What's the difference

between

PGMs & Neural Networks?

antonio vergari (he/him)

16th Feb 2024 - Probabilistic Modeling and Reasoning

april

april is probably a recursive identifier of a lab

april

about probabilities integrals & logic

Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

- Nodes: random variables
- *Edges*: dependencies

Inference: conditioning [Darwiche 2001; Sang, Beame, and Kautz 2005] elimination [Zhang and Poole 1994; Dechter 1998] message passing [Yedidia, Freeman, and Weiss 2001; Dechter, Kask, and Mateescu 2002; Choi and Darwiche 2010; Sontag, Globerson, and Jaakkola 2011]

Creating video from text

Sora is an AI model that can create realistic and imaginative scenes from text instructions.

Read technical report

All videos on this page were generated directly by Sora without modification.

...but what about neural networks?

 \mathbf{X}

...so what's the difference?

NNs are graphs (and can encode joint/conditional distributions), but ...

	PGMs	Neural Networks
Nodes:	random variables	unit of computations
Edges:	dependencies	order of execution
Inference:	conditioning	feedforward pass
	elimination	backward pass
	message passing	

...so what's the difference?

NNs are graphs (and can encode joint/conditional distributions), but ...

	PGMs	Neural Networks
Nodes:	random variables	unit of computations
Edges:	dependencies	order of execution
Inference:	conditioning	feedforward pass
	elimination	backward pass
	message passing	

they are computational graphs

"Can we find a middle ground between these two representations?"

"Can we design computational graphs that efficiently encode inference procedures in PGMs?"

"Can we design computational graphs that efficiently encode inference procedures in PGMs?"

$$p(X) = w_1 \cdot p_1(X_1) + w_2 \cdot p_2(X_1)$$

 \Rightarrow translating inference to data structures...

$$p(X_1) = 0.2 \cdot p_1(X_1) + 0.8 \cdot p_2(X_1)$$

 \Rightarrow ...e.g., as a weighted sum unit over Gaussian input distributions

$$p(X = 1) = 0.2 \cdot p_1(X_1 = 1) + 0.8 \cdot p_2(X_1 = 1)$$

A simplified notation:

- \Rightarrow scopes attached to inputs
 - \Rightarrow edge directions omitted

$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}_1^{\mathsf{L}}) \cdot p_1(\mathbf{X}_1^{\mathsf{R}}) + w_2 \cdot p_2(\mathbf{X}_2^{\mathsf{L}}) \cdot p_2(\mathbf{X}_2^{\mathsf{R}})$$

 \Rightarrow local factorizations...

$$p(\mathbf{X}) = w_1 \cdot p_1(\mathbf{X}_1^{\mathsf{L}}) \cdot p_1(\mathbf{X}_1^{\mathsf{R}}) + w_2 \cdot p_2(\mathbf{X}_2^{\mathsf{L}}) \cdot p_2(\mathbf{X}_2^{\mathsf{R}})$$

$$\Rightarrow$$
 ...are product units

A grammar for tractable computational graphs

I. A simple tractable function is a circuit

 X_1

A grammar for tractable computational graphs

I. A simple tractable function is a circuit

II. A weighted combination of circuits is a circuit

A grammar for tractable computational graphs

I. A simple tractable function is a circuit
II. A weighted combination of circuits is a circuit
III. A product of circuits is a circuit

A grammar for tractable computational graphs

A grammar for tractable computational graphs

Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Probabilistic queries = **feedforward** evaluation

$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) = 0.75$$

1. A grammar for tractable models

One formalism to represent many probabilistic and logical models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

and other PGMs...

via compilation

Bottom-up **compilation**: starting from leaves...

via compilation

...compile a leaf CPT

p(A|C=0)

via compilation

...compile a leaf CPT

via compilation

...compile a leaf CPT...for all leaves...

via compilation

...and recurse over parents...

via compilation

...while reusing previously compiled nodes!...

via compilation

Expressive models are not much tractable...

Tractable models are not that expressive...

Circuits can be both expressive and tractable!

then make it more expressive!

impose structure!

1. A grammar for tractable models

One formalism to represent many probabilistic and logical models

⇒ #HMMs #Trees #XGBoost, Tensor Networks, ...

and other PGMs...

1. A grammar for tractable models

One formalism to represent many probabilistic and logical models

#HMMs #Trees #XGBoost, Tensor Networks, ...
and other PGMs...

2. Expressiveness

Competitive with intractable models, VAEs, Flow...#hierachical #mixtures #polynomials

How expressive?

Dataset	Sparse PC (ours)	HCLT	RatSPN	IDF	BitSwap	BB-ANS	McBits
MNIST	1.14	1.20	1.67	1.90	1.27	1.39	1.98
EMNIST(MNIST)	1.52	1.77	2.56	2.07	1.88	2.04	2.19
EMNIST(Letters)	1.58	1.80	2.73	1.95	1.84	2.26	3.12
EMNIST(Balanced)	1.60	1.82	2.78	2.15	1.96	2.23	2.88
EMNIST(ByClass)	1.54	1.85	2.72	1.98	1.87	2.23	3.14
FashionMNIST	3.27	3.34	4.29	3.47	3.28	3.66	3.72

competitive with Flows and VAEs!

Dang, Liu, and Broeck, "Sparse Probabilistic Circuits via Pruning and Growing", NeurIPS, 2022

How scalable?

Dataset		DGMs					
	LVD (ours)	HCLT	EiNet	RAT-SPN	Glow	RealNVP	BIVA
ImageNet32	4.39±0.01	4.82	5.63	6.90	4.09	4.28	3.96
ImageNet64	4.12±0.00	4.67	5.69	6.82	3.81	3.98	-
CIFAR	4.38±0.02	4.61	5.81	6.95	3.35	3.49	3.08

up to billions of parameters

Liu, Zhang, and Broeck, "Scaling Up Probabilistic Circuits by Latent Variable Distillation", arXiv preprint, 2022

1. A grammar for tractable models

One formalism to represent many probabilistic and logical models

#HMMs #Trees #XGBoost, Tensor Networks, ... and other PGMs...

2. Expressiveness

Competitive with intractable models, VAEs, Flow ... # hierachical # mixtures # polynomials

3. Tractability == Structural Properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. *#marginals #expectations #MAP*, *#product ...*

smoothness

decomposability

determinism

compatibility

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

tractable computation of arbitrary integrals

$$p(\mathbf{y}) = \sum_{\mathsf{val}(\mathbf{Z})} p(\mathbf{z}, \mathbf{y}), \quad \forall \mathbf{Y} \subseteq \mathbf{X}, \quad \mathbf{Z} = \mathbf{X} \setminus \mathbf{Y}$$

⇒ sufficient and necessary conditions for a single feedforward evaluation

 \Rightarrow tractable partition function

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

the inputs of sum units are defined over the same variables

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

the inputs of prod units are defined over disjoint variable sets

decomposable circuit non-decomposable circuit

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

Probabilistic queries = **feedforward** evaluation

$p(X_1 = -1.85, X_4 = 0.2)$

Probabilistic queries = **feedforward** evaluation

$p(X_1 = -1.85, X_4 = 0.2)$

smooth + decomposable circuits = ...

Computing arbitrary integrations (or summations)

 \implies linear in circuit size!

E.g., suppose we want to compute Z:

$$\int \boldsymbol{p}(\mathbf{x}) d\mathbf{x}$$

smooth + decomposable circuits = ...

If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to inputs

smooth + decomposable circuits = ...

If $m{p}(\mathbf{x},\mathbf{y},\mathbf{z})=m{p}(\mathbf{x})m{p}(\mathbf{y})m{p}(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

 \Rightarrow integrals decompose into easier ones

"Are all PGMs circuits?"

and/or

"Are all circuits PGMs?"

1. *Marginal inference in PGMs is exponential in the treewidth!* but PCs can exploit context specific independence

$$\mathbf{X} \perp \mathbf{Y} \mid Z = z_1$$

but

 $\mathbf{X} \not\perp \mathbf{Y} \mid Z = z_2$

Decision trees as PCs...

1. Marginal inference in PGMs is exponential in the treewidth! but PCs can exploit **context specific independence**

2. We do not know how to compile exactly an arbitrary PGM over continuous vars! we need to extend the language of PCs to integral units

Probabilistic Integral Circuits

Gennaro Gala¹ Cassio de Campos¹ Robert Peharz^{1,2} Antonio Vergari³ Erik Quaeghebeur¹

PCS (and more circuits) everywhere

SUBTRACTIVE MIXTURE MODELS VIA SQUARING: REPRESENTATION AND LEARNING

PGMs with negative parameters! spotlight at ICLR 2024 (top 5% papers)

How to Turn Your Knowledge Graph Embeddings into Generative Models via Probabilistic Circuits

Lorenzo Loconte University of Edinburgh, UK 1.loconte@sms.ed.ac.uk Nicola Di Mauro University of Bari, Italy nicola.dimauro@uniba.it

Robert Peharz TU Graz, Austria robert.peharz@tugraz.at Antonio Vergari University of Edinburgh, UK avergari@ed.ac.uk

PCs meet knowledge graph embedding models oral at NeurIPS 2023 (top 0.6% papers)

 $\langle \text{COX2}, \text{ involved}, \text{ P-prostacyclin} \rangle$

Q: \langle Loxoprofen, interacts, ? \rangle

A: (Loxoprofen, interacts, phosphoric-acid) !!!

neural link predictors can violate domain constraints

Semantic Probabilistic Layers for Neuro-Symbolic Learning

injecting constraints in deep learning (NeurIPS 2022)

$$p(\mathbf{y} \mid \mathbf{x}) = \boldsymbol{q}_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z})) \cdot \boldsymbol{c}_{\mathsf{K}}(\mathbf{x}, \mathbf{y}) / \boldsymbol{\mathcal{Z}}(\mathbf{x})$$

efficient and reliable reasoning over constraints

Tractable Control for Autoregressive Language Generation

Honghua Zhang^{*1} Meihua Dang^{*1} Nanyun Peng¹ Guy Van den Broeck¹

constrained text generation with LLMs (ICML 2023)

Safe Reinforcement Learning via Probabilistic Logic Shields

Wen-Chi Yang¹, Giuseppe Marra¹, Gavin Rens and Luc De Raedt^{1,2}

reliable reinforcement learning (AAAI 23)

more reasoning scenarios

"How fair is the predic-
tion is a certain protected
attribute changes?"

"Can we certify no **adver**sarial examples exist?"

...asking queries to a ML model
more reasoning scenarios

$$\begin{array}{c} \mathbf{q}_1 \quad \mathbb{E}_{\mathbf{x}_m \sim p(\mathbf{X}_m | \mathbf{x}_o)} \left[f(\mathbf{x}_o, \mathbf{x}_m) \right] \quad \mathbf{q}_2 \quad \begin{array}{c} \mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 0)} \left[f_0(\mathbf{x}_c) \right] - \\ \mathbb{E}_{\mathbf{x}_c \sim p(\mathbf{X}_c | X_s = 1)} \left[f_1(\mathbf{x}_c) \right] \quad \mathbf{q}_3 \quad \begin{array}{c} \mathbb{E}_{\mathbf{e} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I}_D)} \left[f(\mathbf{x} + \mathbf{e}) \right] \\ \text{(adversarial robust.)} \end{array}$$

...into math expressions over circuits

$$\int p(\mathbf{x}) \times \log \left(p(\mathbf{x}) / q(\mathbf{x}) \right) \, d\mathbf{X}$$

build a LEGO-like query calculus!

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", NeurIPS, 2021

	Query	Tract. Conditions	Hardness
CROSS ENTROPY	$-\int p(oldsymbol{x})\log q(oldsymbol{x})\mathrm{d}\mathbf{X}$	Cmp, q Det	#P-hard w/o Det
SHANNON ENTROPY	$-\sum p(oldsymbol{x})\log p(oldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
Rényi Entropy	$(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{N}$	SD	#P-hard w/o SD
	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{R}_+$	Sm, Dec, Det	#P-hard w/o Det
MUTUAL INFORMATION	$\int p(oldsymbol{x},oldsymbol{y}) \log(p(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$	Sm, SD, Det*	coNP-hard w/o SD
KULLBACK-LEIBLER DIV.	$\int p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) doldsymbol{X}$	Cmp, Det	#P-hard w/o Det
PÉNVI'S ALDHA DIV	$(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{N}$	Cmp, q Det	#P-hard w/o Det
KENTI S ALPHA DIV.	$(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{R}$	Cmp, Det	#P-hard w/o Det
ITAKURA-SAITO DIV.	$\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1] d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
CAUCHY-SCHWARZ DIV.	$-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})doldsymbol{X}}{\sqrt{\int p^2(oldsymbol{x})doldsymbol{X}\int q^2(oldsymbol{x})doldsymbol{X}}}$	Cmp	#P-hard w/o Cmp
SQUARED LOSS	$\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \mathbf{X}$	Cmp	#P-hard w/o Cmp

compositionally derive the tractability of many more queries

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", <u>NeurIPS</u>, 2021

	Query	Tract. Conditions	Hardness
CROSS ENTROPY	$-\int p(oldsymbol{x})\log q(oldsymbol{x})\mathrm{d}\mathbf{X}$	Cmp, q Det	#P-hard w/o Det
SHANNON ENTROPY	$-\sum p(oldsymbol{x})\log p(oldsymbol{x})$	Sm, Dec, Det	coNP-hard w/o Det
Rényi Entropy	$(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{N}$	SD	#P-hard w/o SD
	$(1-\alpha)^{-1}\log\int p^{\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{R}_+$	Sm, Dec, Det	#P-hard w/o Det
MUTUAL INFORMATION	$\int p(oldsymbol{x},oldsymbol{y}) \log(p(oldsymbol{x},oldsymbol{y})/(p(oldsymbol{x})p(oldsymbol{y})))$	Sm, SD, Det*	coNP-hard w/o SD
KULLBACK-LEIBLER DIV.	$\int p(oldsymbol{x}) \log(p(oldsymbol{x})/q(oldsymbol{x})) doldsymbol{X}$	Cmp, Det	#P-hard w/o Det
PÉNVI'S ALDHA DIV	$(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{N}$	Cmp, q Det	#P-hard w/o Det
KENTI S ALPHA DIV.	$(1-\alpha)^{-1}\log \int p^{\alpha}(\boldsymbol{x})q^{1-\alpha}(\boldsymbol{x}) d\mathbf{X}, \alpha \in \mathbb{R}$	Cmp, Det	#P-hard w/o Det
ITAKURA-SAITO DIV.	$\int [p(oldsymbol{x})/q(oldsymbol{x}) - \log(p(oldsymbol{x})/q(oldsymbol{x})) - 1] d \mathbf{X}$	Cmp, Det	#P-hard w/o Det
CAUCHY-SCHWARZ DIV.	$-\lograc{\int p(oldsymbol{x})q(oldsymbol{x})doldsymbol{X}}{\sqrt{\int p^2(oldsymbol{x})doldsymbol{X}\int q^2(oldsymbol{x})doldsymbol{X}}}$	Cmp	#P-hard w/o Cmp
SQUARED LOSS	$\int (p(oldsymbol{x}) - q(oldsymbol{x}))^2 d \mathbf{X}$	Cmp	#P-hard w/o Cmp

and *prove hardness* when some input properties are not satisfied

Vergari et al., "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries", <u>NeurIPS</u>, 2021

ML models		ueries	Data		
Distill	Compile		Learn		
Computational abstractions					
Hardware		Software			

realizing a full "virtual machine" for reasoning

Ask me anything!