s Probabilistic Modelling and Reasoning Autumn 2025

- informatics Self-Study Exercises (Learning) Michael Gutmann

These are exercises for self-study and exam preparation. All material is examinable unless

otherwise mentioned.

Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean p and standard deviation o is given by

T — )2
p(x;0) = ;TUQGXP [—(205)} ) 0 = (u,0).

(a) Given iid data D = {x1,...,z,}, what is the likelihood function L(8) for the Gaussian

model?

(b) What is the log-likelihood function £(8)?

(c) Show that the maximum likelihood estimates for the mean p and standard deviation o are

the sample mean
1L
1=

and the square root of the sample variance
n

s2=1 > (zi— )%

n -
=1

Exercise 2. Posterior of the mean of a Gaussian with known variance

Given iid data D = {z1,...,7,}, compute p(u|D,o?) for the Bayesian model

1 (w—u)Q] ) 1 [ (u—uo)T
p(xlp) = exp | ———o—5— p(i; pro, 05) = exXp | =55
() = o e |- ) = o
where o2 is a fixed known quantity.

Hint: You may use that
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Exercise 3. Mazximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables

We assume that we are given a parametrised directed graphical model for variables z1, ..., zq,
d

p(x;0) = [ [ p(xilpai; 0:) i € {0,1} (8)
i=1

where the conditionals are represented by parametrised probability tables, For example, if pas =
{1, 22}, p(z3|pas; O3) is represented as

p(xg = a1, 20;603,...,603)) @1 o
03 0 0
03 1 0
03 0 1
04 11

with 03 = (03,02,03,03), and where the superscripts j of 9% enumerate the different states that
the parents can be in.

(a)

Assuming that x; has m; parents, verify that the table parametrisation of p(z;|pa;; 6;) is
equivalent to writing p(x;|pa;; 0;) as
S;

plailpa;6:) = [ (67) 10079 (1 — g n=own=) )
s=1

where S; = 2™ is the total number of states/configurations that the parents can be in,
and 1(z; = 1,pa; = s) is one if z; = 1 and pa; = s, and zero otherwise.

For iid data D = {x(1),...,x(™} show that the likelihood can be represented as

d S; . .
p(D;0) = [ [T1 (6" (1 07" (10)

i=1s=1

where nj _; is the number of times the pattern (x; = 1,pa; = s) occurs in the data D,

and equivalently for nj _.

Show that the log-likelihood decomposes into sums of terms that can be independently
optimised, and that each term corresponds to the log-likelihood for a Bernoulli model.

Referring to the lecture material, conclude that the maximum likelihood estimates are
given by

o Mo X 1" = 1?pa§j) =) (11)
R o > 1(pal) = s)
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Exercise 4. Bayesian inference for the Bernoulli model
Consider the Bayesian model
p(z]0) = 6%(1 - 6)'~* p(0; o) = B(0; o, Bo)
where z € {0,1}, 6 € [0,1], a9 = (v, Bo), and
B;a,8) x 0711 -0t ge]0,1] (12)

(a) Given iid data D = {z1,...,2,} show that the posterior of 6 given D is
p(0|D) = B(6; an, Bn)
Qp = Qo + Ng=1 Bn = Bo + na=0
where n,—1 denotes the number of ones and n,—g the number of zeros in the data.

(b) Show that the mean of a Beta random variable f ~ B(f;«, ) is

(67

Blfl = =55 (13)
You may use that
g - I(a)L(5)
a—1/1 _ £\p-1 _ _
| rta-ptar = Bl = 505 (14
where B(q, ) is called the Beta function, and where the Gamma function I'(¢) is defined
as
r0)= [ exp(-1as (15)

and satisfies I'(¢t + 1) = tI'(¢).
Hint: Represent the partition function of the Beta distribution in terms of the Beta func-
tion.

(c) Show that the predictive posterior probability p(z = 1|D) for a new independently observed
data point = equals the posterior mean of p(0|D), which in turn is given by
g + Ngp—1

E0D) = ———M—.
) ag+ Bo+n

(16)

Exercise 5. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Exercise 3 and the notation follows that exercise. We consider
the Bayesian model

p(x|0) = Hp zi|pa;, 0;) z; € {0,1} (17)

p(6; o, B) HHB o 0 B50) (18)

i=1s=1

where p(z;|pa;, 8;) is defined via (9), v is a vector of hyperparameters containing all o7, By
the vector containing all Bio, and as before BB denotes the Beta distribution. Under the prior,
all parameters are independent.

3 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0


https://creativecommons.org/licenses/by/4.0/

(a) For iid data D = {xM), ..., x(™} show that

d S;

p(0ID) = [T ] B, s B20) (19)

i=1s=1
where
i, =050+ ng, g T = Bio T Ng.—o (20)
and that the parameters are also independent under the posterior.

(b) For a variable z; with parents pa;, compute the posterior predictive probability p(z; =
1|pa;, D) where n® = nj _, + n;._; denotes the number of times the parent configuration
s occurs in the observed data D.

Exercise 6. Learning parameters of a directed graphical model

We consider the directed graphical model shown below on the left for the four binary variables
t,b, s, x, each being either zero or one. Assume that we have observed the data shown in the
table on the right.

Model: Observed data:
° o x s t b
0 1 0 1
0 0 0 O
(=) (2) 001 0 1
0 1 0 1
t =1 has tuberculosis 00 00
... 0 0 0 O
b=1 has bronchitis
0 1 0 1
s =1 has shortness of breath 01 0 1
=1 has positive x-ray 00 0 1
1 1 1 0

We assume the (conditional) pmf of s|t, b is specified by the following parametrised probability
table:

p(S:Ht,b;eé,...,Q;l)) t b
6! 0 0
02 1 0
03 0 1
6% 1 1

(a) What are the maximum likelihood estimates for p(s = 1|b = 0,t = 0) and p(s = 1|b =
0,t = 1), i.e. the parameters 6! and 62?

(b) Assume each parameter in the table for p(s|t,b) has a uniform prior on (0,1). Compute
the posterior mean of the parameters of p(s = 1|0 =0,f = 0) and p(s = 1|b =0,t = 1) and
explain the difference to the maximum likelihood estimates.
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Exercise 7. Maximum likelihood estimation and unnormalised models

Consider the Ising model for two binary random variables (x1, x2),

p(x1, x2;6) x exp (Qx129 + 21 + X2), x; € {—1,1},

(a) Compute the partition function Z(6).
Olog Z(0
(b) The figure below shows the graph of f(0) = 279().

Assume you observe three data points (x1,x2) equal to (—1,-1), (—=1,1), and (1,—1).
Using the figure, what is the maximum likelihood estimate of 87 Justify your answer.
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