

These notes summarise selected lecture concepts and are not a substitute for working through the lecture slides, tutorials, and self-study exercises. Feel free to personalise and develop them into your own summary sheet.

Learning problem — Model: Stationary HMM with visibles $v_i \in \{1, ..., M\}$, latents $h_i \in \{1, ..., K\}$ and parametrisation

$$p(h_1 = k; \mathbf{a}) = a_k$$
 $p(h_i = k | h_{i-1} = k'; \mathbf{A}) = A_{k,k'}$ $p(v_i = m | h_i = k; \mathbf{B}) = B_{m,k}$

Data: $\mathcal{D} = \{\mathcal{D}_1, \dots, \mathcal{D}_n\}$, where each \mathcal{D}_j is a sequence of visibles of length d_j . Task: Determine MLE for $\boldsymbol{\theta} = (\mathbf{a}, \mathbf{A}, \mathbf{B})$. Constraints: parameters are all non-negative; \mathbf{a} and the values of each column of \mathbf{A} and \mathbf{B} sum to one.

Objective for EM — The objective for M-step of the EM algorithm is

$$J(\boldsymbol{\theta}, \boldsymbol{\theta}_{\text{old}}) = \sum_{j=1}^{n} \sum_{k} p(h_1 = k | \mathcal{D}_j; \boldsymbol{\theta}_{\text{old}}) \log a_k +$$

$$\sum_{j=1}^{n} \sum_{i=2}^{d_j} \sum_{k,k'} p(h_i = k, h_{i-1} = k' | \mathcal{D}_j; \boldsymbol{\theta}_{\text{old}}) \log A_{k,k'} +$$

$$\sum_{j=1}^{n} \sum_{i=1}^{d_j} \sum_{m,k} \mathbb{1}(v_i^{(j)} = m) p(h_i = k | \mathcal{D}_j, \boldsymbol{\theta}_{\text{old}}) \log B_{m,k}$$

subject to the constraints on the parameters.

EM (Baum-Welch) algorithm — Given parameters θ_{old} :

1. For each sequence \mathcal{D}_i compute the posteriors

$$p(h_i, h_{i-1} \mid \mathcal{D}_i; \boldsymbol{\theta}_{\text{old}}) \qquad p(h_i \mid \mathcal{D}_i; \boldsymbol{\theta}_{\text{old}})$$

using the alpha-beta recursion.

2. Update the parameters

$$a_{k} = \frac{1}{n} \sum_{j=1}^{n} p(h_{1} = k | \mathcal{D}_{j}; \boldsymbol{\theta}_{\text{old}})$$

$$A_{k,k'} = \frac{\sum_{j=1}^{n} \sum_{i=2}^{d_{j}} p(h_{i} = k, h_{i-1} = k' | \mathcal{D}_{j}; \boldsymbol{\theta}_{\text{old}})}{\sum_{k=1}^{K} \sum_{j=1}^{n} \sum_{i=2}^{d_{j}} p(h_{i} = k, h_{i-1} = k' | \mathcal{D}_{j}; \boldsymbol{\theta}_{\text{old}})}$$

$$B_{m,k} = \frac{\sum_{j=1}^{n} \sum_{i=1}^{d_{j}} \mathbb{1}(v_{i}^{(j)} = m)p(h_{i} = k | \mathcal{D}_{j}; \boldsymbol{\theta}_{\text{old}})}{\sum_{j=1}^{n} \sum_{i=1}^{d_{j}} p(h_{i} = k | \mathcal{D}_{j}; \boldsymbol{\theta}_{\text{old}})}$$

Repeat step 1 and 2 using the new parameters for θ_{old} . Stop if change in likelihood or parameters is less than a threshold.