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These are exercises for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Predictive distributions for hidden Markov models

For the hidden Markov model

p(h1:d, v1:d) = p(v1|h1)p(h1)
d∏

i=2

p(vi|hi)p(hi|hi−1)

assume you have observations for vi, i = 1, . . . , u < d.

(a) Use message passing to compute p(ht|v1:u) for u < t ≤ d. For the sake of concreteness,
you may consider the case d = 6, u = 2, t = 4.

(b) Use message passing to compute p(vt|v1:u) for u < t ≤ d. For the sake of concreteness, you
may consider the case d = 6, u = 2, t = 4.

Exercise 2. Prediction exercise

Consider a hidden Markov model with three visibles v1, v2, v3 and three hidden variables h1, h2, h3
which can be represented with the following factor graph:

v1

p(v1|h1)

v2

p(v2|h2)

v3

p(v3|h3)

p(h1) h1

p(h2|h1)
h2

p(h3|h2)
h3

This question is about computing the predictive probability p(v3 = 1|v1 = 1).

(a) The factor graph below represents p(h1, h2, h3, v2, v3 | v1 = 1). Provide an equation that
defines ϕA in terms of the factors in the factor graph above.

v2

p(v2|h2)

v3

p(v3|h3)

h1
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h2

p(h3|h2)
h3

(b) Assume further that all variables are binary, hi ∈ {0, 1}, vi ∈ {0, 1}; that p(h1 = 1) = 0.5,
and that the transition and emission distributions are, for all i, given by:
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p(hi+1|hi) hi+1 hi

0 0 0
1 1 0
1 0 1
0 1 1

p(vi|hi) vi hi

0.6 0 0
0.4 1 0
0.4 0 1
0.6 1 1

Compute the numerical values of the factor ϕA.

(d) Denote the message from variable node h2 to factor node p(h3|h2) by α(h2). Use message
passing to compute α(h2) for h2 = 0 and h2 = 1. Report the values of any intermediate
messages that need to be computed for the computation of α(h2).

(e) With α(h2) defined as above, use message passing to show that the predictive probability
p(v3 = 1|v1 = 1) can be expressed in terms of α(h2) as

p(v3 = 1|v1 = 1) =
xα(h2 = 1) + yα(h2 = 0)

α(h2 = 1) + α(h2 = 0)
(1)

and report the values of x and y.

(f) Compute the numerical value of p(v3 = 1|v1 = 1).

Exercise 3. Forward filtering backward sampling for hidden Markov models

Consider the hidden Markov model specified by the following DAG.

h1 . . .

. . .

ht−1 ht . . .

. . .

hn

v1 vt−1 vt vn

We assume that have already run the alpha-recursion (filtering) and can compute p(ht|v1:t) for
all t. The goal is now to generate samples p(h1, . . . , hn|v1:n), i.e. entire trajectories (h1, . . . , hn)
from the posterior. Note that this is not the same as sampling from the n filtering distribu-
tions p(ht|v1:t). Moreover, compared to the Viterbi algorithm, the sampling approach generates
samples from the full posterior rather than just returning the most probable state and its cor-
responding probability.

(a) Show that p(h1, . . . , hn|v1:n) forms a first-order Markov chain.

(b) Since p(h1, . . . , hn|v1:n) is a first-order Markov chain, it suffices to determine p(ht−1|ht, v1:n),
the probability mass function for ht−1 given ht and all the data v1:n. Use message passing
to show that

p(ht−1, ht|v1:n) ∝ α(ht−1)β(ht)p(ht|ht−1)p(vt|ht) (2)

(c) Show that p(ht−1|ht, v1:n) = α(ht−1)
α(ht)

p(ht|ht−1)p(vt|ht).

We thus obtain the following algorithm to generate samples from p(h1, . . . , hn|v1:n):
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1. Run the alpha-recursion (filtering) to determine all α(ht) forward in time for t =
1, . . . , n.

2. Sample hn from p(hn|v1:n) ∝ α(hn)

3. Go backwards in time using

p(ht−1|ht, v1:n) =
α(ht−1)

α(ht)
p(ht|ht−1)p(vt|ht) (3)

to generate samples ht−1|ht, v1:n for t = n, . . . , 2.

This algorithm is known as forward filtering backward sampling (FFBS).

Exercise 4. Inference for two linearly dependent Gaussian RVs (adapted from an
exercise by Chris Williams)

You have prior knowledge that an unknown variable X ∼ N (X; 0, 1). You can make an obser-
vation of the variable Y which is related to X by Y = wX + µy + ϵ, with w and µ constants,
and ϵ ∼ N (ϵ; 0, σ2) independent of X. The graphical model is X → Y . (The factor w might
arise e.g. because you want to measure X in centimeters, but your ruler is in inches. µy may
arise due to an offset between the origins of the coordinates in the X and Y spaces.)

(a) Show that E[Y ] = µy.

(b) Show that the covariance between X and Y is covar(X,Y ) = w and that the variance of
Y equals V(y) = w2 + σ2.

(c) You now want to make inferences for X given the observation Y = y. The conditional
distribution p(X = x|Y = y) is Gaussian. Compute its posterior mean and variance.
HINT: You may use that if x = (x1,x2) is multivariate normal with mean µµµ and variance
ΣΣΣ partitioning into

µµµ =

(
µµµ1

µµµ2

)
ΣΣΣ =

(
ΣΣΣ11 ΣΣΣ12

ΣΣΣ21 ΣΣΣ22

)
then the conditional distribution p(x1|x2) is multivariate Gaussian with mean and variance
equal to

µµµc
1|2 = µµµ1 +ΣΣΣ12ΣΣΣ

−1
22 (x2 −µµµ2) ΣΣΣc

1|2 = ΣΣΣ11 −ΣΣΣ12ΣΣΣ
−1
22 ΣΣΣ21

Alternatively, you can manipulate the expressions for the Gaussians p(x) and p(y|x) di-
rectly.

Exercise 5. Kalman filtering (optional, not examinable)

We here consider filtering for hidden Markov models with Gaussian transition and emission
distributions. For simplicity, we assume one-dimensional hidden variables and observables. We
denote the probability density function of a Gaussian random variable x with mean µ and
variance σ2 by N (x|µ, σ2),

N (x|µ, σ2) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
. (4)
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The transition and emission distributions are assumed to be

p(hs|hs−1) = N (hs|Ashs−1, B
2
s ) (5)

p(vs|hs) = N (vs|Cshs, D
2
s). (6)

The distribution p(h1) is assumed Gaussian with known parameters. The As, Bs, Cs, Ds are also
assumed known.

(a) Show that hs and vs as defined in the following update and observation equations

hs = Ashs−1 +Bsξs (7)

vs = Cshs +Dsηs (8)

follow the conditional distributions in (5) and (6). The random variables ξs and ηs are
independent from the other variables in the model and follow a standard normal Gaussian
distribution, e.g. ξs ∼ N (ξs|0, 1).
Hint: For two constants c1 and c2, y = c1 + c2x is Gaussian if x is Gaussian. In other
words, an affine transformation of a Gaussian is Gaussian.

The equations mean that hs is obtained by scaling hs−1 and by adding noise with variance
B2

s . The observed value vs is obtained by scaling the hidden hs and by corrupting it with
Gaussian observation noise of variance D2

s .

(b) Show that ∫
N (x|µ, σ2)N (y|Ax,B2)dx ∝ N (y|Aµ,A2σ2 +B2) (9)

Hint: While this result can be obtained by integration, an approach that avoids this is as
follows: First note that N (x|µ, σ2)N (y|Ax,B2) is proportional to the joint pdf of x and
y. We can thus consider the integral to correspond to the computation of the marginal of
y from the joint. Using the equivalence of Equations (5)-(6) and (7)-(8), and the fact that
the weighted sum of two Gaussian random variables is a Gaussian random variable then
allows one to obtain the result.

(c) Show that
N (x|m1, σ

2
1)N (x|m2, σ

2
2) ∝ N (x|m3, σ

2
3) (10)

where

σ2
3 =

(
1

σ2
1

+
1

σ2
2

)−1

=
σ2
1σ

2
2

σ2
1 + σ2

2

(11)

m3 = σ2
3

(
m1

σ2
1

+
m2

σ2
2

)
= m1 +

σ2
1

σ2
1 + σ2

2

(m2 −m1) (12)

Hint: Work in the negative log domain.

(d) In the lecture, we have seen that p(ht|v1:t) ∝ α(ht) where α(ht) can be computed recur-
sively via the “alpha-recursion”

α(h1) = p(h1) · p(v1|h1) α(hs) = p(vs|hs)
∑
hs−1

p(hs|hs−1)α(hs−1). (13)
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For continuous random variables, the sum above becomes an integral so that

α(hs) = p(vs|hs)
∫

p(hs|hs−1)α(hs−1)dhs−1. (14)

For reference, let us denote the integral by I(hs),

I(hs) =

∫
p(hs|hs−1)α(hs−1)dhs−1. (15)

In the lecture, it was pointed out that I(hs) is proportional to the predictive distribution
p(hs|v1:s−1).

For a Gaussian prior distribution for h1 and Gaussian emission probability p(v1|h1),
α(h1) = p(h1) · p(v1|h1) ∝ p(h1|v1) is proportional to a Gaussian. We denote its mean by
µ1 and its variance by σ2

1 so that

α(h1) ∝ N (h1|µ1, σ
2
1). (16)

Assuming α(hs−1) ∝ N (hs−1|µs−1, σ
2
s−1) (which holds for s = 2), use Equation (9) to show

that

I(hs) ∝ N (hs|Asµs−1, Ps) (17)

where

Ps = A2
sσ

2
s−1 +B2

s . (18)

(e) Use Equation (10) to show that

α(hs) ∝ N
(
hs|µs, σ

2
s

)
(19)

where

µs = Asµs−1 +
PsCs

C2
sPs +D2

s

(vs − CsAsµs−1) (20)

σ2
s =

PsD
2
s

PsC2
s +D2

s

(21)

(f) Show that α(hs) can be re-written as

α(hs) ∝ N
(
hs|µs, σ

2
s

)
(22)

where

µs = Asµs−1 +Ks (vs − CsAsµs−1) (23)

σ2
s = (1−KsCs)Ps (24)

Ks =
PsCs

C2
sPs +D2

s

(25)

These are the Kalman filter equations and Ks is called the Kalman filter gain.

(g) Explain Equation (23) in non-technical terms. What happens if the variance D2
s of the

observation noise goes to zero?
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