

These are exercises for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Optimal actions for different loss functions

Assume that $h \in \{1, ..., 5\}$ with probabilities f(h) equal to

$$f(h=1) = 0.2$$
, $f(h=2) = 0.3$, $f(h=3) = 0$, $f(h=4) = 0.1$, $f(h=5) = 0.4$ (1)

Compute the action a that minimises the expected loss $\mathbb{E}_{f(h)}[\ell(h,a)]$ when:

- (a) $\ell(h,a) = (h-a)^2$
- (b) $\ell(h, a) = |h a|$
- (c) $\ell(h,a) = 1 \mathbb{1}(h=a)$
- (d) $\ell(h,a) = -\log a(h)$ where choosing an action a means choosing a distribution over h.

Exercise 2. Causal decision theory applied to the kidney stone example

The table summarizes outcomes for two types of surgery (T=a and T=b) to remove kidney stones. Success rates are presented both overall and by stone size. For each treatment and size category, the table also reports the number of successes (R=1) and the number of patients treated. For example, 192/263 means that 263 patients received treatment a and for 192 of them the surgery was successful (R=1).

	Overall success rate	Small stones	Large stones
Treatment a Treatment b	78% (273/350)	93% (81/87)	73% (192/263)
	83% (289/350)	87% (234/270)	69% (55/80)

To decide which treatment to choose when the size of the kidney stone is unknown, we specify the following loss function:

$$\ell_0(R) = \begin{cases} c & \text{if } R = 0\\ 0 & \text{if } R = 1 \end{cases} \tag{2}$$

where c > 0. The loss ignores recovery time and other considerations, and simply assigns a penalty c > 0 to an unsuccessful surgery.

(a) Determine the treatment T that minimises

$$\mathcal{R}(T) = \mathbb{E}_{p(R:do(T))} \left[\ell_o(R) \right]. \tag{3}$$

You may use that

$$p(R = 1; do(T) = a) = 0.833$$
 $p(R = 1; do(T) = b) = 0.779$ (4)

(b) Assume now that the success rates are considered uncertain (e.g because they are computed from a small number of patients only). How can this uncertainty be incorporated in the decision making?

Exercise 3. Classification with an asymmetric loss

We here derive the optimal policy for binary classification when the costs of false positives and false negatives are unequal. Denote by $h \in \{0, 1\}$ the true class label and the predicted label by $a \in \{0, 1\}$. We consider the following loss

\overline{h}	a	$\ell(h,a)$
0	0	0
1	0	c_{fn}
0	1	c_{fp}
1	1	0

where $c_{fn} > 0$ indicates the cost of a false negative and $c_{fp} > 0$ the cost of a false positive. We assume that we were given data \mathbf{x} and that can compute the posterior $p(h|\mathbf{x})$. Derive the policy $a^*(\mathbf{x})$ that minimises the posterior expected loss, i.e.

$$a^*(\mathbf{x}) = \underset{a}{\operatorname{argmin}} \mathbb{E}_{p(h|\mathbf{x})} \left[\ell(h, a) \right]$$
 (5)

Exercise 4. Penalised squared loss

We consider the squared loss subject to a squared penalty for the action to deviate from zero,

$$\ell(h,a) = (h-a)^2 + \lambda a^2,\tag{6}$$

where $\lambda > 0$ is a weighting factor.

Derive the action that minimise the expected loss $\mathbb{E}_{f(h)}[\ell(h,a)]$.