These are exercises for self-study and exam preparation. All material is examinable unless otherwise mentioned.

Exercise 1. Visualising and analysing Gibbs distributions via undirected graphs

We here consider the Gibbs distribution

$$p(x_1,\ldots,x_5) \propto \phi_{12}(x_1,x_2)\phi_{13}(x_1,x_3)\phi_{14}(x_1,x_4)\phi_{23}(x_2,x_3)\phi_{25}(x_2,x_5)\phi_{45}(x_4,x_5)$$

- (a) Visualise it as an undirected graph.
- (b) What are the neighbours of x_3 in the graph?
- (c) Do we have $x_3 \perp \!\!\!\perp x_4 \mid x_1, x_2$?
- (d) What is the Markov blanket of x_4 ?
- (e) On which minimal set of variables A do we need to condition to have $x_1 \perp \!\!\! \perp x_5 \mid A$?

Exercise 2. Factorisation and independencies for undirected graphical models

Consider the undirected graphical model defined by the following graph, sometimes called a diamond configuration.

- (a) How do the pdfs/pmfs of the undirected graphical model factorise?
- (b) List all independencies that hold for the undirected graphical model.

Exercise 3. Factorisation from the Markov blankets

For a distribution $p(x_1, \ldots, x_4, y_1, \ldots, y_4)$, we are given the following Markov blankets for the x-variables:

$$MB(x_1) = \{x_2, y_1\}$$
 $MB(x_2) = \{x_1, x_3, y_2\}$ $MB(x_3) = \{x_2, x_4, y_3\}$ $MB(x_4) = \{x_3, y_4\}$ (1)

Without inserting more independencies than those specified by the Markov blankets, draw the graph over which p factorises and state the factorisation. (Assume that p is positive for all possible values of its variables).

Exercise 4. Undirected graphical model with pairwise potentials

We here consider Gibbs distributions where the factors only depend on two variables at a time. The probability density or mass functions over d random variables x_1, \ldots, x_d then take the form

$$p(x_1, \dots, x_d) \propto \prod_{i \leq j} \phi_{ij}(x_i, x_j)$$

Such models are sometimes called pairwise Markov networks.

- (a) Let $p(x_1, ..., x_d) \propto \exp\left(-\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} \mathbf{b}^{\top}\mathbf{x}\right)$ where **A** is symmetric and $\mathbf{x} = (x_1, ..., x_d)^{\top}$. What are the corresponding factors ϕ_{ij} for $i \leq j$?
- (b) For $p(x_1, ..., x_d) \propto \exp\left(-\frac{1}{2}\mathbf{x}^{\top}\mathbf{A}\mathbf{x} \mathbf{b}^{\top}\mathbf{x}\right)$, show that $x_i \perp \!\!\! \perp x_j \mid \{x_1, ..., x_d\} \setminus \{x_i, x_j\}$ if the (i, j)-th element of \mathbf{A} is zero.

Exercise 5. Restricted Boltzmann machine (based on Barber Exercise 4.4)

The restricted Boltzmann machine is an undirected graphical model for binary variables $\mathbf{v} = (v_1, \dots, v_n)^{\top}$ and $\mathbf{h} = (h_1, \dots, h_m)^{\top}$ with a probability mass function equal to

$$p(\mathbf{v}, \mathbf{h}) \propto \exp\left(\mathbf{v}^{\mathsf{T}} \mathbf{W} \mathbf{h} + \mathbf{a}^{\mathsf{T}} \mathbf{v} + \mathbf{b}^{\mathsf{T}} \mathbf{h}\right),$$
 (2)

where **W** is a $n \times m$ matrix. Both the v_i and h_i take values in $\{0,1\}$. The v_i are called the "visibles" variables since they are assumed to be observed while the h_i are the hidden variables since it is assumed that we cannot measure them.

(a) Use graph separation to show that the joint conditional $p(\mathbf{h}|\mathbf{v})$ factorises as

$$p(\mathbf{h}|\mathbf{v}) = \prod_{i=1}^{m} p(h_i|\mathbf{v}).$$

(b) Show that

$$p(h_i = 1|\mathbf{v}) = \frac{1}{1 + \exp\left(-b_i - \sum_j W_{ji} v_j\right)}$$
(3)

where W_{ji} is the (ji)-th element of \mathbf{W} , so that $\sum_{j} W_{ji} v_{j}$ is the inner product (scalar product) between the *i*-th column of \mathbf{W} and \mathbf{v} .

(c) Use a symmetry argument to show that

$$p(\mathbf{v}|\mathbf{h}) = \prod_{i} p(v_i|\mathbf{h})$$
 and $p(v_i = 1|\mathbf{h}) = \frac{1}{1 + \exp\left(-a_i - \sum_{j} W_{ij} h_j\right)}$