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These are exercises for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

p(x1, . . . , x5) ∝ ϕ12(x1, x2)ϕ13(x1, x3)ϕ14(x1, x4)ϕ23(x2, x3)ϕ25(x2, x5)ϕ45(x4, x5)

(a) Visualise it as an undirected graph.

Solution. We draw a node for each random variable xi. There is an edge between two
nodes if the corresponding variables co-occur in a factor.
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(b) What are the neighbours of x3 in the graph?

Solution. The neighbours are all the nodes for which there is a single connecting edge.
Thus: ne(x3) = {x1, x2}. (Note that sometimes, we may denote ne(x3) by ne3.)

(c) Do we have x3 ⊥⊥ x4 | x1, x2?

Solution. Yes. The conditioning set {x1, x2} equals ne3, which is also the Markov blan-
ket of x3. This means that x3 is conditionally independent of all the other variables given
{x1, x2}, i.e. x3 ⊥⊥ x4, x5 | x1, x2, which implies that x3 ⊥⊥ x4 | x1, x2. (One can also use
graph separation to answer the question.)

(d) What is the Markov blanket of x4?

Solution. The Markov blanket of a node in a undirected graphical model equals the set
of its neighbours: MB(x4) = ne(x4) = ne4 = {x1, x5}. This implies, for example, that
x4 ⊥⊥ x2, x3 | x1, x5.

(e) On which minimal set of variables A do we need to condition to have x1 ⊥⊥ x5 | A?

Solution. We first identify all trails from x1 to x5. There are three such trails: (x1, x2, x5),
(x1, x3, x2, x5), and (x1, x4, x5). Conditioning on x2 blocks the first two trails, conditioning
on x4 blocks the last. We thus have: x1 ⊥⊥ x5 | x2, x4, so that A = {x2, x4}.
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Exercise 2. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the following graph, sometimes called a diamond
configuration.
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z

(a) How do the pdfs/pmfs of the undirected graphical model factorise?

Solution. The maximal cliques are (x,w), (w, z), (z, y) and (x, y). The undirected
graphical model thus consists of pdfs/pmfs that factorise as follows

p(x,w, z, y) ∝ ϕ1(x,w)ϕ2(w, z)ϕ3(z, y)ϕ4(x, y) (S.1)

(b) List all independencies that hold for the undirected graphical model.

Solution. We can generate the independencies by conditioning on progressively larger
sets. Since there is a trail between any two nodes, there are no unconditional independen-
cies. If we condition on a single variable, there is still a trail that connects the remaining
ones. Let us thus consider the case where we condition on two nodes. By graph separation,
we have

w ⊥⊥ y | x, z x ⊥⊥ z | w, y (S.2)

These are all the independencies that hold for the model, since conditioning on three nodes
does not lead to any independencies in a model with four variables.

Exercise 3. Factorisation from the Markov blankets

For a distribution p(x1, . . . , x4, y1, . . . , y4), we are given the following Markov blankets for the x-variables:

MB(x1) = {x2, y1} MB(x2) = {x1, x3, y2} MB(x3) = {x2, x4, y3} MB(x4) = {x3, y4} (1)

Without inserting more independencies than those specified by the Markov blankets, draw the graph over
which p factorises and state the factorisation. (Assume that p is positive for all possible values of its
variables).

Solution. The Markov blankets of a variable are its neighbours in the graph. But since we are
only given the Markov blankets on the x-variables and for the y-variables, and are not allowed
to insert additional independencies, we must assume that each yi is connected to all the other
y′s. For example, if we didn’t connect y1 and y4 we would assert the additional independency
y1 ⊥⊥ y4 | x1, x2, x3, x4, y2, y3.

We thus have a graph as follows:

2 ©Gutmann, University of Edinburgh, 2025 CC BY 4.0

https://creativecommons.org/licenses/by/4.0/


y1 y2 y3 y4
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The factorisation thus is

p(x1, . . . , x4, y1, . . . , y4) =
1

Z
g(y1, . . . , y4)

3∏
i=1

mi(xi, xi+1)
4∏

i=1

gi(xi, yi), (S.3)

where the mi(xi, xi+1), gi(xi, yi) and g(y1, . . . , y4) are positive factors. We have a Markov chain
for the xi, but only a single factor for (y1, y2, y3, y4) to avoid inserting independencies beyond
those specified by the given Markov blankets.

Exercise 4. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time. The
probability density or mass functions over d random variables x1, . . . , xd then take the form

p(x1, . . . , xd) ∝
∏
i≤j

ϕij(xi, xj)

Such models are sometimes called pairwise Markov networks.

(a) Let p(x1, . . . , xd) ∝ exp
(
− 1

2x
⊤Ax− b⊤x

)
where A is symmetric and x = (x1, . . . , xd)

⊤. What

are the corresponding factors ϕij for i ≤ j?

Solution. Denote the (i, j)-th element of A by aij . We have

x⊤Ax =
∑
ij

aijxixj (S.4)

=
∑
i<j

2aijxixj +
∑
i

aiix
2
i (S.5)

where the second line follows from A⊤ = A. Hence,

−1

2
x⊤Ax− b⊤x = −1

2

∑
i<j

2aijxixj −
1

2

∑
i

aiix
2
i −

∑
i

bixi (S.6)

so that

ϕij(xi, xj) =

{
exp (−aijxixj) if i < j

exp
(
−1

2aiix
2
i − bixi

)
if i = j

(S.7)

For x ∈ Rd, the distribution is a Gaussian with A equal to the inverse covariance matrix.
For binary x, the model is known as Ising model or Boltzmann machine. For xi ∈ {−1, 1},
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x2i = 1 for all i, so that the aii are constants that can be absorbed into the normalisation
constant. This means that for xi ∈ {−1, 1}, we can work with matrices A that have zeros
on the diagonal.

(b) For p(x1, . . . , xd) ∝ exp
(
− 1

2x
⊤Ax− b⊤x

)
, show that xi ⊥⊥ xj | {x1, . . . , xd} \ {xi, xj} if the

(i, j)-th element of A is zero.

Solution. The previous question showed that we can write p(x1, . . . , xd) ∝
∏

i≤j ϕij(xi, xj)
with potentials as in Equation (S.7). Consider two variables xi and xj for fixed (i, j). They
only appear in the factorisation via the potential ϕij . If aij = 0, the factor ϕij becomes
a constant, and no other factor contains xi and xj , which means that there is no edge
between xi and xj if aij = 0. By the pairwise Markov property it then follows that
xi ⊥⊥ xj | {x1, . . . , xd} \ {xi, xj}.

Exercise 5. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables v = (v1, . . . , vn)
⊤

and h = (h1, . . . , hm)⊤ with a probability mass function equal to

p(v,h) ∝ exp
(
v⊤Wh+ a⊤v + b⊤h

)
, (2)

where W is a n × m matrix. Both the vi and hi take values in {0, 1}. The vi are called the “visibles”
variables since they are assumed to be observed while the hi are the hidden variables since it is assumed
that we cannot measure them.

(a) Use graph separation to show that the joint conditional p(h|v) factorises as

p(h|v) =
m∏
i=1

p(hi|v).

Solution. Figure 1 on the left shows the undirected graph for p(v,h) with n = 3,m = 2.
We note that the graph is bi-partite: there are only direct connections between the hi and
the vi. Conditioning on v thus blocks all trails between the hi (graph on the right). This
means that the hi are independent from each other given v so that

p(h|v) =
m∏
i=1

p(hi|v).

h1 h2

v1 v2 v3

h1 h2

v1 v2 v3

Figure 1: Left: Graph for p(v,h). Right: Graph for p(h|v)
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(b) Show that

p(hi = 1|v) = 1

1 + exp
(
−bi −

∑
j Wjivj

) (3)

where Wji is the (ji)-th element of W, so that
∑

j Wjivj is the inner product (scalar product)

between the i-th column of W and v.

Solution. For the conditional pmf p(hi|v) any quantity that does not depend on hi can
be considered to be part of the normalisation constant. A general strategy is to first work
out p(hi|v) up to the normalisation constant and then to normalise it afterwards.

We begin with p(h|v):

p(h|v) = p(h,v)

p(v)
(S.8)

∝ p(h,v) (S.9)

∝ exp
(
v⊤Wh+ a⊤v + b⊤h

)
(S.10)

∝ exp
(
v⊤Wh+ b⊤h

)
(S.11)

∝ exp

∑
i

∑
j

vjWjihi +
∑
i

bihi

 (S.12)

As we are interested in p(hi|v) for a fixed i, we can drop all the terms not depending on
that hi, so that

p(hi|v) ∝ exp

∑
j

vjWjihi + bihi

 (S.13)

Since hi only takes two values, 0 and 1, normalisation is here straightforward. Call the
unnormalised pmf p̃(hi|v),

p̃(hi|v) = exp

∑
j

vjWjihi + bihi

 . (S.14)

We then have

p(hi|v) =
p̃(hi|v)

p̃(hi = 0|v) + p̃(hi = 1|v)
(S.15)

=
p̃(hi|v)

1 + exp
(∑

j vjWji + bi

) (S.16)

=
exp

(∑
j vjWjihi + bihi

)
1 + exp

(∑
j vjWji + bi

) , (S.17)

so that

p(hi = 1|v) =
exp

(∑
j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) (S.18)

=
1

1 + exp
(
−
∑

j vjWji − bi

) . (S.19)
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The probability p(h = 0|v) equals 1− p(hi = 1|v), which is

p(hi = 0|v) =
1 + exp

(∑
j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) −
exp

(∑
j vjWji + bi

)
1 + exp

(∑
j vjWji + bi

) (S.20)

=
1

1 + exp
(∑

j Wjivj + bi

) (S.21)

The function x 7→ 1/(1 + exp(−x)) is called the logistic function. It is a sigmoid function
and is thus sometimes denoted by σ(x). For other versions of the sigmoid function, see
https://en.wikipedia.org/wiki/Sigmoid_function.
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With that notation, we have

p(hi = 1|v) = σ

∑
j

Wjivj + bi

 .

(c) Use a symmetry argument to show that

p(v|h) =
∏
i

p(vi|h) and p(vi = 1|h) = 1

1 + exp
(
−ai −

∑
j Wijhj

)
Solution. Since v⊤Wh is a scalar we have (v⊤Wh)⊤ = h⊤W⊤v = v⊤Wh, so that

p(v,h) ∝ exp
(
v⊤Wh+ a⊤v + b⊤h

)
(S.22)

∝ exp
(
h⊤W⊤v + b⊤h+ a⊤v

)
. (S.23)

To derive the result, we note that v and a now take the place of h and b from before, and
that we now have W⊤ rather than W. In Equation (3), we thus replace hi with vi, bi with
ai, and Wji with Wij to obtain p(vi = 1|h). In terms of the sigmoid function, we have

p(vi = 1|h) = σ

∑
j

Wijhj + ai

 .
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Note that while p(v|h) factorises, the marginal p(v) does generally not. The marginal
p(v) can here be obtained in closed form up to its normalisation constant.

p(v) =
∑

h∈{0,1}m
p(v,h) (S.24)

=
1

Z

∑
h∈{0,1}m

exp
(
v⊤Wh+ a⊤v + b⊤h

)
(S.25)

=
1

Z

∑
h∈{0,1}m

exp

∑
ij

vihjWij +
∑
i

aivi +
∑
j

bjhj

 (S.26)

=
1

Z

∑
h∈{0,1}m

exp

 m∑
j=1

hj

[∑
i

viWij + bj

]
+
∑
i

aivi

 (S.27)

=
1

Z

∑
h∈{0,1}m

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
exp

(∑
i

aivi

)
(S.28)

=
1

Z
exp

(∑
i

aivi

) ∑
h∈{0,1}m

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
(S.29)

=
1

Z
exp

(∑
i

aivi

) ∑
h1,...,hm

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
(S.30)

Importantly, each term in the product only depends on a single hj , so that by sequentially
applying the distributive law, we have

∑
h1,...,hm

m∏
j=1

exp

(
hj

[∑
i

viWij + bj

])
=

 ∑
h1,...,hm−1

m−1∏
j=1

exp

(
hj

[∑
i

viWij + bj

]) ·

∑
hm

exp

(
hm

[∑
i

viWim + bm

])
(S.31)

= . . .

=
m∏
j=1

∑
hj

exp

(
hj

[∑
i

viWij + bj

]) (S.32)

Since hj ∈ {0, 1}, we obtain

∑
hj

exp

(
hj

[∑
i

viWij + bj

])
= 1 + exp

(∑
i

viWij + bj

)
(S.33)

and thus

p(v) =
1

Z
exp

(∑
i

aivi

)
m∏
j=1

[
1 + exp

(∑
i

viWij + bj

)]
. (S.34)

Note that in the derivation of p(v) we have not used the assumption that the visibles vi are
binary. The same expression would thus obtained if the visibles were defined in another
space, e.g. the real numbers.
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While p(v) is written as a product, p(v) does not factorise into terms that depend on
subsets of the vi. On the contrary, all vi are present in all factors. Since p(v) does not
factorise, computing the normalising Z is expensive. For binary visibles vi ∈ {0, 1}, Z
equals

Z =
∑

v∈{0,1}n
exp

(∑
i

aivi

)
m∏
j=1

[
1 + exp

(∑
i

viWij + bj

)]
(S.35)

where we have to sum over all 2n configurations of the visibles v. This is computationally
expensive, or even prohibitive if n is large (220 = 1048576, 230 > 109). Note that different
values of ai, bi,Wij yield different values of Z. (This is a reason why Z is called the
partition function when the ai, bi,Wij are free parameters.)

It is instructive to write p(v) in the log-domain,

log p(v) = logZ +
n∑

i=1

aivi +
m∑
j=1

log

[
1 + exp

(∑
i

viWij + bj

)]
, (S.36)

and to introduce the nonlinearity f(u),

f(u) = log [1 + exp(u)] , (S.37)

which is called the softplus function and plotted below. The softplus function is a smooth
approximation of max(0, u), see e.g. https://en.wikipedia.org/wiki/Rectifier_(neural_
networks)
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With the softplus function f(u), we can write log p(v) as

log p(v) = logZ +

n∑
i=1

aivi +

m∑
j=1

f

(∑
i

viWij + bj

)
. (S.38)

The parameter bj plays the role of a threshold as shown in the figure below. The terms
f (
∑

i viWij + bj) can be interpreted in terms of feature detection. The sum
∑

i viWij is
the inner product between v and the j-th column of W, and the inner product is largest if
v equals the j-th column. We can thus consider the columns of W to be feature-templates,
and the f (

∑
i viWij + bj) a way to measure how much of each feature is present in v.
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Further,
∑

i viWij + bj is also the input to the sigmoid function when computing p(hj =
1|v). Thus, the conditional probability for hj to be one, i.e. “active”, can be considered
to be an indicator of the presence of the j-th feature (j-th column of W) in the input v.

If v is such that
∑

i viWij + bj is large for many j, i.e. if many features are detected, then
f (
∑

i viWij + bj) will be non-zero for many j, and log p(v) will be large.
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