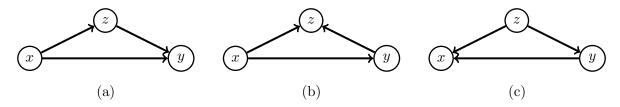
These are exercises for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Computing postinterventional distributions

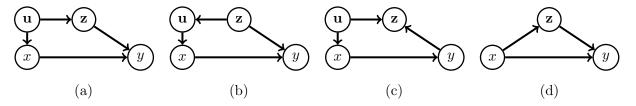
Consider the following causal DAGs for three discrete-valued random variables x, y, z:



- (a) Compute p(y; do(x) = a) for DAG (a). Express the result in terms of the conditional probability distributions $p(x_i|pa_i)$ of the graphical model defined the DAG.
- (b) Compute p(y; do(x) = a) for DAG (b). Express the result in terms of the conditional probability distributions $p(x_i|pa_i)$ of the graphical model defined the DAG.
- (c) Compute p(y; do(x) = a) for DAG (c). Express the result in terms of the conditional probability distributions $p(x_i|pa_i)$ of the graphical model defined the DAG.

Exercise 2. Backdoor adjustment

For each of the following DAGs G, explain whether \mathbf{z} can be used to compute p(y; do(x)) via backdoor adjustment.



Exercise 3. Backdoor adjustment for non-atomic interventional distributions

The backdoor adjustment criterion says that if z satisfies

- 1. $x_i \perp \!\!\! \perp x_k | \mathbf{z} \text{ in } G_{x_k}$, and
- 2. no component of **z** is a descendant of x_k ,

then $p(x_i; do(x_k) = a) = \mathbb{E}_{p(\mathbf{z})}[p(x_i|x_k = a, \mathbf{z})]$. Here, $G_{\underline{x_k}}$ denotes the graph where all outgoing arrows from x_k are removed.

Extend this result to $p(x_i; do(x_k) \sim p'(x_k))$ where $p'(x_k)$ is a general interventional distribution. For simplicity, you can assume that the random variables are discrete-valued.