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These are exercises for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Computing postinterventional distributions

Consider the following causal DAGs for three discrete-valued random variables x, y, z:
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(a) Compute p(y; do(x) = a) for DAG (a). Express the result in terms of the conditional probability
distributions p(xi|pai) of the graphical model defined the DAG.

Solution. The DAG modelling the intervention on x is the same as the original graph
since x is a root node. Atomic interventions correspond to using p′(x) = δ(x − a) as
interventional distribution, with

δ(x− a) =

{
1 if x = a

0 otherwise
(S.1)

From the graph, we thus obtain the following factorisation

p(x, y, z; do(x) = a) = δ(x− a)p(z|x)p(y|z, x). (S.2)

To obtain p(y; do(x) = a) we marginalise out x and z, which gives

p(y; do(x) = a) =
∑
x,z

p(x, y, z; do(x) = a) (S.3)

=
∑
x,z

δ(x− a)p(z|x)p(y|z, x) (S.4)

=
∑
z

p(z|x = a)p(y|z, x = a) (S.5)

This cannot be simplified any further and is the desired expression for p(y; do(x) = a). A
variable like z in the graph, being on a directed path from cause x to effect y, is called a
mediator variable.

(b) Compute p(y; do(x) = a) for DAG (b). Express the result in terms of the conditional probability
distributions p(xi|pai) of the graphical model defined the DAG.

Solution. The DAG modelling the intervention on x is the same as the original graph
since x is a root node. From the graph, we can write down the factorisation

p(x, y, z; do(x) = a) = δ(x− a)p(y|x)p(z|x, y) (S.6)
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To obtain p(y; do(x) = a) we marginalise out x and z, which gives

p(y; do(x) = a) =
∑
x,z

p(x, y, z; do(x) = a) (S.7)

=
∑
x,z

δ(x− a)p(y|x)p(z|x, y) (S.8)

=
∑
z

p(y|x = a)p(z|x = a, y) (S.9)

= p(y|x = a)
∑
z

p(z|x = a, y) (S.10)

= p(y|x = a) (S.11)

This result makes intuitive sense since z does not causally affect y, and hence any change
of its distribution due to the intervention on x does not propagate to y. Variable x only
causally affects y via the direct x → y effect and hence p(y; do(x) = a) = p(y|x = a).

(c) Compute p(y; do(x) = a) for DAG (c). Express the result in terms of the conditional probability
distributions p(xi|pai) of the graphical model defined the DAG.

Solution. The DAG modelling the intervention on x is obtained by removing all incom-
ing arrows into x, which gives

x z y

The joint distribution over it factorises as

p(x, y, z; do(x) = a) = δ(x− a)p(z)p(y|z) (S.12)

To obtain p(y; do(x) = a) we marginalise out x and z, which gives

p(y; do(x) = a) =
∑
x,z

p(x, y, z; do(x) = a) (S.13)

=
∑
x,z

δ(x− a)p(z)p(y|z) (S.14)

= p(y) (S.15)

Given that x is a leaf variable in the original DAG, intervening on it does not change any
of the upstream distributions. Hence, we have that p(y; do(x)) = p(y).

Exercise 2. Backdoor adjustment

For each of the following DAGs G, explain whether z can be used to compute p(y; do(x)) via backdoor
adjustment.
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Solution. The variable zmust satisfy the following two criteria for p(y; do(x) = a) = Ep(z) [p(y|x = a, z)]
to hold:

1. x ⊥⊥ y|z in Gx, and

2. no component of z is a descendant of x,

where Gx denotes the graph where all outgoing arrows from x are removed.

The following graphs show Gx
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We see that (a), (b), and (d) satisfy the first criterion: In (a) and (b) z blocks the x−u− z− y
trail since z is either in a head-tail or tail-tail configuration. For graph (c), z is in a collider
configuration so that conditioning on it opens the trail from x to y and the independency does
not hold.

From the original graphs G, we see that, for (a) and (b), z is a non-descendant of x, so the
second criterion holds these graphs. For (d), however, z is a descendant of x so the second
criterion does not hold.

In conclusion, the graphs (a) and (b), we can use z for the backdoor adjustment. However, not
so for (c) and (d). In (c), by conditioning on z, we would open a backdoor path while in (d), z
is a mediator and hence part of a causal path between x and y.

Exercise 3. Backdoor adjustment for non-atomic interventional distributions

The backdoor adjustment criterion says that if z satisfies

1. xi ⊥⊥ xk|z in Gxk
, and

2. no component of z is a descendant of xk,

then p(xi; do(xk) = a) = Ep(z) [p(xi|xk = a, z)]. Here, Gxk
denotes the graph where all outgoing arrows

from xk are removed.

Extend this result to p(xi; do(xk) ∼ p′(xk)) where p′(xk) is a general interventional distribution. For
simplicity, you can assume that the random variables are discrete-valued.

Solution. We start with the general expression for the postinterventional distribution for a
causal DAG:

p(x; do(xk) ∼ p′) =
∏
i ̸=k

p(xi|pai) · p′(xk) (S.16)

Assume that xk is discrete and that it can take on values in the set X . We next note that p′(xk)
can be expressed as

p′(xk) =
∑
a∈X

δ(xk − a)p′(xk = a) (S.17)
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where δ(x − a) = 1 if x = a and is zero otherwise. Note that p′(xk = a) denotes the value of
p′(xk) when xk equals a; it is thus a function of a and not xk.

Continuing with the discrete case, we thus have

p(x; do(xk) ∼ p′) =
∏
i ̸=k

p(xi|pai) · p′(xk) (S.18)

=
∏
i ̸=k

p(xi|pai) ·
∑
a∈X

δ(xk − a)p(xk = a) (S.19)

=
∑
a∈X

∏
i ̸=k

p(xi|pai)δ(xk − a)

 p′(xk = a) (S.20)

=
∑
a∈X

p(x; do(xk) = a)p′(xk = a) (S.21)

Since this is an expectation over p′(xk), this means that p(x; do(xk) ∼ p′) is obtained by first
computing the postinterventional distribution for atomic interventions and then taking their
expected value (weighted average). This is a general result that connects the effects of non-
atomic interventions to atomic ones.

Going back to the original question, we note that p(xi; do(xk) ∼ p′(xk)) is obtained from
p(x; do(xk) ∼ p′(xk)) by marginalising over all variables but xi. Denoting them by x\i, we
thus obtain

p(xi; do(xk) ∼ p′) =
∑
x\i

p(x; do(xk) ∼ p′) (S.22)

=
∑
x\i

∑
a∈X

p(x; do(xk) = a)p′(xk = a) (S.23)

=
∑
a∈X

∑
x\i

p(x; do(xk) = a)

 p′(xk = a) (S.24)

=
∑
a∈X

p(xi; do(xk) = a)p′(xk = a) (S.25)

What remains to be done is inserting the expression for p(xi; do(xk) = a) that we obtain from
the backdoor criterion, which gives the desired result:

p(xi; do(xk) ∼ p′) =
∑
a∈X

Ep(z) [p(xi|xk = a, z)] p′(xk = a) (S.26)

= Ep′(xk)Ep(z) [p(xi|xk, z)] (S.27)

The criteria for z stay the same as for the atomic interventions. This generalises the formula for
the adjustment for direct causes: p(xi; do(xk) ∼ p′) = Ep′(xk)p(pak)

[p(xi|xk,pak)].
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