# Basic Assumptions for Efficient Model Representation

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Autumn Semester 2025

## Recap

$$p(\mathbf{x}|\mathbf{y}_o) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}$$

Assume that  $\mathbf{x}, \mathbf{y}, \mathbf{z}$  each are d = 500 dimensional, and that each element of the vectors can take K = 10 values.

lssue 1: To specify  $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ , we need to specify  $K^{3d} - 1 = 10^{1500} - 1$  non-negative numbers, which is impossible.

Topic 1: Representation What reasonably weak assumptions can we make to efficiently represent  $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ ?

# Two fundamental assumptions

#### Consider two assumptions:

- 1. only a limited number of variables may directly interact with each other (independence assumptions)
- 2. for any number of interacting variables, the form of interaction is limited or restricted (often: parametric family assumptions)

The two assumptions can be used together or separately.

# Program

- 1. Independence assumptions
- 2. Assumptions on form of interaction

#### Program

- 1. Independence assumptions
  - Definition and properties of statistical independence
  - Factorisation of the pdf and reduction in the number of directly interacting variables
- 2. Assumptions on form of interaction

# Statistical independence

Let x and y be two disjoint subsets of random variables. Then x and y are independent of each other if and only if (iff)

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y}) \tag{1}$$

for all possible values of  $\mathbf{x}$  and  $\mathbf{y}$ , where  $p(\mathbf{x})$  and  $p(\mathbf{y})$  are the marginals of  $\mathbf{x}$  and  $\mathbf{y}$ , respectively.

- We say that the joint factorises into a product of  $p(\mathbf{x})$  and  $p(\mathbf{y})$ .
- ► Notation: **x** ⊥⊥ **y**

# Equivalent characterisation of independence

ightharpoonup Equivalent characterisation:  $\mathbf{x} \perp \mathbf{y}$  iff

$$p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x}) \tag{2}$$

for all values of **x** and **y** where p(y) > 0.

The equivalency follows from the product rule:  $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$ .

# Proof for $\mathbf{x} \perp \mathbf{y} \iff p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x})$

 $\Rightarrow$  Assume  $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$  holds. Since  $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$ , we have

$$p(\mathbf{x}|\mathbf{y})p(\mathbf{y}) = p(\mathbf{x})p(\mathbf{y}) \tag{3}$$

and hence  $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x})$  for all  $\mathbf{y}$  where  $p(\mathbf{y}) > 0$ .

 $\leftarrow$  Assume  $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x})$  holds for all  $\mathbf{y}$  where  $p(\mathbf{y}) > 0$ . Then:

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y}) = p(\mathbf{x})p(\mathbf{y}) \tag{4}$$

which is the first characterisation of independence, and completes the proof.

## Some intuition for statistical independence

- $ightharpoonup x \perp \!\!\!\! \perp y$  means that knowing y does not help you to predict x, and vice versa.
- One way to predict the value of  $\mathbf{x}$  from  $\mathbf{y}$  is by computing the conditional expectation  $\mathbb{E}[\mathbf{x}|\mathbf{y}]$
- In case of independence, we have (assuming pmfs, replace sums with integrals in case of pdfs)

$$\mathbb{E}[\mathbf{x}|\mathbf{y}] = \sum_{\mathbf{x}} \rho(\mathbf{x}|\mathbf{y})\mathbf{x} \tag{5}$$

$$=\sum_{\mathbf{x}} \mathbf{p}(\mathbf{x})\mathbf{x} \tag{6}$$

$$= \mathbb{E}[\mathbf{x}] \tag{7}$$

- ► Knowing the value of **y** does not change the value of the expectation; it doesn't help you to predict **x**.
- ► Generalises to arbitrary functions of  $\mathbf{x}$ , i.e.  $\mathbb{E}[g(\mathbf{x})|\mathbf{y}] = \mathbb{E}[g(\mathbf{x})]$  if  $\mathbf{x} \perp \mathbf{y}$ .

# Statistical independence of multiple random variables

- Variables  $\mathbf{x}_1, \dots, \mathbf{x}_n$  are independent iff for every partition of the index set  $\{1, \dots, n\}$  into disjoint subsets A and B, the random vectors  $\mathbf{x}_A$  and  $\mathbf{x}_B$  are independent.
- More actionable characterisation: Variables  $x_1, \ldots, x_n$  are independent iff

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \prod_{i=1}^n p(\mathbf{x}_i)$$
 (8)

where  $p(\mathbf{x}_i)$  is the marginal for  $\mathbf{x}_i$ .

- We say that the joint factorises into a product of the marginals.
- Notation:  $\mathbf{x}_1 \perp \!\!\! \perp \mathbf{x}_2 \perp \!\!\! \perp \ldots \perp \!\!\! \perp \mathbf{x}_n$

## Conditional statistical independence

- The characterisation of statistical independence extends to conditional pdfs (pmfs)  $p(\mathbf{x}, \mathbf{y}|\mathbf{z})$ .
- Criteria from before carry over: functions do now also depend on z.
- > x and y are conditionally independent given z iff, for all possible values of x, y, and z,

$$p(\mathbf{x}, \mathbf{y}|\mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{y}|\mathbf{z}) \quad (\text{for } p(\mathbf{z}) > 0) \qquad \text{or} \qquad (9)$$
$$p(\mathbf{x}|\mathbf{y}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z}) \quad (\text{for } p(\mathbf{y}, \mathbf{z}) > 0) \qquad (10)$$

- Proof of equivalence analogue to unconditional case.
- Notation: x ⊥⊥ y | z
- From the product rule it follows that the joint p(x, y, z) factorises as p(x, y, z) = p(z)p(x|z)p(y|z) when  $x \perp \!\!\! \perp y \mid z$ .

# The impact of independence assumptions

- ➤ The key is that independence assumptions lead to a partial factorisation of the pdf/pmf with factors that involve fewer variables.
- Independence assumptions force  $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$  to take on a particular form.
- Reduces the number of directly interacting variables and thereby the amount of numbers (parameters) that specify a pdf/pmf.

# Example: table representation without independence

- ightharpoonup Let  $\mathbf{x}, \mathbf{y}, \mathbf{z}$  all be one-dimensional and binary.
- Nithout independence, we need to specify  $2^3 1 = 7$  non-negative parameters  $p_i$  to specify the pmf.
- ► Table representation

| X | У | Z | p(x, y, z) |
|---|---|---|------------|
| 0 | 0 | 0 | $p_1$      |
| 0 | 0 | 1 | $p_2$      |
| 0 | 1 | 0 | $p_3$      |
| 0 | 1 | 1 | $p_4$      |
| 1 | 0 | 0 | $p_5$      |
| 1 | 0 | 1 | $p_6$      |
| 1 | 1 | 0 | $p_7$      |
| 1 | 1 | 1 | $p_8$      |

with the constraint that  $\sum_i p_i = 1$ , which removes one degree of freedom so that we only need to specify 7  $p_i$ .

# Example: table representation with full independence

- ▶ With independence, p(x, y, z) = p(x)p(y)p(z).
- ▶ 3 non-negative parameters,  $p(x = 1) = p_1$ ,  $p(y = 1) = p_2$ , and  $p(z = 1) = p_3$ , fully specify the pmf

x, y, z are not interacting: the probability of joint events, e.g.  $\{x = 1 \text{ and } y = 1 \text{ and } z = 1\}$ , is fully determined by the marginal probabilities.

# Example: table repr with conditional independence

- Assume  $x \perp \!\!\! \perp y \mid z$  so that p(x, y, z) = p(z)p(x|z)p(y|z)
- For p(z) we need 1 parameter
- For p(x|z), we need 2 parameters: one for p(x|z=0) and one for p(x|z=1).
- ightharpoonup Same for p(y|z).
- ► Total: 1+2+2=5 non-negative parameters
- With

$$p_1 = p(z = 1)$$
  $p_2 = p(x = 1|z = 0),$   $p_3 = p(x = 1|z = 1),$   $p_4 = p(y = 1|z = 0),$   $p_5 = p(y = 1|z = 1)$ 

we can represent p(x, y, z) as a table.

# Conditional independence is often a good middle-ground

- Consider  $p(\mathbf{x}) = p(x_1, \dots, x_d)$ , with each  $x_i$  taking on K different values (e.g. d = 100, K = 10).
- No independence:  $K^d 1$  parameters, e.g.  $10^{100} 1$
- ▶ Full independence (factorisation): d(K-1), e.g. 900
- ▶ For conditional independence  $x_{i+1} \perp \!\!\! \perp x_1, \ldots, x_{i-1} \mid x_i$  (future independent of the past given the present), we have (see later)

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\dots p(x_d|x_{d-1})$$
 (11)

The number of parameters is K - 1 + (d - 1)K(K - 1), e.g. 8919

While no independence is not tractable and full independence often too strong an assumption, conditional independence assumptions are often a powerful middle-ground.

#### Program

- 1. Independence assumptions
- 2. Assumptions on form of interaction
  - Parametric models restrict how a given number of variables may interact (autoregressive models)
  - Combination with independence assumptions

# Assumption 2: limiting the form of the interaction

- Conditional) independence assumptions limit the number of variables that may directly interact with each other, e.g.  $x_{i+1}$  only directly interacted with  $x_i$ .
- ► How the variables interact, however, was not restricted.
- Assumption 2: We restrict how a given number of variables may interact with each other.
- Often corresponds to making parametric family assumptions.

#### Interlude: chain rule

Iteratively applying the product rule allows us to factorise any joint  $pdf/pmf \ p(\mathbf{x}) = p(x_1, x_2, \dots, x_d)$  into product of conditional pdfs/pmfs.

$$p(\mathbf{x}) = p(x_1)p(x_2, \dots, x_d | x_1)$$

$$= p(x_1)p(x_2 | x_1)p(x_3, \dots, x_d | x_1, x_2)$$

$$= p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)p(x_4, \dots, x_d | x_1, x_2, x_3)$$

$$\vdots$$

$$= p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \dots p(x_d | x_1, \dots, x_{d-1})$$

$$= p(x_1)\prod_{i=2}^{d} p(x_i | x_1, \dots, x_{i-1}) = \prod_{i=1}^{d} p(x_i | \text{pre}_i)$$

with 
$$\operatorname{pre}_i = \operatorname{pre}(x_i) = \{x_1, \dots, x_{i-1}\}, \ \operatorname{pre}_1 = \emptyset \ \text{and} \ p(x_1|\emptyset) = p(x_1).$$

The chain rule can be applied to any ordering of the variables. For each  $x_i$ , we condition on all previous variables in the ordering.

No independence assumption made.

# Autoregressive model for binary variables

- For  $p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \text{pre}_i)$ , specify each  $p(x_i | \text{pre}_i)$  as a member of a parametric family.
- Defines so-called autoregressive models.
- Let the variables be binary and assume

$$p(x_i = 1 | \text{pre}_i) = \frac{1}{1 + \exp\left(-b_i - \sum_{j=1}^{i-1} w_{ij} x_j\right)}$$
(12)

ightharpoonup The parameters  $w_{ij}$  can be stored as a  $d \times d$  matrix W

$$\mathbf{W} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ w_{21} & 0 & 0 & \dots & 0 & 0 \\ w_{31} & w_{32} & 0 & \dots & 0 & 0 \\ \vdots & & & & & & \\ w_{d1} & w_{d2} & w_{d3} & \dots & w_{d(d-1)} & 0 \end{pmatrix}$$
(13)

- ► Matrix contains  $(d^2 d)/2$  parameters  $w_{ij}$ .
- ▶ With biases  $b_i$ :  $(d^2 d)/2 + d = (d^2 + d)/2$  parameters

# Autoregressive models for binary variables

- ▶ Table representation without independence requires  $2^d 1$  parameters
- For d = 100: 5050 vs  $2^{100} 1 \approx 1.27 \cdot 10^{30}$  parameters.
- Instead of linear combination of the predecessors,  $\sum_{j=1}^{i-1} w_{ij} x_j$  we may use (parameterised) nonlinear functions such as neural networks.
- Leads to deep generative modelling (see later).
- We can use the same idea for continuous variables.

## Recap: the univariate Gaussian distribution

A real-valued random variable x is said to be Gaussian (normally) distributed if it has the pdf

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (14)

- Properties:
  - $ightharpoonup \mathbb{E}[x] = \mu$ ,  $\mathbb{V}[x] = \sigma^2$
  - Any linear combination of univariate Gaussians is Gaussian.
- ightharpoonup Bell-shaped, symmetric around  $\mu$ .
- Notation:  $x \sim \mathcal{N}(x; \mu, \sigma^2)$ .
- ▶ Can be generated by  $x = \mu + \sigma n$  where  $n \sim \mathcal{N}(n; 0, 1)$ .
- Libraries can generate samples from  $\mathcal{N}(n; 0, 1)$

# Recap: the multivariate Gaussian distribution

- A random vector  $\mathbf{x} \in \mathbb{R}^d$  is multivariate Gaussian (normal) if for all projections  $\mathbf{a}$ ,  $\mathbf{a}^{\top}\mathbf{x}$  is univariate Gaussian.
- ► If x has a density, it equals

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right) \quad (15)$$

- Properties:
  - ightharpoonup  $\mathbb{E}[\mathsf{x}] = \mu$ ,  $\mathbb{V}[\mathsf{x}] = \mathbf{\Sigma}$
  - lsocontours, i.e. the x where p(x) = const, are ellipses.
- ► Notation:  $\mathbf{x} \sim \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$

## Autoregressive model for continuous variables

- We could "convert" continuous variables into discrete ones by discretisation. Loses information and number of bins grows as  $K^d$  when each variable has K discretisation levels.
- Use chain rule with parametric assumptions instead.
- For  $p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \text{pre}_i)$ , assume each  $p(x_i | \text{pre}_i)$  is a univariate Gaussian where the mean and, possibly, variance depend on  $\text{pre}_i$ .
- Simplest case:  $p(x_i|\text{pre}_i)$  is Gaussian with constant variance  $\sigma_i^2$  and means  $\mu_i$  that depend linearly on  $\text{pre}_i$

$$\mu_1 = b_1,$$
  $\mu_i = b_i + \sum_{j=1}^{i-1} w_{ij} x_j \quad (i > 1)$  (16)

- ► Has  $(d^2 + d)/2 + d$  parameters (same reasoning as before).
- Defines a multivariate Gaussian.

# Autoregressive model for continuous variables

- More complex cases obtained by
  - $\triangleright$  letting variance depend on pre<sub>i</sub>,
  - replacing the linear combination  $\sum_{j=1}^{i-1} w_{ij} x_j$  with a (parameterised) nonlinear function such as a neural network.
- In the second case, each conditional mean depends nonlinearly on the predecessors.
- ▶ Each factor  $p(x_i|pre_i)$  defines a nonlinear regression model.
- While each factor  $p(x_i|pre_i)$  is conditionally Gaussian, the overall pdf  $p(\mathbf{x})$  is not multivariate Gaussian.

## Autoregressive model for continuous variables

 $x_1$  is standard normal, and  $x_2$  is Gaussian with different conditional means and variances.



## Combining independence and parametric assumptions

▶ Reconsider the case where  $x_{i+1} \perp \!\!\! \perp x_1, \ldots, x_{i-1} \mid x_i$  (future independent of the past given the present), so that

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\dots p(x_d|x_{d-1})$$
 (17)

- ▶ Before, we discussed the case of discrete random variables with a table representation.
- For continuous random variables, we can represent  $p(x_{i+1}|x_i)$  with a parametric distribution, e.g. a Gaussian with a nonlinear mean function.
- ► We then make two assumptions: independence assumptions and parametric assumptions.
- ► These two assumptions are main workhorses to specify models in probabilistic machine learning (an additional one are latent variables, see later).

#### Program recap

We asked: What reasonably weak assumptions can we make to efficiently represent a probabilistic model?

#### 1. Independence assumptions

- Definition and properties of statistical independence
- Factorisation of the pdf and reduction in the number of directly interacting variables

#### 2. Assumptions on form of interaction

- Parametric models restrict how a given number of variables may interact (autoregressive models)
- Combination with independence assumptions