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These are exercises for self-study and exam preparation. All material is examinable unless otherwise
mentioned.

Exercise 1. Variational posterior approximation

We have seen that maximising the evidence lower bound (ELBO) with respect to the variational distribu-
tion q minimises the Kullback-Leibler divergence to the true posterior p. We here assume that q and p
are probability density functions so that the Kullback-Leibler divergence between them is defined as

KL(q||p) =
∫

q(x) log
q(x)

p(x)
dx = Eq

[
log

q(x)

p(x)

]
. (1)

(a) You can here assume that x is one-dimensional so that p and q are univariate densities. Consider
the case where p is a bimodal density but the variational densities q are unimodal. Sketch a figure
that shows p and a variational distribution q that has been learned by minimising KL(q||p). Explain
qualitatively why the sketched q minimises KL(q||p).

Solution. A possible sketch is shown in the figure below.
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Explanation: We can divide the domain of p and q into the areas where p is small (zero)
and those where p has significant mass. Since the objective features q in the numerator
while p is in the denominator, an optimal q needs to be zero where p is zero. Otherwise, it
would incur a large penalty (division by zero). Since we take the expectation with respect
to q, however, regions where p > 0 do not need to be covered by q; cutting them out does
not incur a penalty. Hence, optimal unimodal q only cover one peak of the bimodal p.

(b) Assume that the true posterior p(x) = p(x1, x2) factorises into two Gaussians of mean zero and
variances σ2

1 and σ2
2,

p(x1, x2) =
1√
2πσ2

1

exp

[
− x2

1

2σ2
1

]
1√
2πσ2

2

exp

[
− x2

2

2σ2
2

]
. (2)

Assume further that the variational density q(x1, x2;λ
2) is parametrised as

q(x1, x2;λ
2) =

1

2πλ2
exp

[
−x2

1 + x2
2

2λ2

]
(3)

where λ2 is the variational parameter that is learned by minimising KL(q||p). If σ2
2 is much larger

than σ2
1, do you expect λ2 to be closer to σ2

2 or to σ2
1? Provide an explanation.
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Solution. The learned variational parameter will be closer to σ2
1 (the smaller of the two

σ2
i ).

Explanation: First note that the σ2
i are the variances along the two different axes, and

that λ2 is the single variance for both x1 and x2. The objective penalises q if it is non-zero
where p is zero (see above). The variational parameter λ2 thus will get adjusted during
learning so that the variance of q is close to the smallest of the two σ2

i .

Exercise 2. Generalised Variational Inference

The ELBO can be written as

L(q) = Eq(y) [log p(xo|y)]−KL(q(y)||p(y)), (4)

where q(y) is the variational distribution, xo the observed data, and p(y) the prior. The variational dis-
tribution q(y) that maximises L(q) is given by the posterior p(y|xo). The posterior strikes a compromise
between explaining xo, i.e. making the first term large, and staying close to the prior p(y), i.e. making
the second term small.

We here consider a generalised version of the ELBO where log p(xo|y) is replaced by some function
r(xo,y) that “rewards” the variational distribution q(y) for placing probability mass around y (the values
of r(xo,y) may be positive or negative). The objective is

J(q) = Eq(y) [r(xo,y)]−KL(q(y)||p(y)). (5)

Credit: Such objectives were introduced and studied in the paper A general framework for updating belief
distributions by Bissiri, Holmes, and Walker, J. R. Statist. Soc. B (2016).

(a) What is the distribution q that maximises J(q)?

HINT: Write r(xo,y) = log exp(r(xo,y)) and express J(q) in terms of a KL-divergence between q
and some distribution p∗.

Solution. We follow the first hint and write the objective as

J(q) = Eq(y) log exp(r(xo,y))−KL(q(y)||p(y)) (S.1)

and insert the definition of the KL-divergence

J(q) = Eq(y) log exp(r(xo,y))− Eq(y) log
q(y)

p(y)
(S.2)

We then use that log(u) = − log(1/u) to obtain

J(q) = Eq(y)

[
− log

1

exp(r(xo,y))

]
− Eq(y) log

q(y)

p(y)
(S.3)

which allows us to combine the two terms

J(q) = −Eq(y) log
q(y)

exp(r(xo,y))p(y)
(S.4)

Assuming that Z(xo) = Ep(y) exp(r(xo,y)) exists, we then have

J(q) = −Eq(y) log

1
Z(xo)

q(y)

1
Z(xo)

exp(r(xo,y))p(y)
(S.5)

= −Eq(y) log
q(y)

1
Z(xo)

exp(r(xo,y))p(y)
− Eq(y) log

1

Z(xo)
(S.6)
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Since log 1
Z(xo)

does not depend on y, we obtain

J(q) = −Eq(y) log
q(y)

1
Z(xo)

exp(r(xo,y))p(y)
− log

1

Z(xo)
(S.7)

= −Eq(y) log
q(y)

1
Z(xo)

exp(r(xo,y))p(y)
+ const (S.8)

= −KL

(
q(y)|| 1

Z(xo)
exp(r(xo,y))p(y)

)
+ const (S.9)

Hence the distribution q∗ that maximises J(q) is given by

q∗(y) = argmin
q

KL(q(y)|| 1

Z(xo)
exp(r(xo,y))p(y)).

Given the non-negativity properties of the KL-divergence, we thus obtain

q∗(y) =
1

Z(xo)
exp(r(xo,y))p(y) (S.10)

As a sanity check, let us set r(xo,y) = log p(xo|y): We then obtain obtain q∗(y) =
1
Z p(xo|y)p(y) = p(y|xo).

(b) What constraint does r(xo,y) need to satisfy for the optimal q(y) to exist?

Solution. From the above derivation, the expected value Z(xo) = Ep(y) exp(r(xo,y))
needs to exist, which places a constraint on the reward function r(xo,y).

Exercise 3. EM algorithm for mixture models (optional, not examinable)

Mixture models are statistical models of the form

p(x;θ) =

K∑
k=1

πkpk(x;θk) (6)

where each pk(x;θk) is itself a statistical model parameterised by θk and the πk ≥ 0 are mixture weights
that sum to one. The parameters θ of the mixture model consist of the parameters θk of each mixture
component and the mixture weights πk, i.e. θ = (θ1, . . . ,θK , π1, . . . , πK). An example is a mixture
of Gaussians where each pk(x;θk) is a Gaussian with parameters given by the mean vector µµµk and a
covariance matrix ΣΣΣk.

The mixture model in (6) can be considered to be the marginal distribution of a latent variable model
p(x, h;θ) where h is an unobserved variable that takes on values 1, . . . ,K and p(h = k) = πk. Defining
p(x|h = k;θ) = pk(x;θk), the latent variable model corresponding to (6) thus is

p(x, h = k;θ) = p(x|h = k;θ)p(h = k) = πkpk(x;θk). (7)

In particular note that marginalising out h gives p(x;θ) in (6).

(a) Verify that the latent variable model in (7) can be written as

p(x, h;θ) =

K∏
k=1

[πkpk(x;θk)]
1(h=k)

(8)

where h takes values in 1, . . . ,K.
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Solution. Since 1(h = k) is one if h = k and zero otherwise, we have

p(x, h = j;θ) =

K∏
k=1

[πkpk(x;θk)]
1(j=k) = πjpj(x;θj) (S.11)

for any j ∈ {1, . . . ,K}, which matches (7).

(b) Since the mixture model in (6) can be seen as the marginal of a latent-variable model, we can use
the expectation maximisation (EM) algorithm to estimate the parameters θ.

For a general model p(D,h;θ) where D are the observed data and h the corresponding unobserved
variables, the EM algorithm iterates between computing the expected complete-data log-likelihood
J l(θ) and maximising it with respect to θ:

E-step at iteration l: J l(θ) = Ep(h|D;θl)[log p(D,h;θ)] (9)

M-step at iteration l: θl+1 = argmax
θ

J l(θ) (10)

Here θl is the value of θ in the l-th iteration. When solving the optimisation problem, we also need
to take into account constraints on the parameters, e.g. that the πk correspond to a pmf.

Assume that the data D consists of n iid data points xi, that each xi has associated with it a scalar
unobserved variable hi, and that the tuples (xi, hi) are all iid. What is J l(θ) under these additional
assumptions?

Solution. Since the (xi, hi) are iid, we have that p(D,h;θ) =
∏n

i=1 p(xi, hi;θ). Hence

J lθ) = Ep(h|D;θl)[log p(D,h;θ)] (S.12)

= Ep(h|D;θl)

[
n∑

i=1

log p(xi, hi;θ)

]
(S.13)

=
n∑

i=1

Ep(h|D;θl)[log p(xi, hi;θ)] (S.14)

=
n∑

i=1

Ep(hi|D;θl)[log p(xi, hi;θ)] (S.15)

=
n∑

i=1

Ep(hi|xi;θ
l)[log p(xi, hi;θ)] (S.16)

where in the second last step, we have used that each log p(xi, hi;θ)] only involves one
latent variable hi so that we only need to take the expectation over p(hi|D;θl), and in the
last step, we have used that hi ⊥⊥ xj , for j ̸= i.

(c) Show that for the latent variable model in (8), J l(θ) equals

J l(θ) =

n∑
i=1

K∑
k=1

wl
ik log[πkpk(xi;θk)], (11)

wl
ik =

πl
kpk(xi;θ

l
k)∑K

k=1 π
l
kpk(xi;θ

l
k)

(12)

Note that the wl
ik are defined in terms of the parameters πl

k and θl
k from iteration l. They are equal

to the conditional probabilities p(h = k|xi;θ
l), i.e. the probability that xi has been sampled from

component pk(xi;θ
l
k).
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Solution. We consider a single term Ep(h|x;θl)[log p(x, h;θ)] in (S.16).

Given the form of the model in (8), we have that

log p(x, h;θ) =
K∑
k=1

1(h = k) log[πkpk(x;θk)] (S.17)

and hence

Ep(h|x;θl)[log p(x, h;θ)] = Ep(h|x;θl)

[
K∑
k=1

1(h = k) log[πkpk(x;θk)]

]
(S.18)

=
K∑
k=1

Ep(h|x;θl) [1(h = k)] log[πkpk(x;θk)] (S.19)

=

K∑
k=1

p(h = k|x;θl) log[πkpk(x;θk)] (S.20)

where we have used that the expectation over an indicator event equals the probability for
the event to happen, i.e. Ep(h|x;θl) [1(h = k)] = p(h = k|x;θl).

The probability p(h = k|x;θl) can be determined via the product (Bayes’) rule and Equa-
tions (7) and (6)

p(h = k|x;θl) =
p(x, h = k,θl)

p(x;θl)
(S.21)

=
πl
kpk(x;θ

l
k)∑K

k=1 π
l
kpk(x;θ

l
k)

(S.22)

Note that the superscript l indicates that the πl
k are the mixture weights and the θl

k the
model parameters from iteration l.

The objective J l(θ) sums over n terms Ep(h|xi;θ
l)[log p(xi, h;θ)]. Let us denote p(h =

k|xi;θ
l) from (S.22) by wl

ik so that

Ep(h|xi;θ
l)[log p(xi, h;θ)] =

K∑
k=1

wl
ik log[πkpk(x;θk)] (S.23)

and

J l(θ) =

n∑
i=1

K∑
k=1

wl
ik log[πkpk(xi;θk)]. (S.24)

The objective J l(θ) takes the form of a weighted log-likelihood. In more detail, since∑
k w

l
ik = 1 for all data points xi (and wl

ik ≥ 0),
∑K

k=1w
l
ik log[πkpk(xi;θk)] is a convex

combination. This means that the different components of the mixture model compete
with each other: larger weights for some components mean smaller weights for others. In
the extreme case, some components may contribute in a negligible way to the i-th term of
the log-likelihood.

The weights wl
ik are sometimes, in particular for mixture of Gaussians, called “soft-

assignments” because they specify to which extent a data points xi “belongs” to a mixture
component pk. Alternatively, we can interpret the wl

ik to be the “responsibilities” of each
mixture component pk for a datapoint xi.
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In some cases, e.g. for computational reasons, we may determine which of the K weights
wl
i1, . . . , w

l
iK is the largest and then set it to one while setting the other weights to zero.

This corresponds to “hard-assignments” (and “hard EM”) where a data point xi is exclu-
sively assigned to a single mixture component pk.

(d) Assume that the different mixture components pk(x;θk), k = 1, . . . ,K do not share any parameters.
Show that the updated parameter values θl+1

k are given by weighted maximum likelihood estimates.

Solution. We interchange the order of the summations in (11) so that

J l(θ) =

K∑
k=1

n∑
i=1

wl
ik log[πkpk(xi;θk)] (S.25)

=
K∑
k=1

n∑
i=1

wl
ik log πk +

K∑
k=1

n∑
i=1

wl
ik log pk(xi;θk)︸ ︷︷ ︸

ℓlk(θk)

(S.26)

When we update the parameters θk of the mixture components, the first term is a constant.
The second term is a sum over weighted log-likelihoods ℓlk(θk), one for each mixture
component. If the mixture components do not share parameters, we thus have

θl+1
k = argmax

θk

J l(θ) = argmax
θk

ℓlk(θk) (S.27)

This means that we can compute θl+1
k as if we performed maximum likelihood estimation

for the model pk(x;θk), expect that the data points xi are weighted by the wl
ik.

(e) Show that maximising J l(θ) with respect to the mixture weights πk gives the update rule

πl+1
k =

1

n

n∑
i=1

wl
ik (13)

Solution. We start with (11) and drop additive terms that do not depend on the πk.
Since

J l(θ) =
n∑

i=1

K∑
k=1

wl
ik log πk + terms not depending on the πk (S.28)

we can focus on the objective

J l
π(π1, . . . , πK) =

n∑
i=1

K∑
k=1

wl
ik log πk (S.29)

=

K∑
k=1

(
n∑

i=1

wl
ik

)
︸ ︷︷ ︸

ωl
k

log πk (S.30)

=
K∑
k=1

ωl
k log πk. (S.31)
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Taking into account that the πk = p(h = k) define a pmf, the optimisation problem to
solve is

maximise
K∑
k=1

ωl
k log πk (S.32)

subject to πk ≥ 0 (S.33)

K∑
k=1

πk = 1 (S.34)

The constrained optimisation problem could be solved via Lagrange multipliers. But we
here take another approach and solve the optimisation problem by phrasing it in terms of
a KL-divergence minimisation problem.

First, note that the πk that maximise J l
π(π1, . . . , πK) will also maximise the re-scaled

objective

1∑K
k=1 ω

l
k

J l
π(π1, . . . , πK) =

1∑K
k=1 ω

l
k

K∑
k=1

ωl
k log πk (S.35)

=
K∑
k=1

qlk log πk (S.36)

where we introduced

qlk =
ωl
k∑K

k=1 ω
l
k

. (S.37)

The qlk are non-negative and sum to one. Hence, we can consider them to define a pmf.

Second, note that the πk that maximise J l
π(π1, . . . , πK) will also maximise

K∑
k=1

qlk log πk −
K∑
k=1

qlk log q
l
k =

K∑
k=1

qlk log
πk

qlk
(S.38)

= −
K∑
k=1

qlk log
qlk
πk

(S.39)

= −KL(ql, π) (S.40)

since adding constants does not change the solution. Hence, the optimal πk are given by
the pmf π that minimises the KL-divergence KL(ql, π). This means that the optimal πk
are

πk = qlk =
ωl
k∑K

k=1 ω
l
k

=

∑n
i=1w

l
ik∑K

k=1

∑n
i=1w

l
ik

. (S.41)

The denominator can be simplified by noting that, with (12),
∑K

k=1w
l
ik = 1 so that

K∑
k=1

n∑
i=1

wl
ik =

n∑
i=1

K∑
k=1

wl
ik = n (S.42)

The requested update rule thus is

πl+1
k =

1

n

n∑
i=1

wl
ik (S.43)
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The update rule does not depend directly on the statistical model pk(x;θk) that we may
choose for the mixture components. Their influence occurs indirectly via the wl

ik.

(f) Summarise the EM-algorithm to learn the parameters θ of the mixture model in (6) from iid data
x1, . . . ,xn.

Solution. We collect and summarise the results from the previous questions:

• E-step at iteration l: Compute the posterior probabilities (soft assignments)

wl
ik =

πl
kpk(xi;θ

l
k)∑K

k=1 π
l
kpk(xi;θ

l
k)

(S.44)

for all data points xi and and mixture components k. Then formulate the objective
function J l(θ)

J l(θ) =

n∑
i=1

K∑
k=1

wl
ik log[πkpk(xi;θk)] (S.45)

• M-step at iteration l: Compute the new mixture weights

πl+1
k =

1

n

n∑
i=1

wl
ik (S.46)

To compute the new mixture parameters θl+1
k , maximise J l(θ) if some parameters

are shared or tied. If the pk(x;θk) do not share parameters, the new parameters θl+1
k

are obtained by maximising a weighted log-likelihood for each mixture component
separately:

θl+1
k = argmax

θk

n∑
i=1

wl
ik log pk(xi;θk) (S.47)

for k = 1, . . . ,K.

Exercise 4. EM algorithm for mixture of Gaussians (optional, not examinable)

We here use the results from Exercise 3 to derive the EM update rules for a mixture of Gaussians. This
is a mixture model where each mixture component is a Gaussian distribution, i.e.

p(x;θ) =

K∑
i=1

πkN (x;µµµk,ΣΣΣk). (14)

We consider the case where each µµµk and ΣΣΣk can be individually changed (no tying of parameters). The
overall parameters of the model are given by the µµµk,ΣΣΣk and the mixture weights πk ≥ 0, k = 1, . . .K. As
in the case of general mixture models, the mixture weights sum to one.

(a) Determine the maximum likelihood estimates for a multivariate Gaussian N (x;µµµ,ΣΣΣ) for iid data
D = (x1, . . . ,xn) when each data point xi has a weight wi. The weights are non-negative but do
not necessarily sum to one.
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Solution. The weighted log-likelihood is

ℓ(µµµ,ΣΣΣ) =
n∑

i=1

wi logN (xi;µµµ,ΣΣΣ) (S.48)

=
n∑

i=1

wi log | det 2πΣΣΣ|−1/2 − 1

2

n∑
i=1

wi(xi −µµµ)⊤ΣΣΣ−1(xi −µµµ) (S.49)

Introducing the normalised weights Wi = wi/
∑n

i=1wi, we have

1∑n
i=1wi

ℓ(µµµ,ΣΣΣ) = log | det 2πΣΣΣ|−1/2 − 1

2

n∑
i=1

Wi(xi −µµµ)⊤ΣΣΣ−1(xi −µµµ) (S.50)

Let us write out the quadratic term

(xi −µµµ)TΣΣΣ−1(xi −µµµ) = x⊤
i ΣΣΣ

−1xi − 2x⊤
i ΣΣΣ

−1µµµ+µµµ⊤ΣΣΣ−1µµµ (S.51)

Hence

n∑
i=1

Wi(xi −µµµ)TΣΣΣ−1(xi −µµµ) =
n∑

i=1

Wix
⊤
i ΣΣΣ

−1xi − 2
n∑

i=1

Wix
⊤
i ΣΣΣ

−1µµµ+
n∑

i=1

Wi︸ ︷︷ ︸
=1

µµµ⊤ΣΣΣ−1µµµ

(S.52)

= tr

[(
n∑

i=1

Wixix
⊤
i

)
ΣΣΣ−1

]
− 2

(
n∑

i=1

Wixi

)⊤

ΣΣΣ−1µµµ+µµµ⊤ΣΣΣ−1µµµ

(S.53)

= tr
(
RΣΣΣ−1

)
− 2b⊤ΣΣΣ−1µµµ+µµµ⊤ΣΣΣ−1µµµ (S.54)

where R =
∑n

i=1Wixix
⊤
i and b =

∑n
i=1Wixi. Hence

1∑n
i=1wi

ℓ(µµµ,ΣΣΣ) = log | det 2πΣΣΣ|−1/2 − 1

2
tr
(
RΣΣΣ−1

)
+ b⊤ΣΣΣ−1µµµ− 1

2
µµµ⊤ΣΣΣ−1µµµ (S.55)

This has exactly the same form as the unweighted likelihood function, just the sufficient
statistics R and b are computed using the weights. Hence, the maximum likelihood
estimates, when expressed in terms of R and b remain the same as in the unweighted
case:

µ̂µµ = b =
n∑

i=1

Wixi (S.56)

Σ̂ΣΣ = R− bb⊤ =
n∑

i=1

Wixix
⊤
i − bb⊤ (S.57)

Moreover, since

n∑
i=1

Wi(xi − b)(xi − b)⊤ =
n∑

i=1

Wixix
⊤
i −

n∑
i=1

Wixi︸ ︷︷ ︸
b

b⊤ − b
n∑

i=1

Wix
⊤
i︸ ︷︷ ︸

b⊤

+bb⊤ (S.58)

= R− bb⊤ − bb⊤ + bb⊤ (S.59)

= R− bb⊤ (S.60)
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we find that the weighted maximum likelihood estimates are the weighted average and
weighted covariance matrix:

µ̂µµ =

n∑
i=1

Wixi Σ̂ΣΣ =

n∑
i=1

Wi(xi − µ̂µµ)(xi − µ̂µµ)⊤ Wi =
wi∑n
i=1wi

(S.61)

(b) Use the results from Exercise 3 to derive the EM update rules for the parameters of the Gaussian
mixture model.

Solution. From the solution to Exercise 3(f) and the derived weighted MLE solutions,
we find:

• E-step at iteration l: Compute the posterior probabilities (soft assignments)

wl
ik =

πl
kN (xi;µµµ

l
k,ΣΣΣ

l
k)∑K

k=1 π
l
kN (xi;µµµl

k,ΣΣΣ
l
k)

(S.62)

for all data points xi and and mixture components k.

• M-step at iteration l:

– Determine the weighted MLEs

µµµl+1
k =

n∑
i=1

W l
ikxi ΣΣΣl+1

k =

n∑
i=1

W l
ik(xi −µµµl+1

k )(xi −µµµl+1
k )⊤ (S.63)

where W l
ik = wl

ik/(
∑n

i=1w
l
ik).

– Compute the new mixture weights

πl+1
k =

1

n

n∑
i=1

wl
ik (S.64)
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