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These notes summarise selected lecture concepts and are not a substitute for working through
the lecture slides, tutorials, and self-study exercises. Feel free to personalise and develop them
into your own summary sheet.

Note the difference between the notations p(x;θ) and p(x | θ). The former is a pdf/pmf of a
random variable x that is parametrised by a vector of numbers (parameters) θ. The latter is a
conditional pdf/pmf of a random variable x given information of another random variable θ.

Likelihood L(θ) — The chance that the model generates data like the observed one when
using parameter configuration θ. For iid data D = {x1, . . . ,xn}, the likelihood of the parameters
θ is

L(θ) = p(D;θ) =
n∏

i=1

p(xi;θ) (1)

Prior p(θ) — Beliefs about the plausibility of parameter values before we see any data.

Posterior p(θ | D) — Beliefs about the parameters after having seen the data. This is
proportional to the likelihood function L(θ) weighted by our prior beliefs about the parameters
p(θ)

p(θ | D) ∝ L(θ)p(θ) (2)

Parametric statistical model — A set of pdfs/pmfs indexed by parameters θ,

{p(x;θ)}θ (3)

• Parameter estimation Using D to pick the “best” parameter value θ̂ among the possible
θ – i.e. pick the “best” pdf/pmf p(x; θ̂) from the set of pdfs/pmfs {p(x;θ)}θ,

Bayesian model — Considers p(x;θ) to be conditional p(x | θ). Models the distribution of
the parameters θ, as well as the random variable x

p(x,θ) = p(x | θ)p(θ) (4)

• Bayesian inference Determine the plausibility of all possible θ in light of the observed
data – i.e. compute the posterior p(θ | D).

Maximum likelihood — The parameters θ̂ that give the largest likelihood (or log-likelihood)

θ̂ = argmax
θ

ℓ(θ) = argmax
θ

L(θ) (5)

Sometimes this can be computed directly. However, numerical methods are often needed for
this optimisation problem, which leads to local optima.
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