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These are exercises for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Baum-Welch Algorithm

This question is on the EM algorithm for discrete-valued Hidden Markov Models (HMMs). We
assume that the transition and emission distributions of the HMM are parameterised by the
matrices A and B, respectively, with elements

p(hi = k|hi−1 = k′;A) = Ak,k′ , p(vi = m|hi = k;B) = Bm,k, (1)

and the initial state distribution is parameterised by the vector a, with elements

p(h1 = k;a) = ak, (2)

where hi ∈ {1, . . . ,K} denotes the hidden (unobserved) and vi ∈ {1, . . . ,M} the visible (ob-
served) variables.

We assume that we are given n independent sequences (time-series) D1, . . . ,Dn, each containing
the values of the visibles. The length of sequence Dj is dj .

In the course, we have seen that the parameters A, B, and a can be learned from the data
D1, . . . ,Dn by means of the EM (the Baum-Welch) algorithm.

(a) A friend produces the following pseudo-code for one iteration of the EM algorithm, where
they use θ to denote the values of A,B, and a from the previous iteration. However, the
pseudo-code contains several mistakes. Find and correct them.

Step 1: For each sequence Dj compute the posteriors p(hi, hi−1 | Dj ;θ) and p(hi | Dj ;θ)
using the alpha recursion.

Step 2: Update the parameters as follows

ak ←
1

n

n∑
j=1

p(h1 = k|Dj ;θ)

Ak,k′ ←
∑n

j=1

∑dj
i=2 p(hi = k, hi−1 = k′|Dj ;θ)∑n

j=1

∑dj
i=2 p(hi = k, hi−1 = k′|Dj ;θ)

Bm,k ←
∑n

j=1

∑dj
i=1 p(hi = k|Dj ;θ)∑n

j=1

∑dj
i=1 p(hi = k|Dj ;θ)

(b) In the update of the matrices A and B, we sum over the length of the sequences dj . What
model assumption is the reason for this summation? What potential advantage does the
summation have for the estimation of the parameters?
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