e o Probabilistic Modelling and Reasoning Autumn 2025

' informatics Notes (Inference) Hodari & Gutmann

These notes summarise selected lecture concepts and are not a substitute for working through
the lecture slides, tutorials, and self-study exercises. Feel free to personalise and develop them
into your own summary sheet.

Factor graph — A factor graph represents an arbitrary function in terms of factors and their
connections with variables. For example, a factor graph can represent a distribution written as a
Gibbs distribution — p(x) = £ [, #c(X:) — where variables z; € x are represented with variable
nodes (circles) and potentials ¢. are represented with factor nodes (squares). Edges connect
each factor node ¢. to all its variable nodes z; € X..

1 2 3
H—{ ::)—.—‘—.
p(x1, 2,23, 24) = 5 b1(21, T2, 23) P (23, T4)P3(74) @_|

Variable elimination — Given p(X) x []. ¢c(X:), we compute the marginal p(X \ z*) via
the sum rule by exploiting the factorisation by means of the distributive law.

We sum out the variable x* by first finding all factors ¢;(X;) such that z* € X;, and forming
the compound factor ¢*(X*) = [[;.pxcr, ¢i(Xi), with X" = |, -y, Ai- Summing out z* then
produces a new factor ¢*(X*) = 3 . ¢*(X*) that does not depend on z*, i.c. X* = X*\ z*.
This is possible as products are commutative, and a sum can be distributed within a product
as long as all terms depending on the variable(s) being summed come to the right of the sum.

2\ 2 o S [[ee@) o | TT et | |3 TI @) &
z* c | i:a* ¢ X;] ¥ pT*EX;
o | [T ¢ax)| o7 (X%) (2)

_’iZQE* ¢Xz

When eliminating variables, order of elimination matters. However, optimal choice of elimination
order is difficult. Picking variables greedily is a common heuristic, where the “best” x* is the
one that fewest factors ¢. depend upon.

Sum-product algorithm — Variable elimination for factor trees reformulated with “mes-
sages” which allows for re-use of computations already done. See table on following page.

Max-sum algorithm — Message-passing algorithm to compute the most likely state and its
probability. Obtained from sum-product by replacing > with max, [[with }_, and factors with
log-factors. See table on following page.

Sum-product algorithm

Moz () Factor to variable ' NG ﬁ .
Hp—a() = D0, 0y Q@1 25, 2) [Tioy Haymo(i)
where {z1,...,2;} =ne(¢) \ {z} ~
o | ~
Ho—se(T) Variable to factor _, ¢
j L
N:E—)(b(m) = ngl Md)l—m(x)
where {¢1,...,¢;} =ne(z) \ {¢} o
1 | ~
() Univariate marginals — unnormalised - Q:s
p(x) o< [Tioy Ho,—a(2)
where {¢1,...,¢;} = ne(z) 6 ~
p(x1,...,z;) Joint marginals of variables sharing a factor— unnormalised

o x5) < @@, x5) [Ty a—e(20)
., 2} =ne(p)

p(x1,..
where {x1, .

Max-sum algorithm

Yoz () Factor to variable ' N N
7(1)—)90(1') = MaXg,,...z; log Qb(-fUl, sy g,y .Z‘) + Zgzl 'Yxl—mb(xl) "
* — 1 4 J . -
Ve (¥) = argmax,, . 10gd(z1,. .., 25, %) + 325 Vume (i)
where {z1,...,2;} =ne(¢) \ {z}
o | ~
Yoo (T) Variable to factor _, ¢
j |
f)/x%qﬁ(x) - Zg:l 7@%1(37)
where {¢1,...,¢;} = ne(z) \ {¢} ow
¢ | ~
log Pmax Maximum probability . %
logpmax = maXxg 7y (33)7 v (x) = - logZ =+ 22:1 ’7¢i—>x(x)
where {¢1,...,¢;} = ne(x) ¢ W —
argmax, p(x) Maximum probability states — no need for normalisation

Init: & = argmax, v*(z) = argmax, S>7_, 74,52 (z)
Backtrack to leaves via v} , ()

