e o Probabilistic Modelling and Reasoning Autumn 2025

' informatics Notes (Inference) Hodari & Gutmann

These notes summarise selected lecture concepts and are not a substitute for working through
the lecture slides, tutorials, and self-study exercises. Feel free to personalise and develop them
into your own summary sheet.

Factor graph — A factor graph represents an arbitrary function in terms of factors and their
connections with variables. For example, a factor graph can represent a distribution written as a
Gibbs distribution — p(x) = £ [, #c(X:) — where variables z; € x are represented with variable
nodes (circles) and potentials ¢. are represented with factor nodes (squares). Edges connect
each factor node ¢. to all its variable nodes z; € X..
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Variable elimination — Given p(X) x []. ¢c(X:), we compute the marginal p(X \ z*) via
the sum rule by exploiting the factorisation by means of the distributive law.

We sum out the variable x* by first finding all factors ¢;(X;) such that z* € X;, and forming
the compound factor ¢*(X*) = [[;.pxcr, ¢i(Xi), with X" = |, -y, Ai- Summing out z* then
produces a new factor ¢*(X*) = 3 . ¢*(X*) that does not depend on z*, i.c. X* = X*\ z*.
This is possible as products are commutative, and a sum can be distributed within a product
as long as all terms depending on the variable(s) being summed come to the right of the sum.
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When eliminating variables, order of elimination matters. However, optimal choice of elimination
order is difficult. Picking variables greedily is a common heuristic, where the “best” x* is the
one that fewest factors ¢. depend upon.

Sum-product algorithm — Variable elimination for factor trees reformulated with “mes-
sages” which allows for re-use of computations already done. See table on following page.

Max-sum algorithm — Message-passing algorithm to compute the most likely state and its
probability. Obtained from sum-product by replacing > with max, [[ with }_, and factors with
log-factors. See table on following page.



Sum-product algorithm
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Max-sum algorithm
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Init: & = argmax, v*(z) = argmax, S>7_, 74,52 (z)
Backtrack to leaves via v} , ()




