

Probabilistic Modelling and Reasoning Self-Study Exercises (DGM)

These are exercises for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Directed graph concepts

We here consider the directed graph below that was partly discussed in the lecture.

- (a) List all trails in the graph (of maximal length)
- (b) List all directed paths in the graph (of maximal length)
- (c) What are the descendants of z?
- (d) What are the non-descendants of q?
- (e) Which of the following orderings are topological to the graph?
 - (a,z,h,q,e)
 - (a,z,e,h,q)
 - (z,a,q,h,e)
 - (z,q,e,a,h)

Exercise 2. Canonical connections

We here derive the independencies that hold in the three canonical connections that exist in DAGs, shown in Figure 1.

Figure 1: The three canonical connections in DAGs.

- (a) For the serial connection, use the ordered Markov property to show that $x \perp \!\!\! \perp y \mid z$.
- (b) For the serial connection, show that the marginal p(x,y) does generally not factorise into p(x)p(y), i.e. that $x \perp \!\!\! \perp y$ does not hold.
- (c) For the diverging connection, use the ordered Markov property to show that $x \perp\!\!\!\perp y \mid z$.

- (d) For the diverging connection, show that the marginal p(x,y) does generally not factorise into p(x)p(y), i.e. that $x \perp \!\!\!\perp y$ does not hold.
- (e) For the converging connection, show that $x \perp \!\!\! \perp y$.
- (f) For the converging connection, show that $x \perp \!\!\! \perp y \mid z$ does generally not hold.

Exercise 3. More on ordered and local Markov properties, d-separation

Consider the graph below:

- (a) Why can the ordered or local Markov property not be used to check whether $a \perp \!\!\! \perp h \mid e$ may hold?
- (b) The independency relations obtained via the ordered and local Markov property include $a \perp \{z, h\}$. Verify the independency using d-separation.
- (c) Determine the Markov blanket of z.
- (d) Verify that $q \perp h \mid \{a, z\}$ holds by manipulating the probability distribution induced by the graph.

Exercise 4. Chest clinic (based on Barber's exercise 3.3)

The directed graphical model in Figure 2 is about the diagnosis of lung disease (t=tuberculosis or l=lung cancer). In this model, a visit to some place "a" is thought to increase the probability of tuberculosis.

- X Positive X-ray
- d Dyspnea (shortness of breath)
- e Either tuberculosis or lung cancer
- t Tuberculosis
- I Lunc cancer
- b Bronchitis
- a Visited place a
- s Smoker

Figure 2: Graphical model for Exercise 4 (Barber Figure 3.15).

(a) Explain which of the following independence relationships hold for all distributions that factorise over the graph.

- 1. $t \perp \!\!\! \perp s \mid d$
- $2. l \perp \!\!\!\perp b \mid s$
- (b) Can we simplify p(l|b, s) to p(l|s)?

Exercise 5. More on the chest clinic (based on Barber's exercise 3.3)

Consider the directed graphical model in Figure 2.

- (a) Explain which of the following independence relationships hold for all distributions that factorise over the graph.
 - 1. $a \perp \!\!\!\perp s \mid l$
 - $2. \ a \perp \!\!\!\perp s \mid l, d$
- (b) Let g be a (deterministic) function of x and t. Is the expected value $\mathbb{E}[g(x,t) \mid l, b]$ equal to $\mathbb{E}[g(x,t) \mid l]$?

Exercise 6. Hidden Markov models

This exercise is about directed graphical models that are specified by the following DAG:

These models are called "hidden" Markov models because we typically assume to only observe the y_i and not the x_i that follow a Markov model.

(a) Show that all probabilistic models specified by the DAG factorise as

$$p(x_1, y_1, x_2, y_2, \dots, x_4, y_4) = p(x_1)p(y_1|x_1)p(x_2|x_1)p(y_2|x_2)p(x_3|x_2)p(y_3|x_3)p(x_4|x_3)p(y_4|x_4)$$

- (b) Derive the independencies implied by the ordered Markov property with the topological ordering $(x_1, y_1, x_2, y_2, x_3, y_3, x_4, y_4)$
- (c) Derive the independencies implied by the ordered Markov property with the topological ordering $(x_1, x_2, \ldots, x_4, y_1, \ldots, y_4)$.
- (d) Does $y_4 \perp \!\!\!\perp y_1 \mid y_3 \text{ hold}$?

Exercise 7. More on independencies

This exercise is on further properties and characterisations of statistical independence.

(a) Without using d-separation, show that $x \perp \!\!\! \perp \{y,w\} \mid z$ implies that $x \perp \!\!\! \perp y \mid z$ and $x \perp \!\!\! \perp w \mid z$. Hint: use the definition of statistical independence in terms of the factorisation of pmfs/pdfs.

(b) For the directed graphical model below, show that the following two statements hold without using d-separation:

$$x \perp \!\!\!\perp y$$
 and (1)

$$x \not\perp \!\!\! \perp y \mid w$$
 (2)

The exercise shows that not only conditioning on a collider node but also on one of its descendents activates the trail between x and y. You can use the result that $x \perp \!\!\! \perp y | w \Leftrightarrow p(x,y,w) = a(x,w)b(y,w)$ for some non-negative functions a(x,w) and b(y,w).

Exercise 8. Independencies in directed graphical models

Consider the following directed acyclic graph:

For each of the statements below, determine whether it holds for all probabilistic models that factorise over the graph. Provide a justification for your answer.

- (a) $x_1 \perp \!\!\!\perp x_2$
- (b) $p(x_1, y_1, \theta_1, u_1) \propto \phi_A(x_1, \theta_1, u_1) \phi_B(y_1, \theta_1, u_1)$ for some non-negative functions ϕ_A and ϕ_B
- (c) $v_2 \perp \{u_1, v_1, u_2, x_2\} \mid \{m_2, s_2, y_2, \theta_2\}$
- (d) $\mathbb{E}[m_2 \mid m_1] = \mathbb{E}[m_2]$