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These are exercises for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Maximum likelihood estimation for a Gaussian

The Gaussian pdf parametrised by mean µ and standard deviation σ is given by

p(x;θ) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
, θ = (µ, σ).

(a) Given iid data D = {x1, . . . , xn}, what is the likelihood function L(θ) for the Gaussian
model?

(b) What is the log-likelihood function ℓ(θ)?

(c) Show that the maximum likelihood estimates for the mean µ and standard deviation σ are
the sample mean

x̄ =
1

n

n∑
i=1

xi (1)

and the square root of the sample variance

S2 =
1

n

n∑
i=1

(xi − x̄)2. (2)

Exercise 2. Posterior of the mean of a Gaussian with known variance

Given iid data D = {x1, . . . , xn}, compute p(µ|D, σ2) for the Bayesian model

p(x|µ) = 1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
p(µ;µ0, σ

2
0) =

1√
2πσ2

0

exp

[
−(µ− µ0)

2

2σ2
0

]
(3)

where σ2 is a fixed known quantity.
Hint: You may use that

N (x;m1, σ
2
1)N (x;m2, σ

2
2) ∝ N (x;m3, σ

2
3) (4)

where

N (x;µ, σ2) =
1√
2πσ2

exp

[
−(x− µ)2

2σ2

]
(5)

σ2
3 =

(
1

σ2
1

+
1

σ2
2

)−1

=
σ2
1σ

2
2

σ2
1 + σ2

2

(6)

m3 = σ2
3

(
m1

σ2
1

+
m2

σ2
2

)
= m1 +

σ2
1

σ2
1 + σ2

2

(m2 −m1) (7)
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Exercise 3. Maximum likelihood estimation of probability tables in fully observed
directed graphical models of binary variables

We assume that we are given a parametrised directed graphical model for variables x1, . . . , xd,

p(x;θ) =
d∏

i=1

p(xi|pai;θi) xi ∈ {0, 1} (8)

where the conditionals are represented by parametrised probability tables, For example, if pa3 =
{x1, x2}, p(x3|pa3;θ3) is represented as

p(x3 = 1|x1, x2; θ13, . . . , θ43)) x1 x2

θ13 0 0
θ23 1 0
θ33 0 1
θ43 1 1

with θ3 = (θ13, θ
2
3, θ

3
3, θ

4
3), and where the superscripts j of θj3 enumerate the different states that

the parents can be in.

(a) Assuming that xi has mi parents, verify that the table parametrisation of p(xi|pai;θi) is
equivalent to writing p(xi|pai;θi) as

p(xi|pai;θi) =

Si∏
s=1

(θsi )
1(xi=1,pai=s)(1− θsi )

1(xi=0,pai=s) (9)

where Si = 2mi is the total number of states/configurations that the parents can be in,
and 1(xi = 1,pai = s) is one if xi = 1 and pai = s, and zero otherwise.

(b) For iid data D = {x(1), . . . ,x(n)} show that the likelihood can be represented as

p(D;θ) =

d∏
i=1

Si∏
s=1

(θsi )
ns
xi=1(1− θsi )

ns
xi=0 (10)

where ns
xi=1 is the number of times the pattern (xi = 1,pai = s) occurs in the data D,

and equivalently for ns
xi=0.

(c) Show that the log-likelihood decomposes into sums of terms that can be independently
optimised, and that each term corresponds to the log-likelihood for a Bernoulli model.

(d) Referring to the lecture material, conclude that the maximum likelihood estimates are
given by

θ̂si =
ns
xi=1

ns
xi=1 + ns

xi=0

=

∑n
j=1 1(x

(j)
i = 1, pa

(j)
i = s)∑n

j=1 1(pa
(j)
i = s)

(11)
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Exercise 4. Bayesian inference for the Bernoulli model

Consider the Bayesian model

p(x|θ) = θx(1− θ)1−x p(θ;α0) = B(θ;α0, β0)

where x ∈ {0, 1}, θ ∈ [0, 1],α0 = (α0, β0), and

B(θ;α, β) ∝ θα−1(1− θ)β−1 θ ∈ [0, 1] (12)

(a) Given iid data D = {x1, . . . , xn} show that the posterior of θ given D is

p(θ|D) = B(θ;αn, βn)

αn = α0 + nx=1 βn = β0 + nx=0

where nx=1 denotes the number of ones and nx=0 the number of zeros in the data.

(b) Show that the mean of a Beta random variable f ∼ B(f ;α, β) is

E[f ] =
α

α+ β
. (13)

You may use that ∫ 1

0
fα−1(1− f)β−1df = B(α, β) =

Γ(α)Γ(β)

Γ(α+ β)
(14)

where B(α, β) is called the Beta function, and where the Gamma function Γ(t) is defined
as

Γ(t) =

∫ ∞

o
f t−1 exp(−f)df (15)

and satisfies Γ(t+ 1) = tΓ(t).
Hint: Represent the partition function of the Beta distribution in terms of the Beta func-
tion.

(c) Show that the predictive posterior probability p(x = 1|D) for a new independently observed
data point x equals the posterior mean of p(θ|D), which in turn is given by

E(θ|D) =
α0 + nx=1

α0 + β0 + n
. (16)

Exercise 5. Bayesian inference of probability tables in fully observed directed graph-
ical models of binary variables

This is the Bayesian analogue of Exercise 3 and the notation follows that exercise. We consider
the Bayesian model

p(x|θ) =
d∏

i=1

p(xi|pai,θi) xi ∈ {0, 1} (17)

p(θ;α0,β0) =

d∏
i=1

Si∏
s=1

B(θsi ;αs
i,0, β

s
i,0) (18)

where p(xi|pai,θi) is defined via (9), α0 is a vector of hyperparameters containing all αs
i,0, β0

the vector containing all βs
i,0, and as before B denotes the Beta distribution. Under the prior,

all parameters are independent.
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(a) For iid data D = {x(1), . . . ,x(n)} show that

p(θ|D) =
d∏

i=1

Si∏
s=1

B(θsi , αs
i,n, β

s
i,n) (19)

where

αs
i,n = αs

i,0 + ns
xi=1 βs

i,n = βs
i,0 + ns

xi=0 (20)

and that the parameters are also independent under the posterior.

(b) For a variable xi with parents pai, compute the posterior predictive probability p(xi =
1|pai,D) where ns = ns

xi=0 + ns
xi=1 denotes the number of times the parent configuration

s occurs in the observed data D.

Exercise 6. Learning parameters of a directed graphical model

We consider the directed graphical model shown below on the left for the four binary variables
t, b, s, x, each being either zero or one. Assume that we have observed the data shown in the
table on the right.

Model:

t b

sx

t = 1 has tuberculosis
b = 1 has bronchitis
s = 1 has shortness of breath
x = 1 has positive x-ray

Observed data:

x s t b

0 1 0 1
0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 0
0 0 0 0
0 1 0 1
0 1 0 1
0 0 0 1
1 1 1 0

We assume the (conditional) pmf of s|t, b is specified by the following parametrised probability
table:

p(s = 1|t, b; θ1s , . . . , θ4s)) t b

θ1s 0 0
θ2s 1 0
θ3s 0 1
θ4s 1 1

(a) What are the maximum likelihood estimates for p(s = 1|b = 0, t = 0) and p(s = 1|b =
0, t = 1), i.e. the parameters θ1s and θ2s?

(b) Assume each parameter in the table for p(s|t, b) has a uniform prior on (0, 1). Compute
the posterior mean of the parameters of p(s = 1|b = 0, t = 0) and p(s = 1|b = 0, t = 1) and
explain the difference to the maximum likelihood estimates.
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Exercise 7. Maximum likelihood estimation and unnormalised models

Consider the Ising model for two binary random variables (x1, x2),

p(x1, x2; θ) ∝ exp (θx1x2 + x1 + x2) , xi ∈ {−1, 1},

(a) Compute the partition function Z(θ).

(b) The figure below shows the graph of f(θ) = ∂ logZ(θ)
∂θ .

Assume you observe three data points (x1, x2) equal to (−1,−1), (−1, 1), and (1,−1).
Using the figure, what is the maximum likelihood estimate of θ? Justify your answer.
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