e Probabilistic Modelling and Reasoning Autumn 2025

- informatics Self-Study Solutions (Learning) Michael Gutmann

These are exercises for self-study and exam preparation. All material is examinable unless otherwise

mentioned.

Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean p and standard deviation o is given by

exp {_@‘*‘)] C0=(no).

202

p(z;0) =

2mo?

(a) Given iid data D = {x1,...,x,}, what is the likelihood function L(0) for the Gaussian model?

Solution. For iid data, the likelihood function is

L(6) = Hp(a:i;H) (S.1)

:ﬁ L exp[—w} (5.2)

- (2ma2)n/2 o [_2}‘2 Z(xz - M)2] ' o

(b) What is the log-likelihood function €(0)?

Solution. Taking the log of the likelihood function gives

((6) = 5 loa(2m0?) LQ Z (S.4)

(¢) Show that the maximum likelihood estimates for the mean p and standard deviation o are the

sample mean
1 n

> (i —2)%. (2)

Solution. Since the logarithm is strictly monotonically increasing, the maximiser of the
log-likelihood equals the maximiser of the likelihood. It is easier to take derivatives for the
log-likelihood function than for the likelihood function so that the maximum likelihood
estimate is typically determined using the log-likelihood.

Given the algebraic expression of £(8), it is simpler to work with the variance v = o2 rather
than the standard deviation. Since o > 0, the function v = g(c) = o? is invertible, and
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the value of v that maximises the likelihood uniquely defines the value of o that maximises
the likelihood, namely
&=

This reparameterisation approach holds more generally: if we can express the parameters
0 as n = g(0) where g is invertible, we can maximise J(n) = £(g~1(n)) instead of £(6).
The optimal value 1) = argmax,, J(n) defines the optimal value of 6: 6 = g 4(n). The
maximum likelihood estimate is said to be invariant to reparameterisation.

We now thus maximise the function J(u,v),

T(psv) = =5 log(2m0) — o> (wi — 02 (5.5)

with respect to u and v.

Taking partial derivatives gives

n

oJ 1
671 0 Z(Jﬁz — 1) (5.6)
i=1
1 — n
= ngi_v'u (87)
Q——ﬁl—i—ii(x-— )2 (S.8)
v 2w 21}21’:1 i—H '

A necessary condition for optimality is that the partial derivatives are zero. We thus
obtain the conditions

IS - =0 (5.9)
=1

nl

1 & -
—2v+2v2;(xz—u) =0 (S.10)

From the first condition it follows that

R
= — Z:L’Z (S.11)
N4
The second condition thus becomes
”1+12n:( 1)2=0  (multiply with +? and ) (5.12)
—_ T; — = multi with v° and rearrange .
2 202 < 1 i M ply g
1=
IS ( )2=" (S.13)
P T — 1) = 2v, .
=1
and hence
R o
b= (i a) (S.14)
=1
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We now check that this solution corresponds to a maximum by computing the Hessian

matrix
&i 82J
Huo) = | %, W (.15)
oudv v?

If the Hessian negative definite at (f,v), the point is a (local) maximum. Since we only
have one critical point, (fi,0), the local maximum is also a global maximum. Taking second

derivatives gives

(.. T n)
B0 = (Lo p o 30 T8 ) 9

) : (S.17)

which is negative definite. Note that the the (negative) curvature increases with n, which
means that J(u,v), and hence the log-likelihood becomes more and more peaked as the

number of data points n increases.

Posterior of the mean of a Gaussian with known variance

Exercise 2.
. Tn}, compute p(u|D, 0?) for the Bayesian model

Given iid data D = {x1, ..
1 (w—u)?‘] 2 1 { (M_NO)T
xlp) = exp |———=+— § 40, 05) = exp | ———— 3
where 02 is a fized known quantity.
Hint: You may use that
N (z;my, 03N (5ma, 03) < N (z;mz, 03) (4)
where
1 (z —p)?
. 2y —
N(‘T7,u7a. ) - \/Wexp |: 20_2 (5)
-1 2 2
1 1 010
2 102
(- 4= 6
i-(7+a) -#7a )
2
o [ T mo o7
pr— —_— = - 7
ms = o3 a§+ §> m1+0_%+a§(mz mi) (7)
Solution. We re-use the expression for the likelihood L(x) from Exercise 1.

(S.18)

9

1 1 «
L) = ——— i i — )2
(1) = (grg2yera &P [ 5o? ;(w m
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which we can write as

R
L(p) o< exp T 952 (zi — M)Ql (S.19)
1 ¢ 2 2
Xexp =53 (7 = 2px; + p) (S.20)
L i=1
C . 2
o exp | =55 —QMZ%‘ + np (S.21)
L i=1
. ) ;
o exp |~ 53 (—2npz + np®) (S.22)
C i
X exp _—ﬁ(u - :n)g} (S.23)
o« N(i; T, 0% /n). (S.24)
The posterior is
p(ulD) o< L(0)p(p; o, o) (S.25)
o N (i 2, 0% )N (15 a0, 03) (S.26)
so that with (4), we have
p(ulD) o< N (4 i, 07) (S-27)
N (S.28)
In = o?/n o3 :
o2a?/n
= 50— /2 (S.29)
o5 +0%/n
2 T Ho
Hn = Op ( + ) (8.30)
o?/n o3
S N (0250 + (02/71)#0) (S.31)
o +o2/n " '
2 2
o _ o®/n
= .32
o2 +a%/n 08+02/nﬂo (8-32)

As n increases, 0%/n goes to zero so that o2 — 0 and g, — Z. This means that with an

increasing amount of data, the posterior of the mean tends to be concentrated around the
maximum likelihood estimate Z.

From (7), we also have that

0,2

i = po + (T — o), (S.33)

0
o2/n+ o}

which shows more clearly that the value of p, lies on a line with end-points pg (for n = 0) and
Z (for n — o0). As the amount of data increases, u, moves form the mean under the prior, uo,
to the average of the observed sample, that is the MLE Z.

Exercise 3. Maximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables
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We assume that we are given a parametrised directed graphical model for variables x1, ..., x4,

d
0) = [ [ p(zilpa;;0:) i € {0,1} (8)

i=1

where the conditionals are represented by parametrised probability tables, For example, if pas = {21, 22},
p(zs|pas; 03) is represented as

p($3=1|$1,1‘2;9§,...,0§)) T T2
03 0o 0
03 10
03 0 1
03 11

with 03 = (03,02%,03,03), and where the superscripts j of 9§ enumerate the different states that the parents
can be in.

(a)

(b)

Assuming that x; has m; parents, verify that the table parametrisation of p(x;|pa;; ;) is equivalent
to writing p(x;|pa;; 0;) as

Si
oo 0) = [ (07! =10 (1 — gyt si=0ni= )

s=1

where S; = 2™ is the total number of states/configurations that the parents can be in, and 1(x; =
1,pa; = s) is one if x; = 1 and pa; = s, and zero otherwise.

Solution. The number of configurations that m binary parents can be in is given by S;.
The questions thus boils down to showing that p(x; = 1|pa; = k;0;) = 6F for any state
ke {1,...,S;} of the parents of x;. Since 1(x; = 1,pa; = s) = 0 unless s = k, we have
indeed that

p(ri = 1lpa; = k;0;) = | [T(09)°(1 = 07)° | (0F)" ==t pa=h) (1 — gf)Hi=0pai=h) - (5.34)
s#k

=1- (o)== (1 — gf)° (S.35)

= (S.36)

For iid data D = {x1) ..., x™} show that the likelihood can be represented as

o1l

where nj,. _y is the number of times the pattern (x; = 1,pa; = s) occurs in the data D, and
equivalently for ny. _.

(1 — 63)i=o (10)

fi ::]"J

Solution. Since the data are iid, we have

0) = ﬁp(x@; 0) (8.37)
j=1

(S.38)
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(c)

where each term p(xU); @) factorises as in (8),

d
p(x9;0) = [T (= pal; 6;) (S.39)
=1

() ()

with x; denotmg the i-th element of x() and pa;”’ the corresponding parents. The

conditionals p( x; |pai ;0;) factorise further according to (9),

(4) (J)_s)

Si : .
plaIpal?:0:) = T[ (67) 10 =0 =) (1 — gy =oee

s=1

(S.40)

so that

n d
6) = [T [T (= Ipal”; 6,) (S.41)

j=1i=1
n d
j: =1

Swapping the order of the products so that the product over the data points comes first,
we obtain

95 Ve =tpa=s) (1 _ gs)Le=0pa; =) (5.42)

H::]Fo

HHH 65) 1z = lpam*s)(l — 7)1 '=0,pa’)=s) (S.43)

i=1s=1j5=1
We next split the product over j into two products, one for all j where m( D= 1, and one
for all j where 1:5 D=0
d 5 ©) &)
(D 0 HH H H 95 Iz’ =1 pa —s)(l _9;9)]1(1 —Opa —s) (844)
i=1s=1
(J 1905] _
d 5 ) 2
=TITI TT @) e=reed H 1 — gp)Le=0pa =) (S.45)
i=ls=1 j:
.Z’U‘]):l (] =0
d 5 @) ) &)
=11 (65)X5=1 1 =1 .pal —8)( — 95)Xg=1 L =0pa; =s) (S.46)
1=1s=1
d S;
=TI 1] = (1 —65) == (S.47)
i=1s=1
where
nsoy = 1 =1pa =5)  ni_ = 1Y =0,paf’) = s) (S.48)
j=1 j=1

is the number of times x; = 1 and x; = 0, respectively, with its parents being in state s.

Show that the log-likelihood decomposes into sums of terms that can be independently optimised,
and that each term corresponds to the log-likelihood for a Bernoulli model.
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Solution. The log-likelihood ¢(0) equals

£(0) = log p(D; 0) (S.49)
d S;
=log [ [J(65) = (1 — 0)"=0 (8.50)
1=1s=1
d S;
=33 tog (7)1 (1 )" (5.51)
i=1 s=1
d S;
= Z ng,—11og(67) + ng, o log(1 — 67) (5.52)
i=1 s=1

Since the parameters 67 are not coupled in any way, maximising £(@) can be achieved by
maximising each term ¢;5(0;) individually,

lis(07) = ng, =1 10g(07) + ng,— log(1 — 67). (S.53)

Moreover, ¢;5(6) corresponds to the log-likelihood for a Bernoulli model with success
probability #; and data with nj _; number of ones and nj _, number of zeros.

(d) Referring to the lecture material, conclude that the mazimum likelihood estimates are given by

P ST S g ) (11)
’ ni’izl + n;i:() Z?:]- ]]_(pag']) g S)

Solution. Given the result from the previous question, we can optimise each term ¢;(6;)
separately. Furthermore, each term formally corresponds to a log-likelihood for a Bernoulli
model, so that we can immediately use the results derived in the lecture, which gives

N ns

gs — — w=l S.54

j=1
4 :iﬂ(xm:l o) _ )y ()
=1 =0 ; . pa, s) + Z 1(x; 0, pa; s) (S.55)
j=1 j=1
j=1

which gives

s = == i A (S.57)

Hence, to determine éf , we first count the number of times the parents of x; are in state
s, which gives the denominator, and then among them, count the number of times z; = 1,
which gives the numerator.
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Exercise 4. Bayesian inference for the Bernoulli model

Consider the Bayesian model

p(z]0) = 67(1 - 0)'~* p(0; o) = B(6; o, fo)

where z € {0,1}, 6 € [0,1], 2o = (w0, Bo), and

B#;o,B) x 71 -0~ 6e]0,1] (12)

(a) Given iid data D = {x1,...,2,} show that the posterior of  given D is

(b)

p(0|D) = B(6; on, By)
Qp = g + Ng=1 Bn = 60 + Ng=0

where ny—1 denotes the number of ones and n,—qg the number of zeros in the data.

Solution. This follows from
p(0|D) o< L(0)p(0; cvo) (S.58)

and from the expression for the likelihood function of the Bernoulli model, which is

L(0) = [ [ p(xil0) (S.59)
i=1

= ﬁ 6% (1 — )t~ (S.60)
i=1

G - )i (- (S.61)

— enwzl(l — 9)“1-:07 (8.62)
where nz—1 = > | x; denotes the number of 1’s in the data, and n,—g = > 1 (1 —z;) =
n — ng—1 the number of 0’s.

Inserting the expressions for the likelihood and prior into (S.58) gives

p(8]D) o =1 (1 — g)"e=0g0~1(1 — g)Po~1 (S.63)
x 9a0+nz:1—1(1 _ ‘9),30-&—7190:0—1 (8.64)
X 8(9, o + Ny=1, 50 + n:pZO), (865)

which is the desired result. Since ag and Sy are updated by the counts of ones and zeros
in the data, these hyperparameters are also referred to as “pseudo-counts”. Alternatively,
one can think that they are the counts that are observed in another iid data set which has
been previously analysed and used to determine the prior.

Show that the mean of a Beta random variable f ~ B(f;«a, ) is

(0%

You may use that

" e - L(a)T(5)
a—1 _ B—1 —_ —
|- prtar = Bles) = 525 (14
where B(a, ) is called the Beta function, and where the Gamma function T'(t) is defined as
N = [ £ en(- s (15)

and satisfies T'(t + 1) = tT'(¢).
Hint: Represent the partition function of the Beta distribution in terms of the Beta function.
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Solution. We first write the partition function of the Beta distribution in terms of the
Beta function

= [t g (5.66)
0
(S.67)

We then have that the mean E[f] is given by

/fp fie, 8)d (S.68)
: (/‘ff“ 11— pyP-lay (5.69)
—lﬂmﬁ)ltﬂ+lwl £l (S.70)
_ Ble+1,p) %}(; 15’)/3) (8.71)

MNa+1D)I(B) I'(a+5)

B CESENORG (8.72)
al(@r(8) D+ )

=@+ A+ A (@) (8.73)
=07 (S.74)

where we have used the definition of the Beta function in terms of the Gamma function
and the property I'(t + 1) = tI'(t).

(c) Show that the predictive posterior probability p(x = 1|D) for a new independently observed data
point x equals the posterior mean of p(6|D), which in turn is given by

ap + Np=1

E(6|D) = STl (16)
Solution. We obtain
pla = 1|D) = /Olp (z = 1,0/D)do (sum rule) (S.75)
_ /O o = 110, D)p(6 D)0 (product rule) (S.76)
_ /Olp (¢ = 1/0)p(6]D)d8 (z 1L D|6) (8.77)
_ [ 0p(0|D)do (Bernoulli model) (S.78)
= Eo[ayp (5.79)
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From the previous question we know the mean of a Beta random variable. Since 6 ~
B(0; oy, Br), we obtain

p(z = 1|D) = E[4|D] (S.80)
— a::Bn (S.81)
- ap + njoj-l-n;;l—i- MNz=0 (5:82)
_ aio++ﬂ7(l)$+ln (S.83)

where the last equation follows from the fact that n = n,—g + n,—1. Note that for n — oo,
the posterior mean tends to the MLE ngz—;/n.

Exercise 5. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Ezercise 3 and the notation follows that exercise. We consider the
Bayesian model

p(x|0) = Hp x;|pa;, 6;) x; € {0,1} (17)
p(0; o, By) = H H B(o af,m 520) (18)
i=1s=1

where p(z;|pa;, 0;) is defined via (9), a is a vector of hyperparameters containing all o3 o, By the vector
containing all B}, and as before B denotes the Beta distribution. Under the prior, all parameters are
independent.

(a) For iid data D = {xV) ..., x™} show that

d Si
p(0D) = [T T] B;, 5. 50) (19)
i=1s=1
where
af,n - af,O + ni;,:l z?,n =0 + n:m_O (20)

and that the parameters are also independent under the posterior.

Solution. We start with

p(8|D) o p(D|0)p(6; o, Bo)- (S.84)
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Inserting the expression for p(D|@) given in (10) and the assumed form of the prior gives

d S; d S;
pOID) o [T 05 (1 - 65) M—OHHBwf;azo,ﬂm (S.85)
i=1s=1 1=1s=1
d S;
o [T TT 05 = (1 — )™= B(65: 05 . B50) (S.86)
1=1s=1
d S;
o [TTLE ™= (1 = )"0 (0) 0™ (1 = 7)o~ (3.87)
1=1s=1

d S;

o [T Loy 5ot =t gy ot (5.88)
i=1s=1
d S;

o [TTIB6;: aio +n5, -1 B0 + 15, —0) (S.89)
i=1s=1

It can be immediately verified that B(67; aig+ng,—1: 80+ niz:o) is proportional to the
marginal p(67|D) so that the parameters are independent under the posterior too.

(b) For a variable x; with parents pa;, compute the posterior predictive probability p(x; = 1|pa;, D)
where n® = n3 _o + n;._; denotes the number of times the parent configuration s occurs in the
observed data D.

Solution. The solution is analogue to the solution for question (c), using the sum rule,
independencies, and properties of beta random variables:

plai = 1lpa; =.D) = [ plai = 1,6 pa; = 5, D)o} (3.90)
— [ bl = 11820 = 5. D)yl Ipa; = 5.D) (89)

— [ bl = 1182, pa; = 5)p(6;1D) (5.92)

~ [ ooz (3.93)

= E[0]|D)] (5.94)

(S74) Qi

P L L S.95
R (5.95)

(S.96)

Exercise 6. Learning parameters of a directed graphical model

We consider the directed graphical model shown below on the left for the four binary variables t,b, s, x,
each being either zero or one. Assume that we have observed the data shown in the table on the right.
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Model: Observed data:

x s t b

0 1 0 1

0 0 0 0

(=) (5) 0 1 0 1

0 1 0 1

0 0 0 0

t=1 has tuberculosis o 0 0 0
b=1 has bronchitis 0 1 0 1
s=1 has shortness of breath 0 1 0 1
x =1 has positive z-ray 0 0 0 1
1 1 1 0

We assume the (conditional) pmf of s|t,b is specified by the following parametrised probability table:

p(s =1t,b;0%,...,0%) t b
6! 0 0
62 1 0
3 0 1
04 1 1

(a) What are the mazimum likelihood estimates for p(s = 1|b=0,t =0) and p(s =1|b=0,t = 1), i.e.
the parameters 0% and 627

Solution. The maximum likelihood estimates (MLEs) are equal to the fraction of oc-
currences of the relevant events.

él _ Z?:l Il(si = 1,[)2' = O,tl‘ = 0)

0
S L(b;=0,4=0) 3 0 (S.97)

j P l(si=1b=0t=1) 1
oz llei=lbi=06=1) _1_, $.98
’ S (b =0t =1) 1 (S-98)

(b) Assume each parameter in the table for p(s|t,b) has a uniform prior on (0,1). Compute the posterior
mean of the parameters of p(s = 1|b =0,t = 0) and p(s = 1|b = 0,t = 1) and explain the difference
to the mazximum likelihood estimates.

Solution. A uniform prior corresponds to a Beta distribution with hyperparameters
ag = fp = 1. With Exercise 5 question (b), we have

ag+0

1

EOHD) = ——— == S.99
+1 2

E(@2D)= 20" _ =2 S.100

Compared to the MLE, the posterior mean is less extreme. It can be considered a
“smoothed out” or regularised estimate, where ag > 0 and Sy > 0 provides regularisa-
tion (see https://en.wikipedia.org/wiki/Additive_smoothing). We can see a pull of
the parameters towards the prior predictive mean, which equals 1/2.
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Maximum likelithood estimation and unnormalised models

Exercise 7.

Consider the Ising model for two binary random variables (x1,z2),
p(x1,x2;0) x exp (fx122 + 21 + 22) x; € {—1,1},

(a) Compute the partition function Z(0).

Solution. The definition of the partition function is
Z(0) = Z exp (fr1xe + x1 + x2) . (S.101)
(~1,1)2
where have have to sum over (z1,z2) € {—1,1}% = {(~1,1), (1,1), (1,—1) (=1 —1)}. This
gives
Z(0) = exp(—0 — 14 1) + exp(d 4 2) + exp(—0 + 1 — 1) + exp(f — 2) (S.102)
= 2exp(—0) + exp(f + 2) + exp(f — 2) (S.103)
(b) The figure below shows the graph of f(6) = 810%92(0).
—1), (-1,1), and (1,-1). Using the

Assume you observe three data points (x1,x2) equal to (—1,
figure, what is the mazimum likelihood estimate of 07 Justify your answer.

1

2/3 ¢

13 |

-1/3 ¢

-2/3 ¢

Solution. Denoting the i-th observed data point by (x%,z%), the log-likelihood is
0(0) = logp(ah, xh; 0) (S.104)
i=1

Inserting the definition of the p(x1,x2;0) yields

00) = [baiah + 2i + 2b] — nlog Z(6) (S.105)
i=1
= 92 [2i2h] + Z [z} +2}] —nlog Z(0) (S.106)
=1 =1
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Its derivative with respect to the 0 is

oHO) dlog Z(0)
00 [#12] —n—5; (8.107)
= [atab] — nf(0) (S.108)
=1

Setting it to zero yields

LS [aiat] = f(0) (5.109)

i=1

An alternative approach is to start with the more general relationship that relates the
gradient of the partition function to the gradient of the log unnormalised model. For
example, if

_ 9(x;0)
we have
0(0) = Zlog p(x;0) (S.110)
= log ¢(xi; ) — nlog Z(6) (S.111)
=1

Setting the derivative to zero gives,
1 n
~> _Velogé(xi;0) = Vglog Z(6)
i=1

In either case, numerical evaluation of 1/ny ;" | x}z} gives

n

%Z [ziz}] = % (1-1-1) (S.112)
=1
_ _é (S.113)

From the graph, we see that f(6) takes on the value —1/3 for # = —1, which is the desired
MLE.
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