
Probabilistic Modelling and Reasoning

Notes (VI & EM)
Autumn 2025

Gutmann

These notes summarise selected lecture concepts and are not a substitute for working through
the lecture slides, tutorials, and self-study exercises. Feel free to personalise and develop them
into your own summary sheet.

KL divergence — The Kullback-Leibler divergence measures the “distance” between p and
q:

KL(p||q) = Ep(x)

[
log

p(x)

q(x)

]
(1)

It satisfies: KL(p||q) = 0⇔ p = q, KL(p||q) ̸= KL(q||p), KL(p||q) ≥ 0. Optimising with respect
to the first argument when the second is fixed leads to mode seeking. Optimising with respect
to the second argument when the first is fixed produces global fits.

ELBO — For a joint model p(x,y), the evidence lower bound (ELBO) is

Lx(q) = Eq(y|x)

[
log

p(x,y)

q(y|x)

]
(2)

where q(y|x) is the variational distribution. It can be rewritten as

log p(x)−KL(q(y|x)||p(y|x)) = Eq(y|x) log p(x|y)−KL(q(y|x)||p(y)) = Eq(y|x) log p(x,y)+H(q)

where H(q) = −Eq(y|x) [log q(y|x)] is the entropy of q. The ELBO is a lower bound on log p(x).
It is maximised when q(y|x) = p(y|x) which makes the bound tight.

Variational inference (VI) — We compute the posterior q(y|x) as argmaxq∈Q Lx(q) where
Q is the variational family.

Mean-field VI — Assumes that q fully factorises: q(y|x) =
∏

i q(yi|x). In coordinate ascent
VI, each qi is sequentially updated as

qi(yi|x) =
1

Z
exp

[
Eq(y\i|x) [log p(x,y)]

]
(3)

EM algorithm — The expectation maximisation (EM) algorithm can be used to learn the
parameters θ of a statistical model p(v,h;θ) with latent (unobserved) variables h and visible
(observed) variables v for which we have data D. It updates the parameters θ by iterating
between the expectation (E) and the maximisation (M) step:

E-step: compute J(θ) = Ep(h|D;θold)[log p(D,h;θ)] M-step: θnew ← argmax
θ

J(θ) (4)

The update rule produces a sequence of parameters for which the log-likelihood is guaranteed
to never decrease, i.e. ℓ(θnew) ≥ ℓ(θold).
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