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These are exercises for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean µ and standard deviation σ is given by

p(x;θ) =
1√
2πσ2

exp

[
− (x− µ)2

2σ2

]
, θ = (µ, σ).

(a) Given iid data D = {x1, . . . , xn}, what is the likelihood function L(θ) for the Gaussian model?

Solution. For iid data, the likelihood function is

L(θ) =
n∏
i

p(xi;θ) (S.1)

=

n∏
i

1√
2πσ2

exp

[
−(xi − µ)2

2σ2

]
(S.2)

=
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
. (S.3)

(b) What is the log-likelihood function ℓ(θ)?

Solution. Taking the log of the likelihood function gives

ℓ(θ) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2 (S.4)

(c) Show that the maximum likelihood estimates for the mean µ and standard deviation σ are the
sample mean

x̄ =
1

n

n∑
i=1

xi (1)

and the square root of the sample variance

S2 =
1

n

n∑
i=1

(xi − x̄)2. (2)

Solution. Since the logarithm is strictly monotonically increasing, the maximiser of the
log-likelihood equals the maximiser of the likelihood. It is easier to take derivatives for the
log-likelihood function than for the likelihood function so that the maximum likelihood
estimate is typically determined using the log-likelihood.

Given the algebraic expression of ℓ(θ), it is simpler to work with the variance v = σ2 rather
than the standard deviation. Since σ > 0, the function v = g(σ) = σ2 is invertible, and
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the value of v that maximises the likelihood uniquely defines the value of σ that maximises
the likelihood, namely

σ̂ =
√
v̂.

This reparameterisation approach holds more generally: if we can express the parameters
θ as η = g(θ) where g is invertible, we can maximise J(η) = ℓ(g−1(η)) instead of ℓ(θ).
The optimal value η̂ = argmaxη J(η) defines the optimal value of θ: θ̂ = g−1(η̂). The
maximum likelihood estimate is said to be invariant to reparameterisation.

We now thus maximise the function J(µ, v),

J(µ, v) = −n

2
log(2πv)− 1

2v

n∑
i=1

(xi − µ)2 (S.5)

with respect to µ and v.

Taking partial derivatives gives

∂J

∂µ
=

1

v

n∑
i=1

(xi − µ) (S.6)

=
1

v

n∑
i=1

xi −
n

v
µ (S.7)

∂J

∂v
= −n

2

1

v
+

1

2v2

n∑
i=1

(xi − µ)2 (S.8)

A necessary condition for optimality is that the partial derivatives are zero. We thus
obtain the conditions

1

v

n∑
i=1

(xi − µ) = 0 (S.9)

−n

2

1

v
+

1

2v2

n∑
i=1

(xi − µ)2 = 0 (S.10)

From the first condition it follows that

µ̂ =
1

n

n∑
i=1

xi (S.11)

The second condition thus becomes

−n

2

1

v
+

1

2v2

n∑
i=1

(xi − µ̂)2 = 0 (multiply with v2 and rearrange) (S.12)

1

2

n∑
i=1

(xi − µ̂)2 =
n

2
v, (S.13)

and hence

v̂ =
1

n

n∑
i=1

(xi − µ̂)2, (S.14)
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We now check that this solution corresponds to a maximum by computing the Hessian
matrix

H(µ, v) =

(
∂2J
∂µ2

∂2J
∂µ∂v

∂2J
∂µ∂v

∂2J
∂v2

)
(S.15)

If the Hessian negative definite at (µ̂, v̂), the point is a (local) maximum. Since we only
have one critical point, (µ̂, v̂), the local maximum is also a global maximum. Taking second
derivatives gives

H(µ, v) =

(
−n

v − 1
v2
∑n

i=1(xi − µ)
− 1

v2
∑n

i=1(xi − µ) n
2

1
v2

− 1
v3
∑n

i=1(xi − µ)2

)
. (S.16)

Substituting the values for (µ̂, v̂) gives

H(µ̂, v̂) =

(
−n

v̂ 0
0 −n

2
1
v̂2

)
, (S.17)

which is negative definite. Note that the the (negative) curvature increases with n, which
means that J(µ, v), and hence the log-likelihood becomes more and more peaked as the
number of data points n increases.

Exercise 2. Posterior of the mean of a Gaussian with known variance

Given iid data D = {x1, . . . , xn}, compute p(µ|D, σ2) for the Bayesian model

p(x|µ) = 1√
2πσ2

exp

[
− (x− µ)2

2σ2

]
p(µ;µ0, σ

2
0) =

1√
2πσ2

0

exp

[
− (µ− µ0)

2

2σ2
0

]
(3)

where σ2 is a fixed known quantity.
Hint: You may use that

N (x;m1, σ
2
1)N (x;m2, σ

2
2) ∝ N (x;m3, σ

2
3) (4)

where

N (x;µ, σ2) =
1√
2πσ2

exp

[
− (x− µ)2

2σ2

]
(5)

σ2
3 =

(
1

σ2
1

+
1

σ2
2

)−1

=
σ2
1σ

2
2

σ2
1 + σ2

2

(6)

m3 = σ2
3

(
m1

σ2
1

+
m2

σ2
2

)
= m1 +

σ2
1

σ2
1 + σ2

2

(m2 −m1) (7)

Solution. We re-use the expression for the likelihood L(µ) from Exercise 1.

L(µ) =
1

(2πσ2)n/2
exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
, (S.18)
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which we can write as

L(µ) ∝ exp

[
− 1

2σ2

n∑
i=1

(xi − µ)2

]
(S.19)

∝ exp

[
− 1

2σ2

n∑
i=1

(x2i − 2µxi + µ2)

]
(S.20)

∝ exp

[
− 1

2σ2

(
−2µ

n∑
i=1

xi + nµ2

)]
(S.21)

∝ exp

[
− 1

2σ2

(
−2nµx̄+ nµ2

)]
(S.22)

∝ exp
[
− n

2σ2
(µ− x̄)2

]
(S.23)

∝ N (µ; x̄, σ2/n). (S.24)

The posterior is

p(µ|D) ∝ L(θ)p(µ;µ0, σ
2
0) (S.25)

∝ N (µ; x̄, σ2/n)N (µ;µ0, σ
2
0) (S.26)

so that with (4), we have

p(µ|D) ∝ N (µ;µn, σ
2
n) (S.27)

σ2
n =

(
1

σ2/n
+

1

σ2
0

)−1

(S.28)

=
σ2
0σ

2/n

σ2
0 + σ2/n

(S.29)

µn = σ2
n

(
x̄

σ2/n
+

µ0

σ2
0

)
(S.30)

=
1

σ2
0 + σ2/n

(
σ2
0x̄+ (σ2/n)µ0

)
(S.31)

=
σ2
0

σ2
0 + σ2/n

x̄+
σ2/n

σ2
0 + σ2/n

µ0. (S.32)

As n increases, σ2/n goes to zero so that σ2
n → 0 and µn → x̄. This means that with an

increasing amount of data, the posterior of the mean tends to be concentrated around the
maximum likelihood estimate x̄.

From (7), we also have that

µn = µ0 +
σ2
0

σ2/n+ σ2
0

(x̄− µ0), (S.33)

which shows more clearly that the value of µn lies on a line with end-points µ0 (for n = 0) and
x̄ (for n → ∞). As the amount of data increases, µn moves form the mean under the prior, µ0,
to the average of the observed sample, that is the MLE x̄.

Exercise 3. Maximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables
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We assume that we are given a parametrised directed graphical model for variables x1, . . . , xd,

p(x;θ) =

d∏
i=1

p(xi|pai;θi) xi ∈ {0, 1} (8)

where the conditionals are represented by parametrised probability tables, For example, if pa3 = {x1, x2},
p(x3|pa3;θ3) is represented as

p(x3 = 1|x1, x2; θ
1
3, . . . , θ

4
3)) x1 x2

θ13 0 0
θ23 1 0
θ33 0 1
θ43 1 1

with θ3 = (θ13, θ
2
3, θ

3
3, θ

4
3), and where the superscripts j of θj3 enumerate the different states that the parents

can be in.

(a) Assuming that xi has mi parents, verify that the table parametrisation of p(xi|pai;θi) is equivalent
to writing p(xi|pai;θi) as

p(xi|pai;θi) =

Si∏
s=1

(θsi )
1(xi=1,pai=s)(1− θsi )

1(xi=0,pai=s) (9)

where Si = 2mi is the total number of states/configurations that the parents can be in, and 1(xi =
1,pai = s) is one if xi = 1 and pai = s, and zero otherwise.

Solution. The number of configurations that m binary parents can be in is given by Si.
The questions thus boils down to showing that p(xi = 1|pai = k;θi) = θki for any state
k ∈ {1, . . . , Si} of the parents of xi. Since 1(xi = 1,pai = s) = 0 unless s = k, we have
indeed that

p(xi = 1|pai = k;θi) =

∏
s ̸=k

(θsi )
0(1− θsi )

0

 (θki )
1(xi=1,pai=k)(1− θki )

1(xi=0,pai=k) (S.34)

= 1 · (θki )1(xi=1,pai=k)(1− θki )
0 (S.35)

= θki . (S.36)

(b) For iid data D = {x(1), . . . ,x(n)} show that the likelihood can be represented as

p(D;θ) =

d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (10)

where ns
xi=1 is the number of times the pattern (xi = 1,pai = s) occurs in the data D, and

equivalently for ns
xi=0.

Solution. Since the data are iid, we have

p(D;θ) =
n∏

j=1

p(x(j);θ) (S.37)

(S.38)
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where each term p(x(j);θ) factorises as in (8),

p(x(j);θ) =

d∏
i=1

p(x
(j)
i |pa(j)i ;θi) (S.39)

with x
(j)
i denoting the i-th element of x(j) and pa

(j)
i the corresponding parents. The

conditionals p(x
(j)
i |pa(j)i ;θi) factorise further according to (9),

p(x
(j)
i |pa(j)i ;θi) =

Si∏
s=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )

1(x
(j)
i =0,pa

(j)
i =s), (S.40)

so that

p(D;θ) =
n∏

j=1

d∏
i=1

p(x
(j)
i |pa(j)i ;θi) (S.41)

=
n∏

j=1

d∏
i=1

Si∏
s=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )

1(x
(j)
i =0,pa

(j)
i =s) (S.42)

Swapping the order of the products so that the product over the data points comes first,
we obtain

p(D;θ) =

d∏
i=1

Si∏
s=1

n∏
j=1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )

1(x
(j)
i =0,pa

(j)
i =s) (S.43)

We next split the product over j into two products, one for all j where x
(j)
i = 1, and one

for all j where x
(j)
i = 0

p(D;θ) =

d∏
i=1

Si∏
s=1

∏
j:

x
(j)
i =1

∏
j:

x
(j)
i =0

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)(1− θsi )

1(x
(j)
i =0,pa

(j)
i =s) (S.44)

=
d∏

i=1

Si∏
s=1

∏
j:

x
(j)
i =1

(θsi )
1(x

(j)
i =1,pa

(j)
i =s)

∏
j:

x
(j)
i =0

(1− θsi )
1(x

(j)
i =0,pa

(j)
i =s) (S.45)

=
d∏

i=1

Si∏
s=1

(θsi )
∑n

j=1 1(x
(j)
i =1,pa

(j)
i =s)(1− θsi )

∑n
j=1 1(x

(j)
i =0,pa

(j)
i =s) (S.46)

=
d∏

i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (S.47)

where

ns
xi=1 =

n∑
j=1

1(x
(j)
i = 1, pa

(j)
i = s) ns

xi=0 =
n∑

j=1

1(x
(j)
i = 0, pa

(j)
i = s) (S.48)

is the number of times xi = 1 and xi = 0, respectively, with its parents being in state s.

(c) Show that the log-likelihood decomposes into sums of terms that can be independently optimised,
and that each term corresponds to the log-likelihood for a Bernoulli model.
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Solution. The log-likelihood ℓ(θ) equals

ℓ(θ) = log p(D;θ) (S.49)

= log
d∏

i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (S.50)

=
d∑

i=1

Si∑
s=1

log
[
(θsi )

ns
xi=1(1− θsi )

ns
xi=0

]
(S.51)

=
d∑

i=1

Si∑
s=1

ns
xi=1 log(θ

s
i ) + ns

xi=0 log(1− θsi ) (S.52)

Since the parameters θsi are not coupled in any way, maximising ℓ(θ) can be achieved by
maximising each term ℓis(θ

s
i ) individually,

ℓis(θ
s
i ) = ns

xi=1 log(θ
s
i ) + ns

xi=0 log(1− θsi ). (S.53)

Moreover, ℓis(θ
s
i ) corresponds to the log-likelihood for a Bernoulli model with success

probability θsi and data with ns
xi=1 number of ones and ns

xi=0 number of zeros.

(d) Referring to the lecture material, conclude that the maximum likelihood estimates are given by

θ̂si =
ns
xi=1

ns
xi=1 + ns

xi=0

=

∑n
j=1 1(x

(j)
i = 1,pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

(11)

Solution. Given the result from the previous question, we can optimise each term ℓis(θ
s
i )

separately. Furthermore, each term formally corresponds to a log-likelihood for a Bernoulli
model, so that we can immediately use the results derived in the lecture, which gives

θ̂si =
ns
xi=1

ns
xi=1 + ns

xi=0

(S.54)

Since ns
xi=1 =

∑n
j=1 1(x

(j)
i = 1, pa

(j)
i = s) and

ns
xi=1 + ns

xi=0 =
n∑

j=1

1(x
(j)
i = 1, pa

(j)
i = s) +

n∑
j=1

1(x
(j)
i = 0,pa

(j)
i = s) (S.55)

=
n∑

j=1

1(pa
(j)
i = s), (S.56)

which gives

θ̂si =

∑n
j=1 1(x

(j)
i = 1,pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

. (S.57)

Hence, to determine θ̂si , we first count the number of times the parents of xi are in state
s, which gives the denominator, and then among them, count the number of times xi = 1,
which gives the numerator.
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Exercise 4. Bayesian inference for the Bernoulli model

Consider the Bayesian model

p(x|θ) = θx(1− θ)1−x p(θ;α0) = B(θ;α0, β0)

where x ∈ {0, 1}, θ ∈ [0, 1],α0 = (α0, β0), and

B(θ;α, β) ∝ θα−1(1− θ)β−1 θ ∈ [0, 1] (12)

(a) Given iid data D = {x1, . . . , xn} show that the posterior of θ given D is

p(θ|D) = B(θ;αn, βn)

αn = α0 + nx=1 βn = β0 + nx=0

where nx=1 denotes the number of ones and nx=0 the number of zeros in the data.

Solution. This follows from

p(θ|D) ∝ L(θ)p(θ;α0) (S.58)

and from the expression for the likelihood function of the Bernoulli model, which is

L(θ) =
n∏

i=1

p(xi|θ) (S.59)

=
n∏

i=1

θxi(1− θ)1−xi (S.60)

= θ
∑n

i=1 xi(1− θ)
∑n

i=1(1−xi) (S.61)

= θnx=1(1− θ)nx=0 , (S.62)

where nx=1 =
∑n

i=1 xi denotes the number of 1’s in the data, and nx=0 =
∑n

i=1(1− xi) =
n− nx=1 the number of 0’s.

Inserting the expressions for the likelihood and prior into (S.58) gives

p(θ|D) ∝ θnx=1(1− θ)nx=0θα0−1(1− θ)β0−1 (S.63)

∝ θα0+nx=1−1(1− θ)β0+nx=0−1 (S.64)

∝ B(θ, α0 + nx=1, β0 + nx=0), (S.65)

which is the desired result. Since α0 and β0 are updated by the counts of ones and zeros
in the data, these hyperparameters are also referred to as “pseudo-counts”. Alternatively,
one can think that they are the counts that are observed in another iid data set which has
been previously analysed and used to determine the prior.

(b) Show that the mean of a Beta random variable f ∼ B(f ;α, β) is

E[f ] =
α

α+ β
. (13)

You may use that ∫ 1

0

fα−1(1− f)β−1df = B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
(14)

where B(α, β) is called the Beta function, and where the Gamma function Γ(t) is defined as

Γ(t) =

∫ ∞

o

f t−1 exp(−f)df (15)

and satisfies Γ(t+ 1) = tΓ(t).
Hint: Represent the partition function of the Beta distribution in terms of the Beta function.
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Solution. We first write the partition function of the Beta distribution in terms of the
Beta function

Z(α, β) =

∫ 1

0
fα−1(1− f)β−1 (S.66)

= B(α, β). (S.67)

We then have that the mean E[f ] is given by

E[f ] =
∫ 1

0
fp(f ;α, β)df (S.68)

=
1

B(α, β)

∫ 1

0
ffα−1(1− f)β−1df (S.69)

=
1

B(α, β)

∫ 1

0
fα+1−1(1− f)β−1df (S.70)

=
B(α+ 1, β)

B(α, β)
(S.71)

=
Γ(α+ 1)Γ(β)

Γ(α+ 1 + β)

Γ(α+ β)

Γ(α)Γ(β)
(S.72)

=
αΓ(α)Γ(β)

(α+ β)Γ(α+ β)

Γ(α+ β)

Γ(α)Γ(β)
(S.73)

=
α

α+ β
(S.74)

where we have used the definition of the Beta function in terms of the Gamma function
and the property Γ(t+ 1) = tΓ(t).

(c) Show that the predictive posterior probability p(x = 1|D) for a new independently observed data
point x equals the posterior mean of p(θ|D), which in turn is given by

E(θ|D) =
α0 + nx=1

α0 + β0 + n
. (16)

Solution. We obtain

p(x = 1|D) =

∫ 1

0
p(x = 1, θ|D)dθ (sum rule) (S.75)

=

∫ 1

0
p(x = 1|θ,D)p(θ|D)dθ (product rule) (S.76)

=

∫ 1

0
p(x = 1|θ)p(θ|D)dθ (x ⊥⊥ D|θ) (S.77)

=

∫ 1

0
θp(θ|D)dθ (Bernoulli model) (S.78)

= E[θ|D] (S.79)
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From the previous question we know the mean of a Beta random variable. Since θ ∼
B(θ;αn, βn), we obtain

p(x = 1|D) = E[θ|D] (S.80)

=
αn

αn + βn
(S.81)

=
α0 + nx=1

α0 + nx=1 + β0 + nx=0
(S.82)

=
α0 + nx=1

α0 + β0 + n
(S.83)

where the last equation follows from the fact that n = nx=0+nx=1. Note that for n → ∞,
the posterior mean tends to the MLE nx=1/n.

Exercise 5. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Exercise 3 and the notation follows that exercise. We consider the
Bayesian model

p(x|θ) =
d∏

i=1

p(xi|pai,θi) xi ∈ {0, 1} (17)

p(θ;α0,β0) =

d∏
i=1

Si∏
s=1

B(θsi ;αs
i,0, β

s
i,0) (18)

where p(xi|pai,θi) is defined via (9), α0 is a vector of hyperparameters containing all αs
i,0, β0 the vector

containing all βs
i,0, and as before B denotes the Beta distribution. Under the prior, all parameters are

independent.

(a) For iid data D = {x(1), . . . ,x(n)} show that

p(θ|D) =

d∏
i=1

Si∏
s=1

B(θsi , αs
i,n, β

s
i,n) (19)

where

αs
i,n = αs

i,0 + ns
xi=1 βs

i,n = βs
i,0 + ns

xi=0 (20)

and that the parameters are also independent under the posterior.

Solution. We start with

p(θ|D) ∝ p(D|θ)p(θ;α0,β0). (S.84)
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Inserting the expression for p(D|θ) given in (10) and the assumed form of the prior gives

p(θ|D) ∝
d∏

i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0

d∏
i=1

Si∏
s=1

B(θsi ;αs
i,0, β

s
i,0) (S.85)

∝
d∏

i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0B(θsi ;αs

i,0, β
s
i,0) (S.86)

∝
d∏

i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0(θsi )

αs
i,0−1(1− θsi )

βs
i,0−1 (S.87)

∝
d∏

i=1

Si∏
s=1

(θsi )
αs
i,0+ns

xi=1−1
(1− θsi )

βs
i,0+ns

xi=0−1
(S.88)

∝
d∏

i=1

Si∏
s=1

B(θsi ;αs
i,0 + ns

xi=1, β
s
i,0 + ns

xi=0) (S.89)

It can be immediately verified that B(θsi ;αs
i,0 + ns

xi=1, β
s
i,0 + ns

xi=0) is proportional to the
marginal p(θsi |D) so that the parameters are independent under the posterior too.

(b) For a variable xi with parents pai, compute the posterior predictive probability p(xi = 1|pai,D)
where ns = ns

xi=0 + ns
xi=1 denotes the number of times the parent configuration s occurs in the

observed data D.

Solution. The solution is analogue to the solution for question (c), using the sum rule,
independencies, and properties of beta random variables:

p(xi = 1|pai = s,D) =

∫
p(xi = 1, θsi |pai = s,D)dθsi (S.90)

=

∫
p(xi = 1|θsi ,pai = s,D)p(θsi |pai = s,D) (S.91)

=

∫
p(xi = 1|θsi ,pai = s)p(θsi |D) (S.92)

=

∫
θsi p(θ

s
i |D) (S.93)

= E[θsi |D)] (S.94)

(S.74)
=

αs
i,n

αs
i,n + βs

i,n

(S.95)

=
αs
i,0 + ns

xi=1

αs
i,0 + βs

i,0 + ns
(S.96)

Exercise 6. Learning parameters of a directed graphical model

We consider the directed graphical model shown below on the left for the four binary variables t, b, s, x,
each being either zero or one. Assume that we have observed the data shown in the table on the right.
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Model:

t b

sx

t = 1 has tuberculosis
b = 1 has bronchitis
s = 1 has shortness of breath
x = 1 has positive x-ray

Observed data:

x s t b

0 1 0 1
0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 1
1 1 1 0

We assume the (conditional) pmf of s|t, b is specified by the following parametrised probability table:

p(s = 1|t, b; θ1s , . . . , θ4s)) t b

θ1s 0 0
θ2s 1 0
θ3s 0 1
θ4s 1 1

(a) What are the maximum likelihood estimates for p(s = 1|b = 0, t = 0) and p(s = 1|b = 0, t = 1), i.e.
the parameters θ1s and θ2s?

Solution. The maximum likelihood estimates (MLEs) are equal to the fraction of oc-
currences of the relevant events.

θ̂1s =

∑n
i=1 1(si = 1, bi = 0, ti = 0)∑n

i=1 1(bi = 0, ti = 0)
=

0

3
= 0 (S.97)

θ̂2s =

∑n
i=1 1(si = 1, bi = 0, ti = 1)∑n

i=1 1(bi = 0, ti = 1)
=

1

1
= 1 (S.98)

(b) Assume each parameter in the table for p(s|t, b) has a uniform prior on (0, 1). Compute the posterior
mean of the parameters of p(s = 1|b = 0, t = 0) and p(s = 1|b = 0, t = 1) and explain the difference
to the maximum likelihood estimates.

Solution. A uniform prior corresponds to a Beta distribution with hyperparameters
α0 = β0 = 1. With Exercise 5 question (b), we have

E(θ1s |D) =
α0 + 0

α0 + β0 + 3
=

1

5
(S.99)

E(θ2s |D) =
α0 + 1

α0 + β0 + 1
=

2

3
(S.100)

Compared to the MLE, the posterior mean is less extreme. It can be considered a
“smoothed out” or regularised estimate, where α0 > 0 and β0 > 0 provides regularisa-
tion (see https://en.wikipedia.org/wiki/Additive_smoothing). We can see a pull of
the parameters towards the prior predictive mean, which equals 1/2.

12 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://en.wikipedia.org/wiki/Additive_smoothing
https://creativecommons.org/licenses/by/4.0/


Exercise 7. Maximum likelihood estimation and unnormalised models

Consider the Ising model for two binary random variables (x1, x2),

p(x1, x2; θ) ∝ exp (θx1x2 + x1 + x2) , xi ∈ {−1, 1},

(a) Compute the partition function Z(θ).

Solution. The definition of the partition function is

Z(θ) =
∑

{−1,1}2
exp (θx1x2 + x1 + x2) . (S.101)

where have have to sum over (x1, x2) ∈ {−1, 1}2 = {(−1, 1), (1, 1), (1,−1) (−1−1)}. This
gives

Z(θ) = exp(−θ − 1 + 1) + exp(θ + 2) + exp(−θ + 1− 1) + exp(θ − 2) (S.102)

= 2 exp(−θ) + exp(θ + 2) + exp(θ − 2) (S.103)

(b) The figure below shows the graph of f(θ) = ∂ logZ(θ)
∂θ .

Assume you observe three data points (x1, x2) equal to (−1,−1), (−1, 1), and (1,−1). Using the
figure, what is the maximum likelihood estimate of θ? Justify your answer.

-4 -3 -2 -1 0 1 2 3 4
-1  

-2/3

-1/3

0   

1/3 

2/3 

1   

f(
)

Solution. Denoting the i-th observed data point by (xi1, x
i
2), the log-likelihood is

ℓ(θ) =

n∑
i=1

log p(xi1, x
i
2; θ) (S.104)

Inserting the definition of the p(x1, x2; θ) yields

ℓ(θ) =
n∑

i=1

[
θxi1x

i
2 + xi1 + xi2

]
− n logZ(θ) (S.105)

= θ
n∑

i=1

[
xi1x

i
2

]
+

n∑
i=1

[
xi1 + xi2

]
− n logZ(θ) (S.106)
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Its derivative with respect to the θ is

∂ℓ(θ)

∂θ
=

n∑
i=1

[
xi1x

i
2

]
− n

∂ logZ(θ)

∂θ
(S.107)

=

n∑
i=1

[
xi1x

i
2

]
− nf(θ) (S.108)

Setting it to zero yields

1

n

n∑
i=1

[
xi1x

i
2

]
= f(θ) (S.109)

An alternative approach is to start with the more general relationship that relates the
gradient of the partition function to the gradient of the log unnormalised model. For
example, if

p(x,θ) =
ϕ(x;θ)

Z(θ)

we have

ℓ(θ) =

n∑
i=1

log p(xi;θ) (S.110)

=

n∑
i=1

log ϕ(xi;θ)− n logZ(θ) (S.111)

Setting the derivative to zero gives,

1

n

n∑
i=1

∇θ log ϕ(xi;θ) = ∇θ logZ(θ)

In either case, numerical evaluation of 1/n
∑n

i=1 x
i
1x

i
2 gives

1

n

n∑
i=1

[
xi1x

i
2

]
=

1

3
(1− 1− 1) (S.112)

= −1

3
(S.113)

From the graph, we see that f(θ) takes on the value −1/3 for θ = −1, which is the desired
MLE.
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