
\boldsymbol{\Sigma}_{s} & =\left(\mathbf{I}-\mathbf{K}_{s} \mathbf{C}_{s}\right) \mathbf{P}_{s} \tag{S.164}\\
\mathbf{P}_{s} & =\mathbf{A}_{s} \boldsymbol{\Sigma}_{s-1} \mathbf{A}_{s}^{\top}+\boldsymbol{\Sigma}^{h} \tag{S.165}\\
\mathbf{K}_{s} & =\mathbf{P}_{s} \mathbf{C}_{s}^{\top}\left(\mathbf{C}_{s} \mathbf{P}_{s} \mathbf{C}_{s}^{\top}+\boldsymbol{\Sigma}^{v}\right)^{-1} \tag{S.166}
\end{align*}
$$

and initialised with $\boldsymbol{\mu}_{1}$ and $\boldsymbol{\Sigma}_{1}$ equal to the mean and variance of $p\left(\mathbf{h}_{1} \mid \mathbf{v}_{1}\right)$. The matrix \mathbf{K}_{s} is then called the Kalman gain matrix.
The Kalman filter is widely applicable, see e.g. https://en.wikipedia.org/wiki/Kalman_ filter, and has played a role in historic events such as the moon landing, see e.g. http://ieeexplore.ieee.org/document/5466132/
An example of the application of the Kalman filter to tracking is shown in Figure 2.
(g) Explain Equation (36) in non-technical terms. What happens if the variance D_{s}^{2} of the observation noise goes to zero?

Figure 2: Kalman filtering for tracking of a moving object. The blue points indicate the true positions of the object in a two-dimensional space at successive time steps, the green points denote noisy measurements of the positions, and the red crosses indicate the means of the inferred posterior distributions of the positions obtained by running the Kalman filtering equations. The covariances of the inferred positions are indicated by the red ellipses, which correspond to contours having one standard deviation. (Bishop, Figure 13.22)

Solution. We have already seen that $A_{s} \mu_{s-1}$ is the predictive mean of h_{s} given $v_{1: s-1}$. The term $C_{s} A_{s} \mu_{s-1}$ is thus the predictive mean of v_{s} given the observations so far, $v_{1: s-1}$. The difference $v_{s}-C_{s} A_{s} \mu_{s-1}$ is thus the prediction error of the observable. Since $\alpha\left(h_{s}\right)$ is proportional to $p\left(h_{s} \mid v_{1: s}\right)$ and μ_{s} its mean, we thus see that the posterior mean of $h_{s} \mid v_{1: s}$ equals the posterior mean of $h_{s} \mid v_{1: s-1}, A_{s} \mu_{s-1}$, updated by the prediction error of the observable weighted by the Kalman gain.
For $D_{s}^{2} \rightarrow 0, K_{s} \rightarrow C_{s}^{-1}$ and

$$
\begin{align*}
\mu_{s} & =A_{s} \mu_{s-1}+K_{s}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{S.167}\\
& =A_{s} \mu_{s-1}+C_{s}^{-1}\left(v_{s}-C_{s} A_{s} \mu_{s-1}\right) \tag{S.168}\\
& =A_{s} \mu_{s-1}+C_{s}^{-1} v_{s}-A_{s} \mu_{s-1} \tag{S.169}\\
& =C_{s}^{-1} v_{s} \tag{S.170}
\end{align*}
$$

so that the posterior mean of $p\left(h_{s} \mid v_{1: s}\right)$ is obtained by inverting the observation equation. Moreover, the variance σ_{s}^{2} of $h_{s} \mid v_{1: s}$ goes to zero so that the value of h_{s} is known precisely and equals $C_{s}^{-1} v_{s}$.

