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Recap

P(X,¥o0,2)
P(x]yo) = gz p(X,¥0,2)

Assume that x,y,z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.

» |ssue 1: To specify p(x,y,z), we need to specify
K39 —1 =109 _ 1 non-negative numbers, which is
impossible.
Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x,y,z)?
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Two fundamental assumptions

Consider two assumptions:

1. only a limited number of variables may directly interact with
each other (independence assumptions)

2. for any number of interacting variables, the form of interaction
is limited or restricted (often: parametric family assumptions)

The two assumptions can be used together or separately.
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1. Independence assumptions

2. Assumptions on form of interaction
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Program

1. Independence assumptions
o Definition and properties of statistical independence
o Factorisation of the pdf and reduction in the number of
directly interacting variables
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Statistical independence

» Let x and y be two disjoint subsets of random variables. Then
x and y are independent of each other if and only if (iff)

p(x,y) = p(x)p(y) (1)

for all possible values of x and y, where p(x) and p(y) are the
marginals of x and vy, respectively.

» We say that the joint factorises into a product of p(x) and

p(y).
» Notation: x Iy
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Equivalent characterisation of independence

» Equivalent characterisation: x 1L y iff
p(xly) = p(x) (2)

for all values of x and y where p(y) > 0.
» The equivalency follows from the product rule:
p(x,y) = p(x|y)p(y).
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Proof for x Il y <= p(x|y) = p(x)

= Assume p(x,y) = p(x)p(y) holds. Since p(x,y) = p(x|y)p(y).
we have

p(x]y)p(y) = p(x)p(y) (3)

and hence p(x|y) = p(x) for all y where p(y) > 0.
< Assume p(x|y) = p(x) holds for all y where p(y) > 0. Then:

p(x,y) = p(x]y)p(y) = p(x)p(y) (4)

which is the first characterisation of independence, and
completes the proof.
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Some intuition for statistical independence

>

>

x Il y means that knowing y does not help you to predict x,
and vice versa.

One way to predict the value of x from y is by computing the
conditional expectation E[x|y]

In case of independence, we have (assuming pmfs, replace sums with

integrals in case of pdfs)

Elx|ly] = )  p(x]y)x (5)
= p(x)x (6)

= E[x] (7)

Knowing the value of y does not change the value of the
expectation; it doesn't help you to predict x.

Generalises to arbitrary functions of x, i.e.
Elg(x)ly] = E[g(x)] if x 1L y.
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Statistical independence of multiple random variables

» Variables x1,...,Xx, are independent iff for every partition of

the index set {1,..., n} into disjoint subsets A and B, the
random vectors x4 and xg are independent.

» More actionable characterisation: Variables x1,...,x, are
independent iff

p(Xl,...,Xn) — HP(Xi) (8)
i=1

where p(x;) is the marginal for x;.

» \We say that the joint factorises into a product of the
marginals.

» Notation: x7 AL xo 1L ... 1L x,
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Conditional statistical independence

>

>

>

v

The characterisation of statistical independence extends to
conditional pdfs (pmfs) p(x,y|z).

Criteria from before carry over: functions do now also depend
on z.

x and y are conditionally independent given z iff, for all
possible values of x, y, and z,

(x|z)p(y|z) (for p(z) > 0) or (9)
(x|z) (for p(y,z) > 0) (10)

p(x,y|z)

X
p(xly, z) X

p
p
Proof of equivalence analogue to unconditional case.

Notation: x 1l y|z

From the product rule it follows that the joint p(x,y, z)
factorises as p(x,y,z) = p(z)p(x|z)p(y|z) when x 1 y|z.
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The impact of independence assumptions

» The key is that independence assumptions lead to a partial
factorisation of the pdf/pmf with factors that involve fewer
variables.

» Independence assumptions force p(x,y, z) to take on a
particular form.

» Reduces the number of directly interacting variables and

thereby the amount of numbers (parameters) that specify a
pdf/pmf.
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Example: table representation without independence

» Let x,y,z all be one-dimensional and binary.

» Without independence, we need to specify 23 — 1 =7
non-negative parameters p; to specify the pmf.

» Table representation

x y z p(xy,2)
0 0 0 D1
0 O 1 P2
0 1 O ps3
0 1 1 P4
1 0 O P5
1 0 1 P
1 1 0 P7
1 1 1 Ds

with the constraint that ) ; p; = 1, which removes one degree
of freedom so that we only need to specify 7 p;.
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Example: table representation with full independence

» With independence, p(x,y,z) = p(x)p(y)p(z).
» 3 non-negative parameters, p(x = 1) = p1, p(y = 1) = po,
and p(z = 1) = ps, fully specify the pmf

x y z p(xy,z)=px)p(y)p(z)
000 0 (1—p1)(1—p2)(1—p3)
0 0 1 (1 —p1)(1—p2)p3
0 1 0 (1 — p1)p2(1 — p3)
0 1 1 (1 — p1)p2p3
1 0 0 p1(1 — p2)(1 — p3)
1 0 1 p1(1 — p2)p3
1 1 0 p1p2(1 — p3)
1 1 1 p1p2p3

» x,y,z are not interacting: the probability of joint events, e.g.
{x=1and y =1 and z = 1}, is fully determined by the
marginal probabilities.
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Example: table repr with conditional independence

» Assume x Il y | z so that p(x,y,z) = p(z)p(x|z)p(y|z)

v

For p(z) we need 1 parameter

» For p(x|z), we need 2 parameters: one for p(x|z = 0) and one
for p(x|z =1).

» Same for p(y|z).

» Total: 14+2+2 = 5 non-negative parameters
» With
p1=p(z=1) p2=p(x=1z=0), p3=px=1z=1),

pa=ply=1z=0), ps=p(y=1z=1)

we can represent p(x, y, z) as a table.
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Conditional independence is often a good middle-ground

» Consider p(x) = p(xi,--..,Xq), with each x; taking on K
different values (e.g. d = 100, K = 10).

» No independence: K¢ — 1 parameters, e.g. 10190 — 1
Full independence (factorisation): d(K — 1), e.g. 900

» For conditional independence x;11 AL x1,...,x;—1 | x; (future
independent of the past given the present), we have (see later)

v

p(x) = p(x1)p(x2|x1)p(x3|x2) - - . p(xglxa—1)  (11)

The number of parametersis K — 1+ (d — 1)K(K — 1), e.g.
8919
» While no independence is not tractable and full independence

often too strong an assumption, conditional independence
assumptions are often a powerful middle-ground.
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Program

2. Assumptions on form of interaction
o Parametric models restrict how a given number of variables
may interact (autoregressive models)
o Combination with independence assumptions
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Assumption 2: limiting the form of the interaction

» (Conditional) independence assumptions limit the number of
variables that may directly interact with each other, e.g. xj11
only directly interacted with x;.

» How the variables interact, however, was not restricted.

» Assumption 2: We restrict how a given number of variables
may interact with each other.

» Often corresponds to making parametric family assumptions.

PMR 2025 ©OGutmann, University of Edinburgh CC BY 4.0 18 / 28


https://creativecommons.org/licenses/by/4.0/

Interlude: chain rule

lteratively applying the product rule allows us to factorise any joint
pdf/pmf p(x) = p(x1, X2, ..., Xq) into product of conditional pdfs/pmfs.

p(x) = p(x1)p(x2, ..., Xd|x1)
= p(x1)p(x2|x1)p(xs, - . ., xd|x1, x2)
= p(x1)p(xe|x1)p(x3|x1, x2)p(xa; - - -, Xa|x1, X2, X3)

= p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xa|x1, . - - Xd—1)
d d
= p(x1) H p(xilxi, ..., Xi—1) = H p(xi|pre;)
i=2 i=1

with pre; = pre(x;) = {x1,...,X_1}, pre; = @ and p(x1|2) = p(x1).

The chain rule can be applied to any ordering of the variables. For each
x;, we condition on all previous variables in the ordering.

No independence assumption made.
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Autoregressive model for binary variables

> For p(x) = [1% p(xi|pre;), specify each p(xi|pre;) as a
member of a parametric family.

» Defines so-called autoregressive models.

» Let the variables be binary and assume

1

p(xi = 1|pre;) = . (12)
1 + exp (—b,- — ZJ’.;} W,_,XJ)
» The parameters w;; can be stored as a d X d matrix W
( 0 0 o ... 0 0\
wo1 O o ... 0 0
W= |ws1 wzx 0 ... 0 0 (13)
\Wg1 Wgo Waz ... Wd(d—1) 0)

> Matrix contains (d? — d)/2 parameters w;;.
> With biases b;: (d° — d)/2 + d = (d? + d)/2 parameters
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Autoregressive models for binary variables

» Table representation without independence requires 29 — 1
parameters

» For d = 100: 5050 vs 2100 — 1 ~ 1.27 - 103° parameters.

» |nstead of linear combination of the predecessors, ZJ’-;} Wi X;
we may use (parameterised) nonlinear functions such as neural
networks.

» Leads to deep generative modelling (see later).

» \We can use the same idea for continuous variables.
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Recap: the univariate Gaussian distribution

» A real-valued random variable x is said to be Gaussian
(normally) distributed if it has the pdf

p(x) = ——— exp (—(X‘“)Q> (14)

V 2mo? 202

» Properties:
> E[x] = u, V[x] = o2
» Any linear combination of univariate Gaussians is Gaussian.

Bell-shaped, symmetric around .
Notation: x ~ N(x; p, 0?).
Can be generated by x = pu+ on where n ~ N(n;0,1).

v vyyvyy

Libraries can generate samples from N (n;0,1)
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Recap: the multivariate Gaussian distribution

» A random vector x € R? is multivariate Gaussian (normal) if
for all projections a, a'x is univariate Gaussian.

» If x has a density, it equals

1 1 _
P0) = g (36— = (x-m)) (15)
» Properties:
> E[x]=pu, V[x] =X
» Isocontours, i.e. the x where p(x) = const, are ellipses.

» Notation: x ~ N (x; u, X)
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Autoregressive model for continuous variables

» We could “convert” continuous variables into discrete ones by
discretisation. Loses information and number of bins grows as
K9 when each variable has K discretisation levels.

» Use chain rule with parametric assumptions instead.

> For p(x) = [1%_1 p(xi|pre;), assume each p(x;|pre;) is a
univariate Gaussian where the mean and, possibly, variance
depend on pre;.

» Simplest case: p(x;|pre;) is Gaussian with constant variance
o? and means y; that depend linearly on pre;

i—1

1 = by, pi=bi+> wix (i>1)  (16)
j=1

» Has (d? + d)/2 + d parameters (same reasoning as before).
» Defines a multivariate Gaussian.
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Autoregressive model for continuous variables

» More complex cases obtained by

» letting variance depend on pre;,
» replacing the linear combination Zj';i w;ix; with a
(parameterised) nonlinear function such as a neural network.

» In the second case, each conditional mean depends nonlinearly
on the predecessors.

» Each factor p(x;|pre;) defines a nonlinear regression model.

» While each factor p(x;|pre;) is conditionally Gaussian, the
overall pdf p(x) is not multivariate Gaussian.
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Autoregressive model for continuous variables

x1 is standard normal, and x> is Gaussian with different conditional

means and variances.
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Combining independence and parametric assumptions

» Reconsider the case where x;j11 1 x1,...,x;—1 | x; (future
independent of the past given the present), so that

p(x) = p(x1)p(xe|x1)p(xs|x2) . .. p(xd|Xd-1)  (17)

» Before, we discussed the case of discrete random variables
with a table representation.

» For continuous random variables, we can represent p(xjt1|x;)
with a parametric distribution, e.g. a Gaussian with a
nonlinear mean function.

» We then make two assumptions: independence assumptions
and parametric assumptions.

» These two assumptions are main workhorses to specify models
in probabilistic machine learning (an additional one are latent
variables, see later).
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Program recap

We asked: What reasonably weak assumptions can we make to
efficiently represent a probabilistic model?

1. Independence assumptions

o Definition and properties of statistical independence
o Factorisation of the pdf and reduction in the number of
directly interacting variables

2. Assumptions on form of interaction

o Parametric models restrict how a given number of variables
may interact (autoregressive models)
o Combination with independence assumptions
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