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These notes summarise selected lecture concepts and are not a substitute for working through
the lecture slides, tutorials, and self-study exercises. Feel free to personalise and develop them
into your own summary sheet.

Learning problem — Model: Stationary HMM with visibles vi ∈ {1, . . . ,M}, latents hi ∈
{1, . . . ,K} and parametrisation

p(h1 = k;a) = ak p(hi = k|hi−1 = k′;A) = Ak,k′ p(vi = m|hi = k;B) = Bm,k

Data: D = {D1, . . . ,Dn}, where each Dj is a sequence of visibles of length dj . Task: Determine
MLE for θ = (a,A,B). Constraints: parameters are all non-negative; a and the values of each
column of A and B sum to one.

Objective for EM — The objective for M-step of the EM algorithm is
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subject to the constraints on the parameters.

EM (Baum-Welch) algorithm — Given parameters θold:

1. For each sequence Dj compute the posteriors

p(hi, hi−1 | Dj ;θold) p(hi | Dj ;θold)

using the alpha-beta recursion.

2. Update the parameters

ak =
1

n
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Repeat step 1 and 2 using the new parameters for θold. Stop if change in likelihood or parameters
is less than a threshold.
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