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These are exercises for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Minimal I-maps

(a) Assume that the graph G in Figure 1 is a perfect I-map for p(a, z, q, e, h). Determine the minimal

directed I-map using the ordering (e, h, q, z, a). Is the obtained graph I-equivalent to G?
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Figure 1: Perfect I-map G for Exercise 1, question (a).

Solution. To find a minimal I-map, we can use the procedure that we used to simplify the
chain rule and visualise the obtained factorisation as a DAG. Since we are given a perfect
I-map G for p, we can use the graph to check whether p satisfies a certain independency.
This gives the following recipe:

1. Assume an ordering of the variables. Denote the ordered random variables by x1, . . . , xd.

2. For each i, find a minimal subset of variables πi ⊆ prei such that

xi ⊥⊥ {prei \ πi} | πi
is in I(G) (only works if G is a perfect I-map for I(p))

3. Construct a graph with parents pai = πi.

Note: For I-maps G that are not perfect, if the graph does not indicate that a certain
independency holds, we have to check that the independency indeed does not hold for p.
If we don’t, we won’t obtain a minimal I-map but just an I-map for I(p). This is because
p may have independencies that are not encoded in the graph G.

Given the ordering (e, h, q, z, a), we build a graph where e is the root. From Figure 1 (and
the perfect map assumption), we see that h ⊥⊥ e does not hold. We thus set e as parent
of h, see first graph in Figure 2. Then:

• We consider q: preq = {e, h}. There is no subset πq of preq on which we could
condition to make q independent of preq \ πq, so that we set the parents of q in the
graph to paq = {e, h}. (Second graph in Figure 2.)

• We consider z: prez = {e, h, q}. From the graph in Figure 1, we see that for πz =
{q, h} we have z ⊥⊥ prez \πz|πz. Note that πz = {q} does not work because z ⊥⊥ e, h|q
does not hold. We thus set paz = {q, h}. (Third graph in Figure 2.)

• We consider a: prea = {e, h, q, z}. This is the last node in the ordering. To find
the minimal set πa for which a ⊥⊥ prea \ πa|πa, we can determine its Markov blanket
MB(a). The Markov blanket is the set of parents (none), children (q), and co-parents
of a (z) in Figure 1, so that MB(a) = {q, z}. We thus set paa = {q, z}.(Fourth graph
in Figure 2.)
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Figure 2: Exercise 1, Question (a):Construction of a minimal directed I-map for the ordering
(e, h, q, z, a).

Since the skeleton in the obtained minimal I-map is different from the skeleton of G, we do
not have I-equivalence. Note that the ordering (e, h, q, z, a) yields a denser graph (Figure
2) than the graph in Figure 1. Whilst a minimal I-map, the graph does e.g. not show that
a ⊥⊥ z. Furthermore, the causal interpretation of the two graphs is different.

(b) For the collection of random variables (a, z, h, q, e) you are given the following Markov blankets for
each variable:

• MB(a) = {q,z}
• MB(z) = {a,q,h}
• MB(h) = {z}
• MB(q) = {a,z,e}
• MB(e) = {q}

(i) Draw the undirected minimal I-map representing the independencies.

(ii) Indicate a Gibbs distribution that satisfies the independence relations specified by the Markov
blankets.

Solution. Connecting each variable to all variables in its Markov blanket yields the
desired undirected minimal I-map (see lecture slides). Note that the Markov blankets are
not mutually disjoint.
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For positive distributions, the set of distributions that satisfy the local Markov property
relative to a graph (as given by the Markov blankets) is the same as the set of Gibbs
distributions that factorise according to the graph. Given the I-map, we can now easily
find the Gibbs distribution

p(a, z, h, q, e) =
1

Z
ϕ1(a, z, q)ϕ2(q, e)ϕ3(z, h),

where the ϕi must take positive values on their domain. Note that we used the maximal
clique (a, z, q).
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Exercise 2. I-equivalence between directed and undirected graphs

(a) Verify that the following two graphs are I-equivalent by listing and comparing the independencies
that each graph implies.
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Solution. First, note that both graphs share the same skeleton and the only reason that
they are not fully connected is the missing edge between x and z.

For the DAG, there is also only one ordering that is topological to the graph: x, u, y, z.
The missing edge between x and y corresponds to the only independency encoded by the
graph: z ⊥⊥ prez \ paz|paz, i.e.

z ⊥⊥ x|u, y.

This is the same independency that we get from the directed local Markov property.

For the undirected graph,
z ⊥⊥ x|u, y

holds because u, y block all paths between z and x. All variables but z and x are connected
to each other, so that no further independency can hold.

Hence both graphs only encode z ⊥⊥ x|u, y and they are thus I-equivalent.

(b) Are the following two graphs, which are directed and undirected hidden Markov models, I-equivalent?

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Solution. The skeleton of the two graphs is the same and there are no immoralities.
Hence, the two graphs are I-equivalent.

(c) Are the following two graphs I-equivalent?

y1 y2 y3 y4

x1 x2 x3 x4

y1 y2 y3 y4

x1 x2 x3 x4

Solution. The two graphs are not I-equivalent because x1−x2−x3 forms an immorality.
Hence, the undirected graph encodes x1 ⊥⊥ x3|x2 which is not represented in the directed
graph. On the other hand, the directed graph asserts x1 ⊥⊥ x3 which is not represented in
the undirected graph.
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Exercise 3. Moralisation exercise

For the DAG G below find the minimal undirected I-map for I(G).

x2x1 x3

x4 x5

x6 x7

Solution. To derive an undirected minimal I-map from a directed one, we have to construct
the moralised graph where the “unmarried” parents are connected by a covering edge. This is
because each conditional p(xi|pai) corresponds to a factor ϕi(xi,pai) and we need to connect all
variables that are arguments of the same factor with edges.

Statistically, the reason for marrying the parents is as follows: An independency x ⊥⊥ y|{child, other nodes}
does not hold in the directed graph in case of collider connections but would hold in the undi-
rected graph if we didn’t marry the parents. Hence links between the parents must be added.

It is important to add edges between all parents of a node. Here, p(x4|x1, x2, x3) corresponds
to a factor ϕ(x4, x1, x2, x3) so that all four variables need to be connected. Just adding edges
x1 − x2 and x2 − x3 would not be enough.

The moral graph, which is the requested minimal undirected I-map, is shown below.

x2x1 x3

x4 x5

x6 x7

Exercise 4. Triangulation: Converting undirected graphs to directed minimal I-
maps

In the lecture, we have seen a recipe for constructing directed minimal I-maps for I(p). We here adapt
it to build a directed minimal I-map for I(H), where H is an undirected graph. The difference to the
procedure in the lecture is that we here use the graph H to determine independencies rather than the
distribution p.

1. Choose an ordering of the random variables.

2. For all variables xi, use H to determine a minimal subset πi of the predecessors prei such that

xi ⊥⊥ (prei \ πi) | πi
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holds.

3. Construct a DAG with the πi as parents pai of xi.

Remarks: (1) Directed minimal I-maps obtained with different orderings are generally not I-equivalent.
(2) The directed minimal I-maps obtained with the above method are always chordal graphs. Chordal
graphs are graphs where the longest trail without shortcuts is a triangle (https: // en. wikipedia. org/
wiki/ Chordal_ graph ). They are thus also called triangulated graphs. We obtain chordal graphs because
if we had trails without shortcuts that involved more than 3 nodes, we would necessarily have an immorality
in the graph. But immoralities encode independencies that an undirected graph cannot represent, which
would make the DAG not an I-map for I(H) any more.

(a) Let H be the undirected graph below. Determine the directed minimal I-map for I(H) with the
variable ordering x1, x2, x3, x4, x5.

x1 x2

x3 x4

x5

Solution. We use the ordering x1, x2, x3, x4, x5 and follow the conversion procedure:

• x2 is not independent from x1 so that we set pa2 = {x1}. See first graph in Figure 3.

• Since x3 is connected to both x1 and x2, we don’t have x3 ⊥⊥ x2, x1. We cannot make
x3 independent from x2 by conditioning on x1 because there are two paths from x3
to x2 and x1 only blocks the upper one. Moreover, x1 is a neighbour of x3 so that
conditioning on x2 does make them independent. Hence we must set pa3 = {x1, x2}.
See second graph in Figure 3.

• For x4, we see from the undirected graph, that x4 ⊥⊥ x1 | x3, x2. The graph further
shows that removing either x3 or x2 from the conditioning set is not possible and
conditioning on x1 won’t make x4 independent from x2 or x3. We thus have pa4 =
{x2, x3}. See fourth graph in Figure 3.

• The same reasoning shows that pa5 = {x3, x4}. See last graph in Figure 3.

This results in the triangulated directed graph in Figure 3 on the right.

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

x1 x2

x3 x4

x5

Figure 3: . Answer to Exercise 4, Question (a).

To see why triangulation is necessary consider the case where we didn’t have the edge
between x2 and x3 as in Figure 4. The directed graph would then imply that x3 ⊥⊥ x2 | x1
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Figure 4: Not a directed I-map for the undirected graphical model defined by the graph in
Exercise 4, Question (a).

(check!). But this independency assertion does not hold in the undirected graph so that
the graph in Figure 4 is not an I-map.

(b) For the undirected graph from question (a) above, which variable ordering yields the directed mini-
mal I-map below?

x1 x2

x3 x4

x5

Solution. x1 is the root of the DAG, so it comes first. Next in the ordering are the
children of x1: x2, x3, x4. Since x3 is a child of x4, and x4 a child of x2, we must have
x1, x2, x4, x3. Furthermore, x3 must come before x5 in the ordering since x5 is a child of
x3, hence the ordering used must have been: x1, x2, x4, x3, x5.

Exercise 5. I-maps, minimal I-maps, and I-equivalency

Consider the following probability density function for random variables x1, . . . , x6.

pa(x1, . . . , x6) = p(x1)p(x2)p(x3|x1, x2)p(x4|x2)p(x5|x1)p(x6|x3, x4, x5)

For each of the two graphs below, explain whether it is a minimal I-map, not a minimal I-map but still
an I-map, or not an I-map for the independencies that hold for pa.

x1 x2

x3 x4x5

x6

graph 1

x1 x2

x3 x4x5

x6

graph 2
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Solution. The pdf can be visualised as the following directed graph, which is a minimal I-map
for it.

x1 x2

x3 x4x5

x6

Graph 1 defines distributions that factorise as

pb(x) = p(x1)p(x2)p(x3|x1, x2)p(x4|x2, x3)p(x5|x1, x3)p(x6|x3, x4, x5). (S.1)

Comparing with pa(x1, . . . , x6), we see that only the conditionals p(x4|x2, x3) and p(x5|x1, x3)
are different. Specifically, their conditioning set includes x3, which means that Graph 1 encodes
fewer independencies than what pa(x1, . . . , x6) satisfies. In particular x4 ⊥⊥ x3|x2 and x5 ⊥⊥ x3|x1
are not represented in the graph. This means that we could remove x3 from the conditioning
sets, or equivalently remove the edges x3 → x4 and x3 → x5 from the graph without introducing
independence assertions that do not hold for pa. This means graph 1 is an I-map but not a
minimal I-map.

Graph 2 is not an I-map. To be an undirected minimal I-map, we had to connect variables x5
and x4 that are parents of x6. Graph 2 wrongly claims that x5 ⊥⊥ x4 | x1, x3, x6.
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