C\\\“//‘". THE UNIVERSITY of EDINBURGH PrObabiliStic MOdelling and Reasoning Autumn 2025
&y informatics Self-Study Solutions (Inference) Michael Gutmann

These are exercises for self-study and exam preparation. All material is examinable unless otherwise

mentioned.

Exercise 1. Conversion to factor graphs

(a) Draw an undirected factor graph for the directed graphical model defined by the graph below.

Solution. The graph specifies probabilistic models that factorise as

4

p(a1, x4y, ya) = ple)p(uilzn) [[pila)p(zilzi1)
=2

It is the graph for a hidden Markov model. The corresponding factor graph is shown

below.

(b) Draw an undirected factor graph for directed graphical models defined by the graph below (this kind
of graph is called a polytree: there are no loops but a node may have more than one parent).

Solution. For the factor graph, we note that the directed graph defines the following

class of probabilistic models
p(x1, ... x6) = p(z1)p(z2)p(s|zr)p(zaly, x2)p(s|ra)p(ae|rs)

This gives the factor graph on left in the figure below.

1 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

play) -ﬂ /@)—- ples)
p(lfsxl)d:?) W p(z4]21 22) p(%%)@:} 39@4% z2)p(z1)p(w2)
p(xs|zs) W W p(z6]74) W p(xs|za)p(z6|s)

® © & ®

e One may drop the labels for the factors if the meaning is clear.

Note:

e One may choose to group some factors together in order to obtain a factor graph with
a particular structure (see factor graph on right)

Exercise 2. Sum-product message passing

We here re-consider the factor tree from the lecture on exact inference.

¢p N
ép
—()
ba
| /-77.1\ [| X3
/ 5
c 2 O
(2 —n
_/
Let all variables be binary, x; € {0,1}, and the factors be defined as follows:
T w2 3 Po
0o 0 0
10 0 2 r3 x4 ¢p T3 Ts OF -
T 94 T2 B g 1 g 2 0 0 8 0o o 3 %5 OF
0 2 0 4 1 1 0 6 1 0 2 1 0 6 0 1
1 1 0o 0 1 2 0 1 2 0 1 6 18
1 0 1 6 1 1 6 1 1 3
0 1 1 6
111y

(a) Mark the graph with arrows indicating all messages that need to be computed for the computation

of p(w1).

Solution.

2 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

(b) Compute the messages that you have identified.

Assuming that the computation of the messages is scheduled according to a common clock, group
the messages together so that all messages in the same group can be computed in parallel during a
clock cycle.

Solution. Since the variables are binary, each message can be represented as a two-
dimensional vector. We use the convention that the first element of the vector corresponds
to the message for x; = 0 and the second element to the message for x; = 1. For example,

mmz@ (5.1)

means that the message umﬁzl(acl) equals 2 for 1 = 0, i.e. ,LL¢AH;B1(O) = 2.

The following figure shows a grouping (scheduling) of the computation of the messages.

¢p W
[1]\1/ d)D [1
@ I
Za o]
| 331
g ¢C 0 E ¢F

Clock cycle 1:

2 4 1 1
Bpp—zy = 4 Hop—za = 4 Bzy—pp = 1 Hop—zs =] (5.2)

Clock cycle 2

4 1
Hzy—éc = Hep—z2 = | 4 Hzs—ér = Hop—as = | g (S.3)
Message i, —z, is defined as

#¢D—>Z‘5 1173 Zng $37x4)lu$4—>¢D (':E4) (84)

T4

3 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

so that

1

Hop—x3 (0) = Z ¢p(0, x4)/‘$4%¢>D (24) (S.5)

x4=0
= ¢p(0, O):um—Ni)D (0) + ¢p(0, 1)M$4_>¢D(]‘) (S.6)
=8-1+2-1 (S.7)
— 10 (S.8)

1

Ho p—as (1) = Z (1, 24) g~ (T4) (S.9)

x4=0
= ¢D(17 O)Nx4—>¢p (0) + QZ)D(L 1)/’Lz4—>¢p(1) (S.lO)
=2-146-1 (S.11)
. (5.12)

and thus

] (5.13)

The above computations can be written more compactly in matrix notation. Let ¢p be
the matrix that contains the outputs of ¢p(zs3,z4)

 (ép(z3=0,24=0) éplzs=0,z4=1)\ (8 2
0= <¢D($3 =1,24=0) ¢p(rs=124= 1)) - <2 6> . (S.14)

We can then write pgp 5z, in terms of a matrix vector product,
Hop—z3 = ¢Dﬂz4—)¢p' (8'15)

Clock cycle 3:
Representing the factor ¢ as matrix ¢g,

_ (¢p(x3=0,25=0) ¢p(rs=0,z5=1)\ _(3 6
¢E = <¢E(1‘3 =1,25=0) ¢p(xs=125= 1)) = <6 3> 5 (S.16)

we can write

Bopoas(T3) = Y SE(23,25) tay—o (5) (S.17)

5

as a matrix vector product,

Hopp—zs = ¢E.U'm5—)¢E (818)

_ (2 g) @) (S.19)
- (;1)) . (S.20)
Clock cycle 4:

Variable node 3 has received all incoming messages, and can thus output fiz, ¢,

Hz3—¢c ($3) = M¢D—>x3(x3):u¢E_>I3 ($3) (821)

4 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Using ® to denote element-wise multiplication of two vectors, we have

MBz3—s¢c = Bpp—as O Hop—sas (S.22)
10 51
(Yo (3 o
510
() -

Clock cycle 5
Factor node ¢¢ has received all incoming messages, and can thus output ps. sz,

:LL¢C—)JJ1 ($1) — Z ¢C(I1,CL‘2,SE3),LLI2_>¢C ($2)/Lx3_>¢c($3). (825)

x2,T3

Writing out the sum for 1 = 0 and z; = 1 gives

Hoo—a1(0) = D ¢ (0,02, 25) iy 0 (22) g 0 (3) (S-26)
2225
=¢c(0, T2, T3) Hay— b (T2) Has— o (T3) |(@a,2)=(0,0) T (8.27)
0c (0,22, 23) g - pe (T2) Has b (T3) |(@g,29)=(1,0) + (S.28)
¢c(0, 22, 3) s s do (T2) s —de (T3) | (@a,25)=(0,1) T (S.29)
¢ (0,22, 23) s~ (T2) g — 60 (3) |(2a.05)=(1,1) (8.30)
—4. 4510+ (S.31)
2.4.510+ (5.32)
4. 240+ (5.33)
6-4-240 (S.34)
—19920 (S.35)
Hoo—sar(1) = Y do(l,02,28) iy 0 (22) g 0 (3) (S-36)
2225
=¢c (1, T2, 73) Hay—pe (T2) Has— o (T3) |(@a,23)=(0,0) T (8.37)
oo (1,22, 23) g - pe (T2) Has b (T3) |(@g,29)=(1,0) + (S.38)
e (1, 22, 3) fhay s de (T2) s —de (T3) | (@a,25)=(0,1) T (S.39)
b (L, 22, 23) oy —pc (T2) g — 60 (3) |(2a.05)=(1,1) (8.40)
=2-4-510+ (S.41)
6-4-510+ (S.42)
6-4-240+ (S.43)
4 -240 (S.44)
=25920 (S.45)
and hence
Bpc—z1 = (;23;8) (S.46)

After step 5, variable node x; has received all incoming messages and the marginal can be
computed.

5 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

oa U] 2] | 11 1B S
| T1 | — T3 &
[5] o¥e; [4] N\ [5]

Figure 1: Answer to Exercise 2 Question (b): Computing all messages in five clock cycles. If
we also computed the messages toward the leaf factor nodes, we needed six cycles, but they are
not necessary for computation of the marginals so they are omitted.

(c)

(d)

In addition to the messages needed for computation of p(z1) one can compute all messages
in the graph in five clock cycles, see Figure 1. This means that all marginals, as well as
the joints of those variables sharing a factor node, are available after five clock cycles.

What is p(x1 = 1)?

Solution. We compute the marginal p(z1) as

P(T1) X fip 4y (T1) fpo—ar (T1) (S.47)
which is in vector notation
p(x1 =0
(pgxi = 1;) X fpa—z1 © Hpo—zs (5.48)
2 19920
x <4> © (25920) (5.49)
39840
o (103680) . (S.50)
Normalisation gives
plxr =0)\ 1 39840 (S.51)
p(zr1=1)) — 39840 + 103680 \ 103680 :
0.2776
o (0.7224) (852)

so that p(x; = 1) = 0.7224.

Note the relatively large numbers in the messages that we computed. In other cases, one
may obtain very small ones depending on the scale of the factors. This can cause numerical
issues that can be addressed by working in the logarithmic domain.

Draw the factor graph corresponding to p(x1, T3, x4, x5|x2 = 1) and provide the numerical values
for all factors.

6 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Solution. The pmf represented by the original factor graph is

p(x1,...,x5) X pa(x1)pB(r2)dc (@1, 22, 23)pp (23, T4)PE(T3, T5) PP (T5)

The conditional p(z1,xs, x4, 25|92 = 1) is proportional to p(z1,...,x5) with xs fixed to
To — 1, i.e.

p(x1, 3, T4, 5|22 = 1) X p(21,22 = 1,23, T4, T5) (S.53)

x pa(z1)dp(x2 = 1)dc (21, 22 = 1,23)dp (3, 24) B (23, T5)pp(25)
(S.54

)
o< pa(w1)9¢ (21, 23)Pp (23, T4)PE (T3, T5)dF (T5) (S.55)

where ¢77 (21, 23) = ¢c(x1, 22 = 1,23). The numerical values of ¢¢?(z1,x3) can be read
from the table defining ¢c(z1, 22, z3), extracting those rows where zo = 1,

=
8
[\e}
8
w
<
q

0 0 0 4 —
1 0 0 2 ¥ 13 9¢

S50 1 0 2 0 0 2

~ 1 1 0 6 so that 1 0 6
0 0 1 2 0 1 6
1 0 1 6 1 1 4

S50 1 1 6

5101 1 4

The factor graph for p(z1, z3, 24, 5|22 = 1) is shown below. Factor ¢p has disappeared
since it only depended on x2 and thus became a constant. Factor ¢¢ is replaced by ¢¢?
defined above. The remaining factors are the same as in the original factor graph.

¢p

0
—{o —a—(;

b OE

(e) Compute p(x1 = 1llzg = 1), re-using messages that you have already computed for the evaluation
of p(x1 =1).

Solution. The message fi¢, 4, i the same as in the original factor graph and p1, o2 =
Has—be- This is because the outgoing message from x3 corresponds to the effective factor
obtained by summing out all variables in the sub-trees attached to x3 (without the ¢¢?
branch), and these sub-trees do not depend on z5.

The message 672 5y needs to be newly computed. We have

Pz (€1) = D OF (@1, 23) 11y 2 (S.56)

T3

7 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

or in vector notation

y’¢z2—)a:1 = ¢10:'2u23—)¢z2
(PG (21 =0,23=0) ¢F(r1 =023 =1) i
T\ 0% (@ = Loy =0) ¢% () = 1,03 = 1)) Heaoed?

(2 6) (510
—\6 4/ \240
(2460
-~ 4020
We thus obtain for the marginal posterior of x; given zo = 1:

<p(361 =0z =1)

p(wl =]_‘;1;2 — 1)) X Hep g2y ®“¢Z2_)551

9 2460
x <4) C><4020>

4920
*\16080)

p(x1 =0jza =1)\ [0.2343
pxy =1za=1)) \0.7657

Normalisation gives

(S.57)

(S.58)
(S.59)

(S.60)

(S.61)
(S.62)

(5.63)

(S.64)

and thus p(x; = 1|zg = 1) = 0.7657. The posterior probability is slightly larger than the

prior probability, p(x; = 1) = 0.7224.

Exercise 3. Max-sum message passing

We here compute most probable states for the factor graph and factors below.

o5 M
¢p
—()
ba
| /58.1\ | T3
/ 5
c <z O
(25 }—n
_/
Let all variables be binary, x; € {0,1}, and the factors be defined as follows:
Ty X2 T3 ¢
0o 0 0
10 0 2 r3 x4 ép T3 Ts OF
T A T2 B 9 1 g 2 0 0 8 0 0 3
0 2 0 4 1 1 0 6 1 0 2 1 0 6
1 1 o 0 1 2 o 1 2 0o 1 6
1 0 1 6 1 1 6 1 1 3
0o 1 1 6
111

Ts5

b

8 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

(a)

(b)

Will we need to compute the normalising constant Z to determine argmax, p(x1,...,x5)?

Solution. This is not necessary since argmax, p(zi,...,x5) = argmax, cp(z1,...,Ts)
for any constant c. Algorithmically, the backtracking algorithm is also invariant to any
scaling of the factors.

p(x1, 22, x3|Ty = 0,25 = 0) via max-sum message passing.

Compute argmax,,

Solution. We first derive the factor graph and corresponding factors for p(z1, z2, 3|24 =
0, Ty = 0).
For fixed values of x4, x5, the two variables are removed from the graph, and the fac-

tors ¢p(x3,z4) and ¢g(z3,xs5) are reduced to univariate factors ¢y (z3) and ¢75 (z3) by
retaining those rows in the table where x4 = 0 and x5 = 0, respectively:

T3 I T3 Il
0 8 0 3
1 2 1 6

Since both factors only depend on z3, they can be combined into a new factor &(xg) by
element-wise multiplication.

r3 @
0 24
1 12

Moreover, since we work with an unnormalised model, we can rescale the factor so that
the maximum value is one, so that

z3

=N O

Factor ¢p(x5) is a constant for fixed value of x5 and can be ignored. The factor graph for
p(z1, 22, 23|24 = 0,25 = 0) thus is

¢p A
¢
|

DA
(1) ()
'\Q;Ct”/

Let us fix x1 as sink node towards which we compute the messages. The messages that we
need to compute are shown in the following graph

9 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

{
¢4 _, ! ¢
o R RS
[1] x3 |
_/ bc _/

Next, we compute the leaf (log) messages. We only have factor nodes as leaf nodes so that

~ (logpa(x1 =0)\ (log2

and similarly
log ¢p(x2 = 0) log 4 log p(z3 = 0) log 2
A o — = A*- = ~ = .
dB—rT2 (log dp(zs =1) log 4 p—x3 log d(z5 = 1) log 1 (S.66)
Since the variable nodes z9 and z3 only have one incoming edge each, we obtain

log 4 log 2
Avyspe = Npp—ay = <10g 4> Azspe =)‘é—mg = (log 1> (5.67)

The message Ay, —q, (1) equals

)‘¢c—>001 (.1‘1) = max log ¢¢ ($1, x9, ZL‘3) +)‘I2—>¢c (.1‘2) +)‘I3—>¢C (33‘3) (8.68)

x2,T3

where we wrote the messages in non-vector notation to highlight their dependency on the
variables x5 and x3. We now have to consider all combinations of x5 and z3

ry x3 loggc(ry =0,72,73) z2 x3 logpo(wr = 1,29, 73)
0 0 log4 0 0 log2
1 0 log2 1 0 log6
0 1 log2 0 1 log6
1 1 log6 1 1 log4
Furthermore

Ty X3 Apyoge (T2) + Apyge (23)

0 0 log4+log2=1log8
1 0 log4+log2=1log8
0 1 log4
1 1 log4

Hence for 1 = 0, we have

o T3 IOg QZ)C((El — Oa T2, ':C3) +)‘:132—>¢C (LEQ) +)‘$3—)¢C (fL’g)
log4 + log 8 = log 32

log2 4+ log 8 = log 16

log2 + log4 =log8

log 6 4+ log4 = log 24

= O =k O
= =0 O

10 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

The maximal value is log 32 and for backtracking, we also need to keep track of the argmax
which is here 29 = 23 = 0.

For z1 = 1, we have

ry x3 logoc(rr = 1,22,73) + Apyope (72) + Apy—o (23)

log2 + log 8 = log 16
log 6 + log 8 = log 48
log 6 4 log4 = log 24
log4 + log4 = log 16

— O =k O
= =0 O

The maximal value is log48 and the argmax is (Z2 = 1,23 = 0).

o >‘¢C—>$1 (Il = 0) . log 32
A¢C—>:L‘1 - <)\¢c—>x1 (xl — 1) - log 48 (869)

and the argmax back-tracking function is

So overall, we have

(@:0,553:0) ifx1:0

)‘Zc—ml(xl) = {((S.70)

Go=1,83=0) ifa; =1

We now have all incoming messages to the assigned sink node z;. Ignoring the normalising
constant, we obtain

Y (@21 =0
_ (log2 log32\ [log64
a (log 4) + (log 48> N (1og 192> (8.72)

The value z; for which v*(z1) is largest is thus 2; = 1. Plugging #; = 1 into the back-
tracking function A}, (1) gives

(1,29, 23) = argmax p(x1, 2, x3|r4 = 0,25 = 0) = (1,1,0). (S.73)
T1,22,T3

In this low-dimensional example, we can verify the solution by computing the unnormalised
pmf for all combinations of z1, zg, 3. This is done in the following table where we start
with the table for ¢ and then multiply-in the further factors ¢4, ¢ and ¢p.

bpcda bopad Pcdaddp

=
5
[\
8
w
<
qQ

0 0 0 4 8 16 16 -4
1 0 0 2 8 16 16 -4
0 1 0 2 4 8 8-4

1 1 0 6 24 48 48 - 4
0O 0 1 2 4 4 4-4

1 0 1 6 24 24 24-4
0 1 1 6 12 12 12-4
1 1 1 4 16 16 16 -4

For example, for the column ¢.¢ 4, we multiply each value of ¢pc(z1,x2,x3) by ¢pa(x1), so
that the rows with x1 = 0 get multiplied by 2, and the rows with z; = 1 by 4.

11 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

The maximal value in the final column is achieved for x1 = 1,29 = 1,z3 = 0, in line with
the result above (and 48 - 4 = 192). Since ¢p(z2) is a constant, being equal to 4 for all
values of xo, we could have ignored it in the computation. The formal reason for this is
that since the model is unnormalised, we are allowed to rescale each factor by an arbitrary
(factor-dependent) constant. This operation does not change the model. So we could
divide ¢p by 4 which would give a value of 1, so that the factor can indeed be ignored.

(c) Compute argmax,, . p(x1,...,25) vie maz-sum message passing with x1 as sink.

Solution. As discussed in the solution to the answer above, we can drop factor ¢p(z2)
since it takes the same value for all z5. Moreover, we can rescale the individual factors by
a constant so they are more amenable to calculations by hand. We normalise them such
that the largest value is one, which gives the following factors. Note that this is entirely
optional.

8
-

8
I\
8
w
<
Q

0 0 0 2
- 1 0 o0 1 x3 T4 ¢p T3 Ts Qg
%A o 1 0 1 0 0 4 0 0 1 r5 OF
0 1 1 1 0 3 1 0 1 1 0 2 0 1
1 2 0 0 1 1 0 1 1 0 1 2 1 8
1 0 1 3 1 1 3 111
0 1 1 3
11 1 2

The factor graph without ¢p together with the messages that we need to compute is:

| T1
_/¢

¢D<_
O 0
—>/\<—¢.<_@<
c OB oF

The leaf (log) messages are (using vector notation where the top element corresponds to
x; = 0 and the bottom one to x; = 1):

0 0 0 0
)‘¢A—>$1 = <10g 2>)‘$2—>¢c = <0>)‘$4—>¢D = <O>)‘¢F—>SE5 = (log 8) (8'74)

The variable node x5 only has one incoming edge so that Ay 4. = Ay.—z5. The message
App—as(23) equals

Ap s (z3) = H;%X log ¢ (w3, 75) + Azs—é (x5> (8'75)

Writing out log ¢ (23, x5) + Ags—es (25) for all x5 as a function of 3 we have

r5 loggp(rs = 0,25) + Auy ey (T5) r5 loggp(rs =1,25) + Auyep(T5)
0 logl+0=0 0 log2+0=1log2
1 log2+log8 =log16 1 logl+log8 =1log8

12 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Taking the maximum over x5 as a function of x3, we obtain

log 16
App—as = (logg 8) (5.76)

and the backtracking function that indicates the maximiser #5 = argmax,_log ¢g(z3,x5)+
Azs—op(25) as a function of x3 equals

i’5 =1 if I3 = 0
by = S.77
be-raa (73) {i'f) =1 ifzg=1 (5.77)

We perform the same kind of operation for Ay, .z, (23)
App—as (3) = maxlog ¢p (3, 24) + Awy—sop (24) (S.78)

Since Ay, 4, (24) = 0 for all 24, the table with all values of log ¢p(x3, x4) + Apy—g¢p, (24) is

r3 x4 logdp(x3,24) + Apysop (T4)

0 0 log4+0=1log4
1 0 logl+0=0

0 1 logl4+0=0

1 1

log3 40 =1log3

Taking the maximum over x4 as a function of x3 we thus obtain

log4
Appozs = (10§ 3> (S.79)

and the backtracking function that indicates the maximiser &4 = argmax,, log ¢p (3, z4)+
Az,—op (T4) as a function of x3 equals

Zi‘4 =0 if r3 = 0
by r3) = S.80
¢D—>Jf3(3) {1&1 —1 ifag=1 ()

For the message A\, 4, (73) we add together the messages Ay, —zs(23) and Ay, sy (23)
which gives
_ (log16 +log4\ (log64
Ary e = < log 8 +log 3) N <log 24 (S-81)
Next we compute the message Ay, (1) by maximising over x2 and 3,

Apo—z (1) = maxlog oo (21, T2, 23) + Apysoe (T2) + Apymoe (23) (8.82)

x2,T3

Since Ayy—54. (22) = 0, the problem becomes

Apo—ar (1) = maxlog ¢o(x1, 2, 3) + Agy—sg (23) (S.83)

2,73

Building on the table for ¢¢, we form a table with all values of log¢c(x1,z2,23) +
Ay (23)

13 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

log ¢c (w1, T2, 23) + Aps—éc (23)

log 2 4 log 64 = log 128
0 + log 64 = log 64

0+ log 64 = log 64

log 3 4 log 64 = log 192
log 24

log 3 4 log 24 = log 72
log 3 + log 24 = log 72
log 2 4 log 24 = log 48

8
_
8
I\
8
w

= O = O = O = O
= O O F=OO
e i il = S o R e B e i e

The maximal value as a function of x; are highlighted in the table, which gives the message
~ (log128
and the backtracking function

(;f:g:O,i'g:O) ifx1:0

Apo—a (1) = {((S.85)

SAC2:1,JA33:O) 1f581:1

We now have all incoming messages to the assigned sink node z1. Ignoring the normalising

constant, we obtain
(Y (x1=0)\ [0+log128
7 (’Y*(m = 1)) - (10g2 +log 192 (S-86)

We can now start the backtracking to compute the desired argmax, .. p(r1,...,75).
Starting at the sink we have &; = argmax, 7*(z1) = 1. Plugging this value into the
look-up table A}, (1), we obtain (22 = 1,23 = 0). With the look-up table A} . (x3)
we find &5 = 1 and A}, (x3) gives #4 = 0 so that overall

argmax p(z1,...,25) = (1,1,0,0,1). (S.87)
T1,...,T5
(d) Compute argmax,, ., p(r1,...,T5) via maz-sum message passing with x3 as sink.

Solution. With x3 as sink, we need the following messages:

¢
5 O
.%@ﬁ.%@i
c & o

~

The following messages are the same as when z; was the sink:

log 4 log 16 0 0
)\¢D4>x3 = <log 3))‘¢Eﬁ‘$3 - <log8>)‘¢AHCL“1 - <10g 2))‘I2H¢c = <O> (8'88)

14 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Since z1 has only one incoming message, we further have

0
>\11~>¢>C = Ad’A*ﬂl’l = (log 2> . (889)

We next compute gz, (23),

Apo—as(23) = maxlog oo (21, T2, 23) + Ay s (1) + Apysoe (22). (S.90)

1,22

We first form a table for log oo (21, 22, 23)+ Az ¢ (£1)F Az e (T2) noting that Ay, 4, (22) =
0

log ¢C(x17 €2, .%'3) +)‘x1—>¢c (l‘l) +)‘1‘2—>¢c ($2)

8
—
=
)
8
w

log3 4+ log2 =log 6
log3 40 =log3
log2 +log2 =log4

0 0 0 log2+0=log2

1 0 0 O0+4log2=1log2

0 1 0 040=0

1 1 0 log3+log2=1og6
0 0 1 0+40=0

1 0 1

0 1 1

1 1 1

The maximal value as a function of x3 are highlighted in the table, which gives the message

log 6
Apo—zs = (10§ 6) (S.91)

and the backtracking function

(31=1,8=1) ifa3=0

)\:;C_m3 ($3) = {(A

. . (5.92)
T1=1,29=0) ifaxz=1

We have now all incoming messages for x3 and can compute v*(x3) up the normalising
constant —log Z (which is not needed if we are interested in the argmax only:

(x5 = 0)
7= (’y*(xg = 1)) = Apo—ay + Appoas T Appoas (S.93)
B (10g6 +log4 +log 16 = log 384)

log 6 + log 3 + log 8 = log 144 (S.94)

We can now start the backtracking which gives: 3 = 0, so that A __, (0) = (21 = 1,2 =
1). The backtracking functions A}, (x3) and A}, (x3) are the same for question (c),
which gives A} (0) = &5 =1 and X} (0) = &4 = 0. Hence, overall, we find

PE—T3 dp—rx3

argmax p(z1,...,25) = (1,1,0,0,1). (S.95)

T, T5

Note that this matches the result from question (c¢) where z1 was the sink. This is because
the output of the max-sum algorithm is invariant to the choice of the sink.

15 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Exercise 4. Choice of elimination order in factor graphs

Consider the following factor graph, which contains a loop:
¢c
O
o— G
D
O

Let all variables be binary, x; € {0,1}, and the factors be defined as follows:

T1 Ty T3 Pa Ty Tz T4 OB

0 0 0 0 0 0 2

1 0 0 é 1 0 0 2 T4 x5 ¢C T4 Te ¢D
0 1 0 2 0 1 0 4 0 0 8 0 0 3
1 1 0 6 1 1 0 2 1 0 2 1 0 0
0 0 1 2 0 0 1 6 0 1 2 0 1 6
1 0 1 6 1 0 1 8 1 1 6 1 1 3
0 1 1 6 0 1 1 4

1 1 1 4 1 1 1 2

(a) Draw the factor graph corresponding to p(xq,x3,x4,x5 | x1 = 0,26 = 1) and give the tables defining
the new factors ¢} =" (a9, x3) and ¢33~ (x4) that you obtain.

Solution. First condition on x1 = 0:

Factor node ¢4(x1,x2,x3) depends on x;, thus we create a new factor (bfqlzo(xg, x3) from
the table for ¢4 using the rows where 21 = 0.

dc
e
=Y B
=0
®p
O
r1 w2 w3 Pa
4
R o o5
— 0 1 0 2 0 0 4
1 1 0 6 so that 1 0 2
— 0 0 1 2 0 1 2
1 0 1 6 1 1 6
— 0 1 1 6
1 1 1 4

16 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Next condition on xg = 1:

Factor node ¢p(x4,x6) depends on xg, thus we create a new factor gb"”DG:l(:m) from the
table for ¢p using the rows where xg = 1.

oc
o [|
U OB
L NG
m ot
T4 T ¢Pp -
0 0 3 z1 dp~
1 0 6 so that 0 6
— 0 1 6 1 3
— 1 1 3

(b) Find p(ze | 1 = 0,26 = 1) using the elimination ordering (x4, Ts,x3):

(i) Draw the graph for p(xe, w3, 25 | 21 = 0,76 = 1) by marginalising x4
Compute the table for the new factor ¢p4(xa, 3, T5)

(i) Draw the graph for p(w2, 23 | x1 = 0,16 = 1) by marginalising x5
Compute the table for the new factor ¢u5(x2, x3)

(iii) Draw the graph for p(xs | 11 = 0,26 = 1) by marginalising x3
Compute the table for the new factor ¢da53(x2)

Solution. Starting with the factor graph for p(xe,x3, 4,25 | 21 = 0,26 = 1)

¢c

oy @¢B l E ._@
| | @

hof o

Marginalising x4 combines the three factors ¢p, ¢c and qu“:l

| l—@
hof

Marginalising 25 modifies the factor ¢y

17 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

r1=0
4 i
u B o5

Marginalising x3 combines the factors ¢f41:0 and ¢45

@7. <Z~5453

We now compute the tables for the new factors g?)4, &45, &453.
First find ¢~)4(332, x3,x5)

Ty T3 T4 OB
0 0 0 2 5

T xT
1 0 0 2 R T
0 1 0 4 0 0 8 9o
1 1 0 2 1 0 2 0 6
0 0 1 6 0 1 2 1 3
1 0 1 38 1 1 6
0 1 1 4
1 1 1 2

s0 that ¢. (w2, 23,24, 75) = B (w2, v3, 24) 00 (24, 25) P~ (24) equals

¢*($27 XT3, T4, .5[75)

=
)
8
w
8
N
8
ot

0O 0 0 0 2*8%*6
1 0 0 0 2*8%*6
0 1 0 0 4*8%*6
1 1 0 0 2*8%*6
0O 0 1 0 6*2*3
1 0 1 0 8*2%*3
0o 1 1 0 4*2*3
11 1 0 2*2%*3
0O 0 0 1 2*2*6
1 0 0 1 2%*%2%*¢
0O 1 0 1 4*2%*6
1 1 0 1 2%*%2%*¢
0O 0 1 1 6*6*3
1 0 1 1 8*6%*3
0 1 1 1 4*6*3
1 1 1 1 2*6%*3

and

18 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

zy w3 x5 Y, OB(T2, 23, 74)bc (T4, 5) DT (24) P4
0 0 0 (2%8%6)+ (6%2*3) — 132
1 0 0 (2%8%6)+ (8%2%3) — 144
0 1 0 (4*8%6)+ (4*2%*3) — 216
1 1 0 (2%8%6)+ (2%2%3) — 108
0 0 1 (2%2%6)+ (6%6%3) — 132
1 0 1 (2%2%6)+(8*6%3) — 168
0 1 1 (4%2%6)+ (4%6*3) — 120
1 1 1 (2%2%6)+ (2%6*3) — 60
Next find d~>45(:cQ, x3)
T2 X3 T q34
0 0 0 132 = =
1 0 0 144 T2 w3 Y, da(w2,73,75) P45
0 1 0 216 0 0 132 + 132 = 2064
1 1 0 108 so that 1 0 144 + 168 = 312
0 0 1 132 0 1 216 + 120 = 336
1 0 1 168 1 1 108 + 60 = 168
0 1 1 120
1 1 1 60
Finally find ¢~)453($2)
xy w3 0 Ty T3 P
0 0 4 0 0 264
1 0 2 1 0 312
0 1 2 0 1 336
1 1 6 1 1 168
so that
T2 Y., Ga5(22, 23) 0% =" (22, 73) bas3
0 (4 * 264) + (2 * 336) = 1728
1 (2%312) + (6 * 168) — 1632

The normalising constant is Z = 1728 + 1632. Our conditional marginal is thus:
- . (1728/Z\ (0.514
plaz [o = 0,06 =1) = <1632/Z> - <O.486> (5.96)

(c) Now determine p(xa | 1 = 0,26 = 1) with the elimination ordering (vs, x4, x3):

(i) Draw the graph for p(xa,x3,74,| 1 = 0,26 = 1) by marginalising x5
Compute the table for the new factor ¢s(x4)

(i) Draw the graph for p(w2, 23 | x1 = 0,16 = 1) by marginalising x4
Compute the table for the new factor ¢s4(x2,x3)

(iii) Draw the graph for p(xs | x1 = 0,26 = 1) by marginalising x3
Compute the table for the new factor ¢saz(xs)

19 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

Solution. Starting with the factor graph for p(xe,xs, 4,25 | 1 = 0,26 = 1)

—0

xgl

¢

P

Marginalising x5 modifies the factor ¢

oy
Sl

Marginalising x4 combines the three factors ¢p, ¢5 and ¢75~ !

=0

e

\@/

Marginalising x3 combines the factors ¢f41:0 and sy

@7. <Z~5543

We now compute the tables for the new factors ¢s, ¢4, and ¢dsas.
First find ¢5(z4)

T4 Tz QC

Ty Y, Po(T4,75) s
so that 0 8 + 2

1 2+6 = 8

— O =) O
— =0 O
DN N o

Next find (554(1’2,1‘3)

20 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

8
)
8
w
8
N
<-
Sy

0O 0 0 2

10 0 2 - —
0 1 0 4 Ty O5 Ty D

1 1 0 2 10 0 6

0 0 1 6 1 8 1 3

1 0 1 8

0 1 1 4

1 1 1 2

so that ¢.(z2,23,74) = ¢p(T2, T3, 74)P5(x4) By (24) equals

¢ (22, 23, 24)

=
)
8
w
8
N

0 0 0 2*10*6
1 0 0 2*%10*6
0 1 0 4*10*6
1 1 0 2*10*6
0 0 1 6*8*3
1 0 1 8*8*3
0 1 1 4*8*3
1 1 1 2*8*3
and
T2 T3), o2, 23, 24) 05 (24) B3~ (24) b54
0 0 (2%10%6)+ (6*8*3) — 264
1 0 (2%10%6) + (8%8*3) — 312
0 1 (4%10%6) + (4%8*3) — 336
1 1 (2%10%6) + (2%8%3) — 168
Finally find ¢s43(22)
zo w3 P T2 a3 fsa
0 0 4 0 0 264
1 0 2 1 0 312
0 1 2 0 1 336
1 1 6 1 1 168
so that
T2 Y., bsa(wa, 23)¢" =" (22, 23) G543
0 (4% 264) + (2 * 336) — 1728
1 (2% 312) + (6 * 168) — 1632

As with the ordering in the previous part, we should come to the same result for our
conditional marginal distribution.The normalising constant is Z = 1728 + 1632, so that
the conditional marginal is

1728/7 0.514
Pz o =026 =1) = (1632§Z> - <0.486> (8.97)

21 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

(d) Which variable ordering, (x4,xs,x3) or (xs5,24,%3) do you prefer?

Solution. The ordering (x5, x4, x3) is cheaper and should be preferred over the ordering
(z4,75,73) .

The reason for the difference in the cost is that x4 has three neighbours in the factor graph
for p(x2,x3, 4,25 | 1 = 0,26 = 1). However, after elimination of x5, which has only one
neighbour, x4 has only two neighbours left. Eliminating variables with more neighbours
leads to larger (temporary) factors and hence a larger cost. We can see this from the tables
that were generated during the computation (or numbers that we needed to add together):
for the ordering (x4, x5, x3), the largest table had 2* entries while for (x5, x4, 23), it had
23 entries.

Choosing a reasonable variable ordering has a direct effect on the computational complexity
of variable elimination. This effect becomes even more pronounced when the domain of
our discrete variables has a size greater than 2 (binary variables), or if the variables are

continuous.
oc
O
x1=0
oy B
=0
re=1

22 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

