S v ey o Probabilistic Modelling and Reasoning Autumn 2025

- informatics Self-Study Solutions (VI & EM) Michael Gutmann

These are exercises for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Variational posterior approximation

We have seen that maximising the evidence lower bound (ELBO) with respect to the variational distribu-
tion ¢ minimises the Kullback-Leibler divergence to the true posterior p. We here assume that q and p
are probability density functions so that the Kullback-Leibler divergence between them is defined as
q(x) q(x
Ki(all) = [ oo ton 2ax = 5, 10 29, )

p(x) p(x)

(a) You can here assume that x is one-dimensional so that p and q are univariate densities. Consider
the case where p is a bimodal density but the variational densities q are unimodal. Sketch a figure
that shows p and a variational distribution q that has been learned by minimising KL(q||p). Explain
qualitatively why the sketched q minimises KL(q||p).

Solution. A possible sketch is shown in the figure below.
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Explanation: We can divide the domain of p and ¢ into the areas where p is small (zero)
and those where p has significant mass. Since the objective features ¢ in the numerator
while p is in the denominator, an optimal ¢ needs to be zero where p is zero. Otherwise, it
would incur a large penalty (division by zero). Since we take the expectation with respect
to ¢, however, regions where p > 0 do not need to be covered by ¢; cutting them out does
not incur a penalty. Hence, optimal unimodal ¢ only cover one peak of the bimodal p.

(b) Assume that the true posterior p(x) = p(x1,x2) factorises into two Gaussians of mean zero and
variances o3 and o3,

( ) 1 x% 1 x% (2)
T1,x) = exp | —— exp | ——= | .
P, 2 \/27r0% P 20% \/27TO'% P 20’%

Assume further that the variational density q(x1,z2; \?) is parametrised as

> [x%er%} (3)

gz, 225 N?) =

2maz % 222

where \? is the variational parameter that is learned by minimising KL(q||p). If o5 is much larger
than o3, do you expect \? to be closer to o3 or to o3¢ Provide an explanation.
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Solution. The learned variational parameter will be closer to o? (the smaller of the two

0?).

Explanation: First note that the 0'2-2 are the variances along the two different axes, and
that A2 is the single variance for both z1 and z5. The objective penalises ¢ if it is non-zero
where p is zero (see above). The variational parameter A\? thus will get adjusted during

learning so that the variance of g is close to the smallest of the two o2.

Exercise 2. Generalised Variational Inference
The ELBO can be written as
L(q) = Eqy) [log p(x,y)] = KL(a(y)lp(¥)), (4)

where q(y) is the variational distribution, X, the observed data, and p(y) the prior. The variational dis-
tribution q(y) that maximises L(q) is given by the posterior p(y|x,). The posterior strikes a compromise
between explaining X,, i.e. making the first term large, and staying close to the prior p(y), i.e. making
the second term small.

We here consider a generalised version of the ELBO where logp(x,|y) is replaced by some function
7(X0,¥) that “rewards” the variational distribution q(y) for placing probability mass aroundy (the values
of 7(X0,y) may be positive or negative). The objective is

J(@) = Eqy) [r(%0,¥)] = KL(q(y)|Ip(y))- (5)

Credit: Such objectives were introduced and studied in the paper A general framework for updating belief
distributions by Bissiri, Holmes, and Walker, J. R. Statist. Soc. B (2016).

(a) What is the distribution q that maximises J(q)?

HINT: Write r(x,,y) = logexp(r(X,,y)) and express J(q) in terms of a KL-divergence between q
and some distribution p*.

Solution. We follow the first hint and write the objective as

J(q) = Eg(yy logexp(r(xo,y)) — KL(q(y)[p(y)) (S.1)

and insert the definition of the KL-divergence

7(0) = Eygyy log exp(r (X0, 7)) — Eygy log 1) (5.2)
p(y)
We then use that log(u) = —log(1/u) to obtain
1 q(y)
J =FE —log————| — E log —==% S.3
(0= Bae) |18 oty ] 9 % () (55)
which allows us to combine the two terms

J(q) = —Ey(y) log a(y) (S.4)

exp(r (X0, ¥))p(y)

Assuming that Z(x,) = Epy) exp(r(x,,y)) exists, we then have

1
mQ(y)
e S.5
(q) q(y) 108 o) EXP(r(X0,¥))p(y) =
q(y)
_ _Eq(y) log ; ) — Eq(y) log Z(XO) (86)

Z(x0) eXP(T(Xm Y))p(y
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Since log % does not depend on y, we obtain

q9(y)
J(q) = —Ey(y) log — log (S.7)
1T s exp(r (%0, y))0(y) Z(x)
q9(y)
= —E, ) log + const (S.8)
1TE s exp(r(%0, ¥))p(y)
1
= —KL <q(y)|\ 7)) exp(r(xo,y))p(y)> + const (S.9)
Hence the distribution ¢* that maximises J(q) is given by
q"(y) = argmin KL(q(y)|| exp(r(%o,¥))P(¥))-
q Z(x,)
Given the non-negativity properties of the KL-divergence, we thus obtain
. 1
¢ (y) = 7)) exp(r(xo,y))p(y) (5.10)

As a sanity check, let us set r(x,,y) = logp(X,]y): We then obtain obtain ¢*(y) =
70(oly)p(y) = p(y[%o)-

(b) What constraint does r(X,,y) need to satisfy for the optimal q(y) to exist?

Solution. From the above derivation, the expected value Z(x,) = Ey ) exp(r(xo,y))
needs to exist, which places a constraint on the reward function r(x,,y).

Exercise 3. EM algorithm for mixture models (optional, not examinable)

Mixture models are statistical models of the form

K
p(x;0) = mipi(x; 0) (6)
k=1

where each pi(x;0y) is itself a statistical model parameterised by 0y and the 7 > 0 are mizture weights
that sum to one. The parameters 0 of the mizxture model consist of the parameters 0y of each mizture
component and the mizture weights m, i.e. 8 = (01,...,0k,71,...,7Kk). An example is a mizture
of Gaussians where each py(x;0%) is a Gaussian with parameters given by the mean vector py and a
covariance matrix Xy,.

The mixture model in (6) can be considered to be the marginal distribution of a latent variable model
p(x, h; @) where h is an unobserved variable that takes on values 1,..., K and p(h = k) = 7. Defining
p(x|h = k; 0) = pi(x;0y), the latent variable model corresponding to (6) thus is

p(x,h = k;0) = p(x|h = k;0)p(h = k) = Trpr(x; Ok). (7)

In particular note that marginalising out h gives p(x;8) in (6).

(a) Verify that the latent variable model in (7) can be written as

K

p(x, h;:0) = [ mapi(x; 02)]" "= (8)
k=1

where h takes values in 1,... K.
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(b)

(c)

Solution. Since 1(h = k) is one if h = k and zero otherwise, we have

K

p(x,h = j;0) = [ [mipe(x; 00" V=" = 7;p;(x; 0)) (S.11)
k=1

for any j € {1,..., K}, which matches (7).

Since the mizture model in (6) can be seen as the marginal of a latent-variable model, we can use
the expectation mazimisation (EM) algorithm to estimate the parameters 6.

For a general model p(D,h;0) where D are the observed data and h the corresponding unobserved
variables, the EM algorithm iterates between computing the expected complete-data log-likelihood
J'(8) and mazimising it with respect to 6:
E-step at iteration I: Jl( )=E »(h|D; ez)ﬂogp(D h; 6)) (9)
M-step at iteration I: 6'"' = argmax J'(0) (10)
0

Here 0" is the value of @ in the l-th iteration. When solving the optimisation problem, we also need
to take into account constraints on the parameters, e.g. that the w, correspond to a pmf.

Assume that the data D consists of n iid data points x;, that each x; has associated with it a scalar
unobserved variable h;, and that the tuples (x;,h;) are all iid. What is J'(8) under these additional
assumptions?

Solution. Since the (x;, h;) are iid, we have that p(D,h;0) =[], p(x;, hi; 0). Hence

J'6) = E, 1, p.1)[log p(D, 1; 0)] (S.12)
= Epmpier) !Xn: log p(xi, hi; 9)] (S.13)
- i E,nip;et) log p(xi, hi; 0)] (S.14)
= i B, (im0 llog p(xi, hi; 0)] (S.15)
= zn: B xi:00 [l0g p(xi, hi; 0))] (S.16)
i=1

where in the second last step, we have used that each logp(x;, hi; @)] only involves one
latent variable h; so that we only need to take the expectation over p(h;|D;0"), and in the
last step, we have used that h; 1L x;, for j # .

Show that for the latent variable model in (8), J'(0) equals

=33

=1

wiy, log[mpi (xi; Ok )], (11)

Mx

>~
Il

1

wh = TPk (X33 0 k)
.
' Zk=1 Wkpk(xi, 92)

(12)

Note that the wék are defined in terms of the parameters 7r,l€ and 02 from iteration l. They are equal

to the conditional probabilities p(h = k‘|xi;9l), i.e. the probability that x; has been sampled from
component pg(X;; 02)
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Solution. We consider a single term Ep(hlx;gz)[logp(x, h;@)] in (S.16).
Given the form of the model in (8), we have that

K
logp(x,h;0) = ) 1(h = k)log|mkpy(x; 6})] (S.17)
k=1
and hence
K
B, hissony 108 P(x, 1 0)] = B oty | D 1(h = k) log[mepy (x; 6),)] (S.18)
p k=1
= Y By (L7 = k)] log[mipr(x; 1)) (S.19)
klz(l
=" p(h = k|x; 0") log[mepr(x; 0z)] (S.20)

i

1

where we have used that the expectation over an indicator event equals the probability for
the event to happen, i.e. E . g1y [1(h = k)] = p(h = k[x; 0.

The probability p(h = k|x; ') can be determined via the product (Bayes’) rule and Equa-
tions (7) and (6)

_ l
p(h = kjx; 8) = ZX:=H.8) (S.21)
p(x;6°)

T K 1
D ke ”fgpk@(; 0%)

Note that the superscript ! indicates that the 7rfC are the mixture weights and the 02 the
model parameters from iteration .

The objective J'(8) sums over n terms Epnixs:00 108 p(xi, h; 0)]. Let us denote p(h =
k|x;; 8") from (S.22) by wl, so that

K
B 1,50 108 p(xi, i 0)] = wiy. log[mpi (x; 61)] (S.23)
k=1
and
n K
TH0) = > why loglmpk (xi; O1)]. (S.24)
=1 k=1

The objective J'(0) takes the form of a weighted log-likelihood. In more detail, since
S, wh, =1 for all data points x; (and w!, > 0), Zszl w!y log[mipk(xi; 0%)] is a convex
combination. This means that the different components of the mixture model compete
with each other: larger weights for some components mean smaller weights for others. In
the extreme case, some components may contribute in a negligible way to the i-th term of
the log-likelihood.

The weights wék are sometimes, in particular for mixture of Gaussians, called “soft-
assignments” because they specify to which extent a data points x; “belongs” to a mixture
component pi. Alternatively, we can interpret the wﬁk to be the “responsibilities” of each
mixture component p; for a datapoint x;.
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(d)

(¢)

In some cases, e.g. for computational reasons, we may determine which of the K weights
wﬁl, e ,wﬁ i is the largest and then set it to one while setting the other weights to zero.
This corresponds to “hard-assignments” (and “hard EM”) where a data point x; is exclu-

sively assigned to a single mixture component py.

Assume that the different mizture components p(x;0x),k = 1,..., K do not share any parameters.
Show that the updated parameter values 0?1 are given by weighted mazximum likelihood estimates.

Solution. We interchange the order of the summations in (11) so that

K n
J'(8) = ZZ wyy, log[mipr(xi; Ok)] (S.25)

k=1 11=1
K n
=YD wiglogm + Z Z wiy, log pr.(xi; O1) (S.26)
k=1 1=1 k=1 i=1
ACY)

When we update the parameters 8y, of the mixture components, the first term is a constant.
The second term is a sum over weighted log-likelihoods z;(ek), one for each mixture
component. If the mixture components do not share parameters, we thus have
0?1 = arggmax J'(8) = arggmaxﬁi(ek) (5.27)
k k

This means that we can compute 9?1 as if we performed maximum likelihood estimation
for the model pi(x;60%), expect that the data points x; are weighted by the wﬁk.

Show that mazimising J'(0) with respect to the mizture weights Ty gives the update Tule
mitl = Z wh, (13)

Solution. We start with (11) and drop additive terms that do not depend on the 7.
Since

n K
JH8) = Z Z w!), log mj, 4 terms not depending on the 7y, (S.28)
i=1 k=1

we can focus on the objective

n K
JL(my, .. TR) = Z wak log 7, (S.29)

i=1 k=1
K n
= Z Zw§k> log 7, (S.30)
k=1 \i=1
—_————
wh
K
= Zwi log 7. (S.31)
k=1
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Taking into account that the 7w = p(h = k) define a pmf, the optimisation problem to
solve is

K

maximise Zwé log 7, (S.32)
k=1

subject to 7 >0 (S.33)

K
d me=1 (S.34)
k=1

The constrained optimisation problem could be solved via Lagrange multipliers. But we
here take another approach and solve the optimisation problem by phrasing it in terms of
a KL-divergence minimisation problem.

First, note that the m; that maximise J}T(ﬂ'l,...,ﬂ'[() will also maximise the re-scaled
objective
1 K
Ji(my,. .. mK) = Z L log (S.35)

K
Zk:ﬂ’é Zk 1% k=

qk log m, (S.36)

|MN

where we introduced

=—F (S.37)
Zi(:l wé

The qfC are non-negative and sum to one. Hence, we can consider them to define a pmf.

Second, note that the 7 that maximise Jfr (m1,...,7x) will also maximise
K K K -
k
> gilogm, — > qilogg, = gilog— (S-38)
k=1 k=1 k=1 U
K l
= —qu logq—k (S.39)
T
k=1
= —KL(¢!, 7) (S.40)

since adding constants does not change the solution. Hence, the optimal 75 are given by
the pmf 7 that minimises the KL-divergence KL(¢!, 7). This means that the optimal 7y,
are

wfc — Z?:l wﬁk . (8.41)

K n n K
Z why = Z Z wh =n (S.42)
k=1 i=1 i=1 k=1
The requested update rule thus is
1 n
it = - Zwik (S.43)
i=1
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The update rule does not depend directly on the statistical model pi(x;6%) that we may
choose for the mixture components. Their influence occurs indirectly via the wgk.

(f) Summarise the EM-algorithm to learn the parameters 6 of the mixture model in (6) from iid data
XlyeooyXn-
Solution. We collect and summarise the results from the previous questions:
e E-step at iteration 1: Compute the posterior probabilities (soft assignments)
! . gl
1 _ TPk (X5 0),)
wik - K 1 1
> k=1 TPk(Xi; 6},)

for all data points x; and and mixture components k. Then formulate the objective
function J'(6)

(S.44)

n K

J0) = " wi log[mipk(xi; 04)] (S.45)

=1 k=1

e M-step at iteration 1: Compute the new mixture weights
1 n
I+1 I
i=1

To compute the new mixture parameters 9?1, maximise J' 1(0) if some parameters
are shared or tied. If the py(x;8y) do not share parameters, the new parameters 0?1
are obtained by maximising a weighted log-likelihood for each mixture component
separately:

g+t = argernaxz why, log pr(xi; 01) (S.47)
k =1

fork=1,..., K.

Exercise 4. EM algorithm for mixture of Gaussians (optional, not examinable)

We here use the results from Ezercise 3 to derive the EM update rules for a mixture of Gaussians. This
is a mizture model where each mixture component is a Gaussian distribution, i.e.

K
p(x;0) = > mN(x; e, D). (14)

=1

We consider the case where each py and Xy, can be individually changed (no tying of parameters). The
overall parameters of the model are given by the py, Xy and the mizture weights 7, >0, k=1,... K. As
in the case of general mizture models, the mizture weights sum to one.

(a) Determine the mazimum likelihood estimates for a multivariate Gaussian N (x;u,X) for #d data
D = (x1,...,X,) when each data point x; has a weight w;. The weights are non-negative but do
not necessarily sum to one.
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Solution. The weighted log-likelihood is

O, B) =) wilog N(xi; p, ) (S.48)
i=1
n 1 n
= Zwi log | det 278|712 — 5 Zwi(xi — ) BN (x; — p) (S.49)
i=1 =1

Introducing the normalised weights W; = w;/ > | w;, we have

1
D iy Wi

Let us write out the quadratic term

1 n
() = log | det 2a%| 72 — 2% Wilxi — ) "7 (x; — ) (S50)
=1

(xi —p) 'S (xi—p) =x/ 27 % — 2%/ Sl p+ "2 (S.51)

Hence

n

Z WZ(XZ — u)TE_l(xi - ll,) = Z WiXIZ_IXZ’ -2 Z VVZ'XZTE_IH + Z W; ,uTE_l,u
i el i=1 i—1

1
B (5.52)
n n T
— tr KZ WixixiT> T -2 <Z Wixi> D TRYTAD Yy
- - (S.53)
=tr (RE™') —2b' S 'p+p'= (S.54)

where R =3"" | W;x;x] and b = Yo Wix;. Hence

1 1 1

=, E) =log|det 27E[ 2 - ~tr RE) + b = lp—-p'E . (S.55)
D i Wi 2 2

This has exactly the same form as the unweighted likelihood function, just the sufficient

statistics R and b are computed using the weights. Hence, the maximum likelihood

estimates, when expressed in terms of R and b remain the same as in the unweighted

case:

p=b=> Wx (S.56)
=1
N=R-bb' =) Wxx] —bb' (S.57)

i=1

Moreover, since

Z Wl(Xl — b) (Xi — b)T = i VVZ'XZ'XZT — i Wix; b—r —b i W,LXZT —l—bbT (858)
' i=1 i=1 i=1

N—— N——
b bT

=R—bb" —bb' +bb" (S.59)

=R—-bb' (S.60)
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we find that the weighted maximum likelihood estimates are the weighted average and
weighted covariance matrix:

w;

B = ZWiXi %= ZWi(Xi — ) (x; — )" Wi = m (S.61)
i=1 i=1 =1

(b) Use the results from Ezxercise 3 to derive the EM update rules for the parameters of the Gaussian
mixture model.

Solution. From the solution to Exercise 3(f) and the derived weighted MLE solutions,

we find:
e E-step at iteration 1: Compute the posterior probabilities (soft assignments)

! Ll
wiy, = I?kN,(X““k’ l’“) l (5.62)
> ope1 TN (s g, 2

for all data points x; and and mixture components k.

e M-step at iteration I:

— Determine the weighted MLEs
n n
pt =Y Whxi =) Wik — iy 6a - T (5.63)
i=1 i=1

! l l
where Wi = wjy. /(3212 wig)-
— Compute the new mixture weights

1 n
=1
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