These are exercises for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Baum-Welch Algorithm

This question is on the EM algorithm for discrete-valued Hidden Markov Models (HMMs). We assume that the transition and emission distributions of the HMM are parameterised by the matrices ${\bf A}$ and ${\bf B}$, respectively, with elements

$$p(h_i = k | h_{i-1} = k'; \mathbf{A}) = A_{k,k'}, \qquad p(v_i = m | h_i = k; \mathbf{B}) = B_{m,k},$$
 (1)

and the initial state distribution is parameterised by the vector a, with elements

$$p(h_1 = k; \mathbf{a}) = a_k, \tag{2}$$

where $h_i \in \{1, ..., K\}$ denotes the hidden (unobserved) and $v_i \in \{1, ..., M\}$ the visible (observed) variables.

We assume that we are given n independent sequences (time-series) $\mathcal{D}_1, \ldots, \mathcal{D}_n$, each containing the values of the visibles. The length of sequence \mathcal{D}_i is d_i .

In the course, we have seen that the parameters A, B, and a can be learned from the data $\mathcal{D}_1, \ldots, \mathcal{D}_n$ by means of the EM (the Baum-Welch) algorithm.

(a) A friend produces the following pseudo-code for one iteration of the EM algorithm, where they use $\boldsymbol{\theta}$ to denote the values of \mathbf{A}, \mathbf{B} , and \mathbf{a} from the previous iteration. However, the pseudo-code contains several mistakes. Find and correct them.

Step 1: For each sequence \mathcal{D}_j compute the posteriors $p(h_i, h_{i-1} \mid \mathcal{D}_j; \boldsymbol{\theta})$ and $p(h_i \mid \mathcal{D}_j; \boldsymbol{\theta})$ using the alpha recursion.

Step 2: Update the parameters as follows

$$a_{k} \leftarrow \frac{1}{n} \sum_{j=1}^{n} p(h_{1} = k | \mathcal{D}_{j}; \boldsymbol{\theta})$$

$$A_{k,k'} \leftarrow \frac{\sum_{j=1}^{n} \sum_{i=2}^{d_{j}} p(h_{i} = k, h_{i-1} = k' | \mathcal{D}_{j}; \boldsymbol{\theta})}{\sum_{j=1}^{n} \sum_{i=2}^{d_{j}} p(h_{i} = k, h_{i-1} = k' | \mathcal{D}_{j}; \boldsymbol{\theta})}$$

$$B_{m,k} \leftarrow \frac{\sum_{j=1}^{n} \sum_{i=1}^{d_{j}} p(h_{i} = k | \mathcal{D}_{j}; \boldsymbol{\theta})}{\sum_{j=1}^{n} \sum_{i=1}^{d_{j}} p(h_{i} = k | \mathcal{D}_{j}; \boldsymbol{\theta})}$$

Solution. Corrections to the algorithm are in red:

Step 1: For each sequence \mathcal{D}_j compute the posteriors $p(h_i, h_{i-1} \mid \mathcal{D}_j; \boldsymbol{\theta})$ and $p(h_i \mid \mathcal{D}_j; \boldsymbol{\theta})$ using the alpha-beta recursion.

Step 2: Update the parameters

$$a_{k} \leftarrow \frac{1}{n} \sum_{j=1}^{n} p(h_{1} = k | \mathcal{D}_{j}; \boldsymbol{\theta})$$

$$A_{k,k'} \leftarrow \frac{\sum_{j=1}^{n} \sum_{i=2}^{d_{j}} p(h_{i} = k, h_{i-1} = k' | \mathcal{D}_{j}; \boldsymbol{\theta})}{\sum_{k=1}^{K} \sum_{j=1}^{n} \sum_{i=2}^{d_{j}} p(h_{i} = k, h_{i-1} = k' | \mathcal{D}_{j}; \boldsymbol{\theta})}$$

$$B_{m,k} \leftarrow \frac{\sum_{j=1}^{n} \sum_{i=1}^{d_{j}} \mathbb{1}(v_{i}^{(j)} = m)p(h_{i} = k | \mathcal{D}_{j}; \boldsymbol{\theta})}{\sum_{j=1}^{n} \sum_{i=1}^{d_{j}} p(h_{i} = k | \mathcal{D}_{j}; \boldsymbol{\theta})}$$
or
$$B_{m,k} \leftarrow \frac{\sum_{j=1}^{n} \sum_{i=1}^{d_{j}} \mathbb{1}(v_{i}^{(j)} = m)p(h_{i} = k | \mathcal{D}_{j}; \boldsymbol{\theta})}{\sum_{m=1}^{M} \sum_{j=1}^{n} \sum_{i=1}^{d_{j}} \mathbb{1}(v_{i}^{(j)} = m)p(h_{i} = k | \mathcal{D}_{j}; \boldsymbol{\theta})}$$

(b) In the update of the matrices A and B, we sum over the length of the sequences d_j . What model assumption is the reason for this summation? What potential advantage does the summation have for the estimation of the parameters?

Solution. By summing over the sequence, we aggregate or average estimates of the transition probability from different times steps. This reduces noise and errors in the estimated transition probability. This happens in the algorithm because we assumed that the HMM is stationary.