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These are exercises for self-study and exam preparation. All material is examinable unless
otherwise mentioned.

Exercise 1. Variational posterior approximation

We have seen that maximising the evidence lower bound (ELBO) with respect to the variational
distribution q minimises the Kullback-Leibler divergence to the true posterior p. We here assume
that q and p are probability density functions so that the Kullback-Leibler divergence between
them is defined as

KL(q||p) =
∫

q(x) log
q(x)

p(x)
dx = Eq

[
log

q(x)

p(x)

]
. (1)

(a) You can here assume that x is one-dimensional so that p and q are univariate densities.
Consider the case where p is a bimodal density but the variational densities q are unimodal.
Sketch a figure that shows p and a variational distribution q that has been learned by
minimising KL(q||p). Explain qualitatively why the sketched q minimises KL(q||p).

(b) Assume that the true posterior p(x) = p(x1, x2) factorises into two Gaussians of mean zero
and variances σ2

1 and σ2
2,

p(x1, x2) =
1√
2πσ2

1

exp

[
− x21
2σ2

1

]
1√
2πσ2

2

exp

[
− x22
2σ2

2

]
. (2)

Assume further that the variational density q(x1, x2;λ
2) is parametrised as

q(x1, x2;λ
2) =

1

2πλ2
exp

[
−x21 + x22

2λ2

]
(3)

where λ2 is the variational parameter that is learned by minimising KL(q||p). If σ2
2 is much

larger than σ2
1, do you expect λ2 to be closer to σ2

2 or to σ2
1? Provide an explanation.

Exercise 2. Generalised Variational Inference

The ELBO can be written as

L(q) = Eq(y) [log p(xo|y)]−KL(q(y)||p(y)), (4)

where q(y) is the variational distribution, xo the observed data, and p(y) the prior. The vari-
ational distribution q(y) that maximises L(q) is given by the posterior p(y|xo). The posterior
strikes a compromise between explaining xo, i.e. making the first term large, and staying close
to the prior p(y), i.e. making the second term small.

We here consider a generalised version of the ELBO where log p(xo|y) is replaced by some
function r(xo,y) that “rewards” the variational distribution q(y) for placing probability mass
around y (the values of r(xo,y) may be positive or negative). The objective is

J(q) = Eq(y) [r(xo,y)]−KL(q(y)||p(y)). (5)

Credit: Such objectives were introduced and studied in the paper A general framework for
updating belief distributions by Bissiri, Holmes, and Walker, J. R. Statist. Soc. B (2016).
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(a) What is the distribution q that maximises J(q)?

HINT: Write r(xo,y) = log exp(r(xo,y)) and express J(q) in terms of a KL-divergence
between q and some distribution p∗.

(b) What constraint does r(xo,y) need to satisfy for the optimal q(y) to exist?

Exercise 3. EM algorithm for mixture models (optional, not examinable)

Mixture models are statistical models of the form

p(x;θ) =
K∑
k=1

πkpk(x;θk) (6)

where each pk(x;θk) is itself a statistical model parameterised by θk and the πk ≥ 0 are mixture
weights that sum to one. The parameters θ of the mixture model consist of the parameters θk

of each mixture component and the mixture weights πk, i.e. θ = (θ1, . . . ,θK , π1, . . . , πK). An
example is a mixture of Gaussians where each pk(x;θk) is a Gaussian with parameters given by
the mean vector µµµk and a covariance matrix ΣΣΣk.

The mixture model in (6) can be considered to be the marginal distribution of a latent variable
model p(x, h;θ) where h is an unobserved variable that takes on values 1, . . . ,K and p(h = k) =
πk. Defining p(x|h = k;θ) = pk(x;θk), the latent variable model corresponding to (6) thus is

p(x, h = k;θ) = p(x|h = k;θ)p(h = k) = πkpk(x;θk). (7)

In particular note that marginalising out h gives p(x;θ) in (6).

(a) Verify that the latent variable model in (7) can be written as

p(x, h;θ) =

K∏
k=1

[πkpk(x;θk)]
1(h=k) (8)

where h takes values in 1, . . . ,K.

(b) Since the mixture model in (6) can be seen as the marginal of a latent-variable model, we
can use the expectation maximisation (EM) algorithm to estimate the parameters θ.

For a general model p(D,h;θ) where D are the observed data and h the correspond-
ing unobserved variables, the EM algorithm iterates between computing the expected
complete-data log-likelihood J l(θ) and maximising it with respect to θ:

E-step at iteration l: J l(θ) = Ep(h|D;θl)[log p(D,h;θ)] (9)

M-step at iteration l: θl+1 = argmax
θ

J l(θ) (10)

Here θl is the value of θ in the l-th iteration. When solving the optimisation problem, we
also need to take into account constraints on the parameters, e.g. that the πk correspond
to a pmf.

Assume that the data D consists of n iid data points xi, that each xi has associated with
it a scalar unobserved variable hi, and that the tuples (xi, hi) are all iid. What is J l(θ)
under these additional assumptions?
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(c) Show that for the latent variable model in (8), J l(θ) equals

J l(θ) =
n∑

i=1

K∑
k=1

wl
ik log[πkpk(xi;θk)], (11)

wl
ik =

πl
kpk(xi;θ

l
k)∑K

k=1 π
l
kpk(xi;θ

l
k)

(12)

Note that the wl
ik are defined in terms of the parameters πl

k and θl
k from iteration l. They

are equal to the conditional probabilities p(h = k|xi;θ
l), i.e. the probability that xi has

been sampled from component pk(xi;θ
l
k).

(d) Assume that the different mixture components pk(x;θk), k = 1, . . . ,K do not share any
parameters. Show that the updated parameter values θl+1

k are given by weighted maximum
likelihood estimates.

(e) Show that maximising J l(θ) with respect to the mixture weights πk gives the update rule

πl+1
k =

1

n

n∑
i=1

wl
ik (13)

(f) Summarise the EM-algorithm to learn the parameters θ of the mixture model in (6) from
iid data x1, . . . ,xn.

Exercise 4. EM algorithm for mixture of Gaussians (optional, not examinable)

We here use the results from Exercise 3 to derive the EM update rules for a mixture of Gaussians.
This is a mixture model where each mixture component is a Gaussian distribution, i.e.

p(x;θ) =

K∑
i=1

πkN (x;µµµk,ΣΣΣk). (14)

We consider the case where each µµµk and ΣΣΣk can be individually changed (no tying of parameters).
The overall parameters of the model are given by the µµµk,ΣΣΣk and the mixture weights πk ≥ 0,
k = 1, . . .K. As in the case of general mixture models, the mixture weights sum to one.

(a) Determine the maximum likelihood estimates for a multivariate Gaussian N (x;µµµ,ΣΣΣ) for
iid data D = (x1, . . . ,xn) when each data point xi has a weight wi. The weights are
non-negative but do not necessarily sum to one.

(b) Use the results from Exercise 3 to derive the EM update rules for the parameters of the
Gaussian mixture model.
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