Probabilistic Modelling and Reasoning Notes (Learning)

Autumn 2025 Hodari & Gutmann

These notes summarise selected lecture concepts and are not a substitute for working through the lecture slides, tutorials, and self-study exercises. Feel free to personalise and develop them into your own summary sheet.

Note the difference between the notations $p(\mathbf{x}; \boldsymbol{\theta})$ and $p(\mathbf{x} \mid \boldsymbol{\theta})$. The former is a pdf/pmf of a random variable \mathbf{x} that is parametrised by a vector of numbers (parameters) $\boldsymbol{\theta}$. The latter is a conditional pdf/pmf of a random variable \mathbf{x} given information of another random variable $\boldsymbol{\theta}$.

Likelihood $L(\boldsymbol{\theta})$ — The chance that the model generates data like the observed one when using parameter configuration $\boldsymbol{\theta}$. For *iid* data $\mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$, the likelihood of the parameters $\boldsymbol{\theta}$ is

$$L(\boldsymbol{\theta}) = p(\mathcal{D}; \boldsymbol{\theta}) = \prod_{i=1}^{n} p(\mathbf{x}_i; \boldsymbol{\theta})$$
 (1)

Prior $p(\theta)$ — Beliefs about the plausibility of parameter values before we see any data.

Posterior $p(\theta \mid \mathcal{D})$ — Beliefs about the parameters after having seen the data. This is proportional to the likelihood function $L(\theta)$ weighted by our prior beliefs about the parameters $p(\theta)$

$$p(\boldsymbol{\theta} \mid \mathcal{D}) \propto L(\boldsymbol{\theta})p(\boldsymbol{\theta})$$
 (2)

Parametric statistical model — A set of pdfs/pmfs indexed by parameters θ ,

$$\{p(\mathbf{x}; \boldsymbol{\theta})\}_{\boldsymbol{\theta}} \tag{3}$$

• Parameter estimation Using \mathcal{D} to pick the "best" parameter value $\hat{\boldsymbol{\theta}}$ among the possible $\boldsymbol{\theta}$ – i.e. pick the "best" pdf/pmf $p(\mathbf{x}; \hat{\boldsymbol{\theta}})$ from the set of pdfs/pmfs $\{p(\mathbf{x}; \boldsymbol{\theta})\}_{\boldsymbol{\theta}}$,

Bayesian model — Considers $p(\mathbf{x}; \boldsymbol{\theta})$ to be conditional $p(\mathbf{x} \mid \boldsymbol{\theta})$. Models the distribution of the parameters $\boldsymbol{\theta}$, as well as the random variable \mathbf{x}

$$p(\mathbf{x}, \boldsymbol{\theta}) = p(\mathbf{x} \mid \boldsymbol{\theta})p(\boldsymbol{\theta}) \tag{4}$$

• Bayesian inference Determine the plausibility of all possible θ in light of the observed data – i.e. compute the posterior $p(\theta \mid \mathcal{D})$.

Maximum likelihood — The parameters $\hat{\theta}$ that give the largest likelihood (or log-likelihood)

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \, \ell(\boldsymbol{\theta}) = \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \, L(\boldsymbol{\theta}) \tag{5}$$

Sometimes this can be computed directly. However, numerical methods are often needed for this optimisation problem, which leads to local optima.