

These are exercises for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Minimal I-maps

(a) Assume that the graph G in Figure 1 is a perfect I-map for p(a, z, q, e, h). Determine the minimal directed I-map using the ordering (e, h, q, z, a). Is the obtained graph I-equivalent to G?

Figure 1: Perfect I-map G for Exercise 1, question (a).

- (b) For the collection of random variables (a, z, h, q, e) you are given the following Markov blankets for each variable:
 - $MB(a) = \{q,z\}$
 - $MB(z) = \{a,q,h\}$
 - $MB(h) = \{z\}$
 - $MB(q) = \{a,z,e\}$
 - $MB(e) = \{q\}$
 - (i) Draw the undirected minimal I-map representing the independencies.
 - (ii) Indicate a Gibbs distribution that satisfies the independence relations specified by the Markov blankets.

Exercise 2. I-equivalence between directed and undirected graphs

(a) Verify that the following two graphs are I-equivalent by listing and comparing the independencies that each graph implies.

(b) Are the following two graphs, which are directed and undirected hidden Markov models, I-equivalent?

(c) Are the following two graphs I-equivalent?

Exercise 3. Moralisation exercise

For the DAG G below find the minimal undirected I-map for $\mathcal{I}(G)$.

Exercise 4. Triangulation: Converting undirected graphs to directed minimal I-maps

In the lecture, we have seen a recipe for constructing directed minimal I-maps for $\mathcal{I}(p)$. We here adapt it to build a directed minimal I-map for $\mathcal{I}(H)$, where H is an undirected graph. The difference to the procedure in the lecture is that we here use the graph H to determine independencies rather than the distribution p.

- 1. Choose an ordering of the random variables.
- 2. For all variables x_i , use H to determine a minimal subset π_i of the predecessors pre_i such that

$$x_i \perp \!\!\!\perp (\operatorname{pre}_i \setminus \pi_i) \mid \pi_i$$

holds.

3. Construct a DAG with the π_i as parents pa_i of x_i .

Remarks: (1) Directed minimal I-maps obtained with different orderings are generally not I-equivalent. (2) The directed minimal I-maps obtained with the above method are always chordal graphs. Chordal graphs are graphs where the longest trail without shortcuts is a triangle (https://en.wikipedia.org/wiki/Chordal_graph). They are thus also called triangulated graphs. We obtain chordal graphs because if we had trails without shortcuts that involved more

than 3 nodes, we would necessarily have an immorality in the graph. But immoralities encode independencies that an undirected graph cannot represent, which would make the DAG not an I-map for $\mathcal{I}(H)$ any more.

(a) Let H be the undirected graph below. Determine the directed minimal I-map for $\mathcal{I}(H)$ with the variable ordering x_1, x_2, x_3, x_4, x_5 .

(b) For the undirected graph from question (a) above, which variable ordering yields the directed minimal I-map below?

Exercise 5. I-maps, minimal I-maps, and I-equivalency

Consider the following probability density function for random variables x_1, \ldots, x_6 .

$$p_a(x_1, \dots, x_6) = p(x_1)p(x_2)p(x_3|x_1, x_2)p(x_4|x_2)p(x_5|x_1)p(x_6|x_3, x_4, x_5)$$

For each of the two graphs below, explain whether it is a minimal I-map, not a minimal I-map but still an I-map, or not an I-map for the independencies that hold for p_a .

