
Probabilistic Modelling and Reasoning

Notes (Inference)
Autumn 2025

Hodari & Gutmann

These notes summarise selected lecture concepts and are not a substitute for working through
the lecture slides, tutorials, and self-study exercises. Feel free to personalise and develop them
into your own summary sheet.

Factor graph — A factor graph represents an arbitrary function in terms of factors and their
connections with variables. For example, a factor graph can represent a distribution written as a
Gibbs distribution – p(x) = 1

Z

∏
c ϕc(Xc) – where variables xi ∈ x are represented with variable

nodes (circles) and potentials ϕc are represented with factor nodes (squares). Edges connect
each factor node ϕc to all its variable nodes xi ∈ Xc.

p(x1, x2, x3, x4) =
1
Zϕ1(x1, x2, x3)ϕ2(x3, x4)ϕ3(x4)

x1

ϕ1

x2

x3

ϕ2

x4

ϕ3

Variable elimination — Given p(X ) ∝
∏

c ϕc(Xc), we compute the marginal p(X \ x∗) via
the sum rule by exploiting the factorisation by means of the distributive law.

We sum out the variable x∗ by first finding all factors ϕi(Xi) such that x∗ ∈ Xi, and forming
the compound factor ϕ∗(X ∗) =

∏
i:x∗∈Xi

ϕi(Xi), with X ∗ =
⋃

i:x∗∈Xi
Xi. Summing out x∗ then

produces a new factor ϕ̃∗(X̃ ∗) =
∑

x∗ ϕ∗(X ∗) that does not depend on x∗, i.e. X̃ ∗ = X ∗ \ x∗.
This is possible as products are commutative, and a sum can be distributed within a product
as long as all terms depending on the variable(s) being summed come to the right of the sum.

p(X \ x∗) ∝
∑
x∗

∏
c

ϕc(Xc) ∝

 ∏
i:x∗ /∈Xi

ϕi(Xi)

∑
x∗

∏
i:x∗∈Xi

ϕi(Xi)

 (1)

∝

 ∏
i:x∗ /∈Xi

ϕi(Xi)

 ϕ̃∗(X̃ ∗) (2)

When eliminating variables, order of elimination matters. However, optimal choice of elimination
order is difficult. Picking variables greedily is a common heuristic, where the “best” x∗ is the
one that fewest factors ϕc depend upon.

Sum-product algorithm — Variable elimination for factor trees reformulated with “mes-
sages” which allows for re-use of computations already done. See table on following page.

Max-sum algorithm — Message-passing algorithm to compute the most likely state and its
probability. Obtained from sum-product by replacing

∑
with max,

∏
with

∑
, and factors with

log-factors. See table on following page.

1



Sum-product algorithm

x1

x2

ϕ
x

−→

−→

−→µϕ→x(x) Factor to variable

µϕ→x(x) =
∑

x1,...,xj
ϕ(x1, . . . , xj , x)

∏j
i=1 µxi→ϕ(xi)

where {x1, . . . , xj} = ne(ϕ) \ {x}

ϕ1

ϕ2

x
ϕ

−→

−→

−→µx→ϕ(x) Variable to factor

µx→ϕ(x) =
∏j

i=1 µϕi→x(x)
where {ϕ1, . . . , ϕj} = ne(x) \ {ϕ}

ϕ1

ϕ2

x
ϕ3

−→

−→

←−p̃(x) Univariate marginals – unnormalised

p(x) ∝
∏j

i=1 µϕi→x(x)
where {ϕ1, . . . , ϕj} = ne(x)

x1

x2

ϕ
x3

−→

−→

←−p̃(x1, . . . , xj) Joint marginals of variables sharing a factor– unnormalised

p(x1, . . . , xj) ∝ ϕ(x1, . . . , xj)
∏j

i=1 µxi→ϕ(xi)
where {x1, . . . , xj} = ne(ϕ)

Max-sum algorithm

x1

x2

ϕ
x

−→

−→

−→γϕ→x(x) Factor to variable

γϕ→x(x) = maxx1,...,xj log ϕ(x1, . . . , xj , x) +
∑j

i=1 γxi→ϕ(xi)

γ∗ϕ→x(x) = argmaxx1,...,xj
log ϕ(x1, . . . , xj , x) +

∑j
i=1 γxi→ϕ(xi)

where {x1, . . . , xj} = ne(ϕ) \ {x}

ϕ1

ϕ2

x
ϕ

−→

−→

−→γx→ϕ(x) Variable to factor

γx→ϕ(x) =
∑j

i=1 γϕi→x(x)
where {ϕ1, . . . , ϕj} = ne(x) \ {ϕ}

ϕ1

ϕ2

x
ϕ3

−→

−→

←−log pmax Maximum probability

log pmax = maxx γ
∗(x), γ∗(x) = − logZ +

∑j
i=1 γϕi→x(x)

where {ϕ1, . . . , ϕj} = ne(x)

x1

x2

ϕ
x

←−

←−

←−argmaxx p̃(x) Maximum probability states – no need for normalisation

Init: x̂ = argmaxx γ
∗(x) = argmaxx

∑j
i=1 γϕi→x(x)

Backtrack to leaves via γ∗ϕ→x(x)

2


