
Probabilistic Modelling and Reasoning
Self-Study Exercises (MC & Sampling)

Autumn 2025
Michael Gutmann

These are exercises for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Importance sampling to estimate tail probabilities

We would like to use importance sampling to compute the probability that a standard Gaussian
random variable x takes on a value larger than 5, i.e

P(x > 5) =

∫ ∞

5

1√
2π

exp

(
−x2

2

)
dx (1)

We know that the probability equals

P(x > 5) = 1−
∫ 5

−∞

1√
2π

exp

(
−x2

2

)
dx (2)

= 1− Φ(5) (3)

≈ 2.87 · 10−7 (4)

where Φ(.) is the cumulative distribution function of a standard normal random variable.1

(a) With the indicator function 1x>5(x), which equals one if x is larger than 5 and zero
otherwise, we can write P(x > 5) in form of the expectation

P(x > 5) = E[1x>5(x)], (5)

where the expectation is taken with respect to the density N (x; 0, 1) of a standard normal
random variable,

N (x; 0, 1) =
1√
2π

exp

(
−x2

2

)
. (6)

This suggests that we can approximate P(x > 5) by a Monte Carlo average

P(x > 5) ≈ 1

n

n∑
i=1

1x>5(xi), xi ∼ N (x; 0, 1). (7)

Explain why this approach does not work well.

(b) Another approach is to use importance sampling with an importance distribution q(x) that
is zero for x < 5. We can then write P(x > 5) as

P(x > 5) =

∫ ∞

5

1√
2π

exp

(
−x2

2

)
dx (8)

=

∫ ∞

5

1√
2π

exp

(
−x2

2

)
q(x)

q(x)
dx (9)

= Eq(x)

[
1√
2π

exp

(
−x2

2

)
1

q(x)

]
(10)

1Credit: This exercise is based on example and exercise 3.5 in Robert and Casella’s Introducing Monte Carlo
Methods with R, Springer 2010.

1 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

and estimate P(x > 5) as a sample average.

We here use an exponential distribution shifted by 5 to the right. It has pdf

q(x) =

{
exp(−(x− 5)) if x ≥ 5

0 otherwise
(11)

For background on the exponential distribution, see e.g. https://en.wikipedia.org/
wiki/Exponential_distribution.

Provide a formula that approximates P(x > 5) as a sample average over n samples xi ∼
q(x).

(c) Numerically compute the importance estimate for various sample sizes n ∈ [0, 1000]. Plot
the estimate against the sample size and compare with the ground truth value.

Exercise 2. Sampling from the exponential distribution

The exponential distribution has the density

p(x;λ) =

{
λ exp(−λx) x ≥ 0

0 x < 0,
(12)

where λ is a parameter of the distribution. Use inverse transform sampling to generate n iid
samples from p(x;λ).

Exercise 3. Sampling from a Laplace distribution

A Laplace random variable x of mean zero and variance one has the density p(x)

p(x) =
1√
2
exp

(
−
√
2|x|

)
x ∈ R. (13)

Use inverse transform sampling to generate n iid samples from x.

Exercise 4. Rejection sampling

Most compute environments provide functions to sample from a standard normal distribution.
Popular algorithms include the Box-Muller transform, see e.g. https://en.wikipedia.org/
wiki/Box-Muller_transform. We here use rejection sampling to sample from a standard nor-
mal distribution with density p(x) using a Laplace distribution as our proposal/auxiliary distri-
bution.2

The density q(x) of a zero-mean Laplace distribution with variance 2b2 is

q(x; b) =
1

2b
exp

(
−|x|

b

)
. (14)

We can sample from it by sampling a Laplace variable with variance 1 as in Exercise 3 and then
scaling the sample by

√
2b.

Rejection sampling then repeats the following steps:
2Credit: This exercise is loosely based on Exercise 2.8 in Robert and Casella’s Introducing Monte Carlo Methods

with R, Springer 2010.

2 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Exponential_distribution
https://en.wikipedia.org/wiki/Box-Muller_transform
https://en.wikipedia.org/wiki/Box-Muller_transform
https://creativecommons.org/licenses/by/4.0/

• Generate x ∼ q(x; b)

• Accept x with probability f(x) = 1
M

p(x)
q(x) , i.e. generate u ∼ U(0, 1) and accept x if u ≤ f(x).

(a) Compute the ratio M(b) = maxx
p(x)
q(x;b) .

(b) How should you choose b to maximise the probability of acceptance?

(c) Assume you sample from p(x1, . . . , xd) =
∏d

i=1 p(xi) using q(x1, . . . , xd) =
∏d

i=1 q(xi; b)
as auxiliary distribution without exploiting any independencies. How does the acceptance
probability scale as a function of d? You may denote the acceptance probability in case of
d = 1 by A.

Exercise 5. Basic Markov chain Monte Carlo inference (optional, not examinable)

This exercise is on sampling and approximate inference by Markov chain Monte Carlo (MCMC).
MCMC can be used to obtain samples from a probability distribution, e.g. a posterior distribu-
tion. The samples approximately represent the distribution, as illustrated in Figure 1, and can
be used to approximate expectations.

We denote the density of a zero mean Gaussian with variance σ2 by N (x;µ, σ2), i.e.

N (x;µ, σ2) =
1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
(15)

4 3 2 1 0 1 2 3 4
x

4

3

2

1

0

1

2

3

4

y

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

(a) True density

4 3 2 1 0 1 2 3 4
x

4

3

2

1

0

1

2

3

4

y 0

(b) Density represented by 10, 000 samples.

Figure 1: Density and samples from p(x, y) = N (x; 0, 1)N (y; 0, 1).

Consider a vector of d random variables θ = (θ1, . . . , θd) and some observed data D. In many
cases, we are interested in computing expectations under the posterior distribution p(θ | D), e.g.

Ep(θ|D) [g(θ)] =

∫
g(θ)p(θ | D)dθ (16)

for some function g(θ). If d is small, e.g. d ≤ 3, deterministic numerical methods can be used
to approximate the integral to high accuracy.3 But for higher dimensions, these methods are

3See e.g. https://en.wikipedia.org/wiki/Numerical_integration.

3 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://en.wikipedia.org/wiki/Numerical_integration
https://creativecommons.org/licenses/by/4.0/

generally not applicable any more. The expectation, however, can be approximated as a sample
average if we have samples θ(i) from p(θ | D):

Ep(θ|D) [g(θ)] ≈
1

S

S∑
i=1

g(θ(i)) (17)

Note that in MCMC methods, the samples θ(1), . . . ,θ(S) used in the above approximation are
typically not statistically independent.

Metropolis-Hastings is an MCMC algorithm that generates samples from a distribution p(θ),
where p(θ) can be any distribution on the parameters (and not only posteriors). The algorithm
is iterative and at iteration t, it uses:

• a proposal distribution q(θ;θ(t)), parametrised by the current state of the Markov chain,
i.e. θ(t);

• a function p∗(θ), which is proportional to p(θ). In other words, p∗(θ) is unnormalised4

and the normalised density p(θ) is

p(θ) =
p∗(θ)∫
p∗(θ)dθ

. (18)

For all tasks in this exercise, we work with a Gaussian proposal distribution q(θ;θ(t)), whose
mean is the previous sample in the Markov chain, and whose variance is ϵ2. That is, at iteration
t of our Metropolis-Hastings algorithm,

q(θ;θ(t−1)) =
d∏

k=1

N (θk; θ
(t−1)
k , ϵ2). (19)

When used with this proposal distribution, the algorithm is called Random Walk Metropolis-
Hastings algorithm.

(a) Read Section 27.4 in Barber’s book “Bayesian Reasoning and Machine Learning” to famil-
iarise yourself with the Metropolis-Hastings algorithm.

(b) Write a function mh implementing the Metropolis Hasting algorithm, as given in Algorithm
27.3 in Barber’s book, using the Gaussian proposal distribution in (19) above. The function
should take as arguments

• p_star: a function on θ that is proportional to the density of interest p∗(θ);

• param_init: the initial sample — a value for θ from where the Markov chain starts;

• num_samples: the number S of samples to generate;

• vari: the variance ϵ2 for the Gaussian proposal distribution q;

and return [θ(1), . . . ,θ(S)] — a list of S samples from p(θ) ∝ p∗(θ). For example:

4We used the notation p̃ in the lecture slides; p∗ is also commonly used, e.g. in Barber’s book.

4 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

def mh(p_star, param_init, num_samples=5000, vari=1.0):
your code here
return samples

(c) Test your algorithm by sampling 5, 000 samples from p(x, y) = N (x; 0, 1)N (y; 0, 1). Ini-
tialise at (x = 0, y = 0) and use ϵ2 = 1. Generate a scatter plot of the obtained samples.
The plot should be similar to Figure 1b. Highlight the first 20 samples only. Do these 20
samples alone adequately approximate the true density?

Sample another 5, 000 points from p(x, y) = N (x; 0, 1)N (y; 0, 1) using mh with ϵ2 = 1, but
this time initialise at (x = 7, y = 7). Generate a scatter plot of the drawn samples and
highlight the first 20 samples. If everything went as expected, your plot probably shows
a “trail” of samples, starting at (x = 7, y = 7) and slowly approaching the region of space
where most of the probability mass is.

(d) In practice, we don’t know where the distribution we wish to sample from has high density,
so we typically initialise the Markov Chain somewhat arbitrarily, or at the maximum
a-posterior (MAP) sample if available. The samples obtained in the beginning of the
chain are typically discarded, as they are not considered to be representative of the target
distribution. This initial period between initialisation and starting to collect samples is
called “warm-up”, or also “burn-in”.

Extended your function mh to include an additional warm-up argument W , which specifies
the number of MCMC steps taken before starting to collect samples. Your function should
still return a list of S samples as in (b).

Exercise 6. Bayesian Poisson regression (optional, not examinable)

Consider a Bayesian Poisson regression model, where outputs yn are generated from a Poisson
distribution of rate exp(αxn + β), where the xn are the inputs (covariates), and α and β the
parameters of the regression model for which we assume a broad Gaussian prior:

α ∼ N (α; 0, 100) (20)
β ∼ N (β; 0, 100) (21)
yn ∼ Poisson(yn; exp(αxn + β)) for n = 1, . . . , N (22)

Poisson(y;λ) denotes the probability mass function of a Poisson random variable with rate λ,

Poisson(y;λ) =
λy

y!
exp(−λ), y ∈ {0, 1, 2, . . .}, λ > 0 (23)

Consider D = {(xn, yn)}Nn=1 where N = 5 and

(x1, . . . , x5) = (−0.50519053,−0.17185719, 0.16147614, 0.49480947, 0.81509851) (24)
(y1, . . . , y5) = (1, 0, 2, 1, 2) (25)

We are interested in computing the posterior density of the parameters (α, β) given the data D
above.

(a) Derive an expression for the unnormalised posterior density of α and β given D, i.e. a
function p∗ of the parameters α and β that is proportional to the posterior density p(α, β |
D), and which can thus be used as target density in the Metropolis Hastings algorithm.

5 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

(b) Implement the derived unnormalised posterior density p∗. If your coding environment
provides an implementation of the above Poisson pmf, you may use it directly rather than
implementing the pmf yourself.

Use the Metropolis Hastings algorithm from Question 5(c) to draw 5, 000 samples from
the posterior density p(α, β | D). Set the hyperparameters of the Metropolis-Hastings
algorithm to:

• param_init = (αinit, βinit) = (0, 0),
• vari = 1, and
• number of warm-up steps W = 1000.

Plot the drawn samples with x-axis α and y-axis β and report the posterior mean of α and
β, as well as their correlation coefficient under the posterior.

Exercise 7. Mixing and convergence of Metropolis-Hasting MCMC (optional, not
examinable)

Under weak conditions, an MCMC algorithm is an asymptotically exact inference algorithm,
meaning that if it is run forever, it will generate samples that correspond to the desired probability
distribution. In this case, the chain is said to converge.

In practice, we want to run the algorithm long enough to be able to approximate the posterior
adequately. How long is long enough for the chain to converge varies drastically depending on the
algorithm, the hyperparameters (e.g. the variance vari), and the target posterior distribution. It
is impossible to determine exactly whether the chain has run long enough, but there exist various
diagnostics that can help us determine if we can “trust” the sample-based approximation to the
posterior.

A very quick and common way of assessing convergence of the Markov chain is to visually inspect
the trace plots for each parameter. A trace plot shows how the drawn samples evolve through
time, i.e. they are a time-series of the samples generated by the Markov chain. Figure 2 shows
examples of trace plots obtained by running the Metropolis Hastings algorithm for different values
of the hyperparameters vari and param_init. Ideally, the time series covers the whole domain
of the target distribution and it is hard to “see” any structure in it so that predicting values of
future samples from the current one is difficult. If so, the samples are likely independent from
each other and the chain is said to be well “mixed”.

(a) Consider the trace plots in Figure 2: Is the variance vari used in Figure 2b larger or smaller
than the value of vari used in Figure 2a? Is vari used in Figure 2c larger or smaller than
the value used in Figure 2a?

In both cases, explain the behaviour of the trace plots in terms of the workings of the
Metropolis Hastings algorithm and the effect of the variance vari.

(b) In Metropolis-Hastings, and MCMC in general, any sample depends on the previously
generated sample, and hence the algorithm generates samples that are generally statistically
dependent. The effective sample size of a sequence of dependent samples is the number
of independent samples that are, in some sense, equivalent to our number of dependent
samples. A definition of the effective sample size (ESS) is

ESS =
S

1 + 2
∑∞

k=1 ρ(k)
(26)

6 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

0 1000 2000 3000 4000 5000
Iteration

3

2

1

0

1
Sa

m
pl

e

Init @ (0,0)
Init @ (2,2)
Init @ (3,-1)

(a) variance vari: 1

0 1000 2000 3000 4000 5000
Iteration

1.5

1.0

0.5

0.0

0.5

1.0

Sa
m

pl
e

Init @ (0,0)
Init @ (2,2)
Init @ (3,-1)

(b) Alternative value of vari

0 1000 2000 3000 4000 5000
Iteration

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Sa
m

pl
e

Init @ (0,0)
Init @ (2,2)
Init @ (3,-1)

(c) Alternative value of vari

Figure 2: For Question 7(a): Trace plots of the parameter β from Question 6 drawn using
Metropolis-Hastings with different variances of the proposal distribution.

7 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

where S is the number of dependent samples drawn and ρ(k) the correlation coefficient
between two samples in the Markov chain that are k time points apart. We can see that
if the samples are strongly correlated,

∑∞
k=1 ρ(k) is large and the effective sample size is

small. On the other hand, if ρ(k) = 0 for all k, the effective sample size is S.

ESS, as defined above, is the number of independent samples which are needed to obtain a
sample average that has the same variance as the sample average computed from correlated
samples.

To illustrate how correlation between samples is related to a reduction of sample size,
consider two pairs of samples (θ1, θ2) and (ω1, ω2). All variables have variance σ2 and the
same mean µ, but ω1 and ω1 are uncorrelated while the covariance matrix for θ1, θ2 is C,

C = σ2

(
1 ρ
ρ 1

)
, (27)

with ρ > 0. The variance of the average ω̄ = 0.5(ω1 + ω2) is

V (ω̄) =
σ2

2
, (28)

where the 2 in the denominator is the sample size.

Derive an equation for the variance of θ̄ = 0.5(θ1+ θ2) and compute the reduction α of the
sample size when working with the correlated (θ1, θ2). In other words, derive an equation
of α in

V
(
θ̄
)
=

σ2

2/α
. (29)

What is the effective sample size 2/α as ρ → 1?

8 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

