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These are exercises for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Optimal actions for different loss functions

Assume that h ∈ {1, . . . , 5} with probabilities f(h) equal to

f(h = 1) = 0.2, f(h = 2) = 0.3, f(h = 3) = 0, f(h = 4) = 0.1, f(h = 5) = 0.4 (1)

Compute the action a that minimises the expected loss Ef(h)[ℓ(h, a)] when:

(a) ℓ(h, a) = (h− a)2

(b) ℓ(h, a) = |h− a|

(c) ℓ(h, a) = 1− 1(h = a)

(d) ℓ(h, a) = − log a(h) where choosing an action a means choosing a distribution over h.

Exercise 2. Causal decision theory applied to the kidney stone example

The table summarizes outcomes for two types of surgery (T = a and T = b) to remove kidney
stones. Success rates are presented both overall and by stone size. For each treatment and size
category, the table also reports the number of successes (R = 1) and the number of patients
treated. For example, 192/263 means that 263 patients received treatment a and for 192 of
them the surgery was successful (R = 1).

Overall success rate Small stones Large stones

Treatment a 78% (273/350) 93% (81/87) 73% (192/263)
Treatment b 83% (289/350) 87% (234/270) 69% (55/80)

To decide which treatment to choose when the size of the kidney stone is unknown, we specify
the following loss function:

ℓ0(R) =

{
c if R = 0

0 if R = 1
(2)

where c > 0. The loss ignores recovery time and other considerations, and simply assigns a
penalty c > 0 to an unsuccessful surgery.

(a) Determine the treatment T that minimises

R(T ) = Ep(R;do(T )) [ℓo(R)] . (3)

You may use that

p(R = 1; do(T ) = a) = 0.833 p(R = 1; do(T ) = b) = 0.779 (4)
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(b) Assume now that the success rates are considered uncertain (e.g because they are computed
from a small number of patients only). How can this uncertainty be incorporated in the
decision making?

Exercise 3. Classification with an asymmetric loss

We here derive the optimal policy for binary classification when the costs of false positives and
false negatives are unequal. Denote by h ∈ {0, 1} the true class label and the predicted label by
a ∈ {0, 1}. We consider the following loss

h a ℓ(h, a)

0 0 0
1 0 cfn
0 1 cfp
1 1 0

where cfn > 0 indicates the cost of a false negative and cfp > 0 the cost of a false positive. We
assume that we were given data x and that can compute the posterior p(h|x). Derive the policy
a∗(x) that minimises the posterior expected loss, i.e.

a∗(x) = argmin
a

Ep(h|x) [ℓ(h, a)] (5)

Exercise 4. Penalised squared loss

We consider the squared loss subject to a squared penalty for the action to deviate from zero,

ℓ(h, a) = (h− a)2 + λa2, (6)

where λ > 0 is a weighting factor.

Derive the action that minimise the expected loss Ef(h) [ℓ(h, a)].
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