Basic Assumptions for Efficient Model Representation

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Autumn Semester 2025

Recap

$$p(\mathbf{x}|\mathbf{y}_o) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}$$

Assume that $\mathbf{x}, \mathbf{y}, \mathbf{z}$ each are d = 500 dimensional, and that each element of the vectors can take K = 10 values.

lssue 1: To specify $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$, we need to specify $K^{3d} - 1 = 10^{1500} - 1$ non-negative numbers, which is impossible.

Topic 1: Representation What reasonably weak assumptions can we make to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$?

Two fundamental assumptions

Consider two assumptions:

- 1. only a limited number of variables may directly interact with each other (independence assumptions)
- 2. for any number of interacting variables, the form of interaction is limited or restricted (often: parametric family assumptions)

The two assumptions can be used together or separately.

Program

- 1. Independence assumptions
- 2. Assumptions on form of interaction

Program

- 1. Independence assumptions
 - Definition and properties of statistical independence
 - Factorisation of the pdf and reduction in the number of directly interacting variables
- 2. Assumptions on form of interaction

Statistical independence

Let x and y be two disjoint subsets of random variables. Then x and y are independent of each other if and only if (iff)

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y}) \tag{1}$$

for all possible values of \mathbf{x} and \mathbf{y} , where $p(\mathbf{x})$ and $p(\mathbf{y})$ are the marginals of \mathbf{x} and \mathbf{y} , respectively.

- We say that the joint factorises into a product of $p(\mathbf{x})$ and $p(\mathbf{y})$.
- ► Notation: **x** ⊥⊥ **y**

Equivalent characterisation of independence

ightharpoonup Equivalent characterisation: $\mathbf{x} \perp \mathbf{y}$ iff

$$p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x}) \tag{2}$$

for all values of **x** and **y** where p(y) > 0.

The equivalency follows from the product rule: $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$.

Proof for $\mathbf{x} \perp \mathbf{y} \iff p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x})$

 \Rightarrow Assume $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x})p(\mathbf{y})$ holds. Since $p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y})$, we have

$$p(\mathbf{x}|\mathbf{y})p(\mathbf{y}) = p(\mathbf{x})p(\mathbf{y}) \tag{3}$$

and hence $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x})$ for all \mathbf{y} where $p(\mathbf{y}) > 0$.

 \leftarrow Assume $p(\mathbf{x}|\mathbf{y}) = p(\mathbf{x})$ holds for all \mathbf{y} where $p(\mathbf{y}) > 0$. Then:

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}|\mathbf{y})p(\mathbf{y}) = p(\mathbf{x})p(\mathbf{y}) \tag{4}$$

which is the first characterisation of independence, and completes the proof.

Some intuition for statistical independence

- $ightharpoonup x \perp \!\!\!\! \perp y$ means that knowing y does not help you to predict x, and vice versa.
- One way to predict the value of \mathbf{x} from \mathbf{y} is by computing the conditional expectation $\mathbb{E}[\mathbf{x}|\mathbf{y}]$
- In case of independence, we have (assuming pmfs, replace sums with integrals in case of pdfs)

$$\mathbb{E}[\mathbf{x}|\mathbf{y}] = \sum_{\mathbf{x}} \rho(\mathbf{x}|\mathbf{y})\mathbf{x} \tag{5}$$

$$=\sum_{\mathbf{x}} \mathbf{p}(\mathbf{x})\mathbf{x} \tag{6}$$

$$= \mathbb{E}[\mathbf{x}] \tag{7}$$

- ► Knowing the value of **y** does not change the value of the expectation; it doesn't help you to predict **x**.
- ► Generalises to arbitrary functions of \mathbf{x} , i.e. $\mathbb{E}[g(\mathbf{x})|\mathbf{y}] = \mathbb{E}[g(\mathbf{x})]$ if $\mathbf{x} \perp \mathbf{y}$.

Statistical independence of multiple random variables

- Variables $\mathbf{x}_1, \dots, \mathbf{x}_n$ are independent iff for every partition of the index set $\{1, \dots, n\}$ into disjoint subsets A and B, the random vectors \mathbf{x}_A and \mathbf{x}_B are independent.
- More actionable characterisation: Variables x_1, \ldots, x_n are independent iff

$$p(\mathbf{x}_1,\ldots,\mathbf{x}_n) = \prod_{i=1}^n p(\mathbf{x}_i)$$
 (8)

where $p(\mathbf{x}_i)$ is the marginal for \mathbf{x}_i .

- We say that the joint factorises into a product of the marginals.
- Notation: $\mathbf{x}_1 \perp \!\!\! \perp \mathbf{x}_2 \perp \!\!\! \perp \ldots \perp \!\!\! \perp \mathbf{x}_n$

Conditional statistical independence

- The characterisation of statistical independence extends to conditional pdfs (pmfs) $p(\mathbf{x}, \mathbf{y}|\mathbf{z})$.
- Criteria from before carry over: functions do now also depend on z.
- > x and y are conditionally independent given z iff, for all possible values of x, y, and z,

$$p(\mathbf{x}, \mathbf{y}|\mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{y}|\mathbf{z}) \quad (\text{for } p(\mathbf{z}) > 0) \qquad \text{or} \qquad (9)$$
$$p(\mathbf{x}|\mathbf{y}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z}) \quad (\text{for } p(\mathbf{y}, \mathbf{z}) > 0) \qquad (10)$$

- Proof of equivalence analogue to unconditional case.
- Notation: x ⊥⊥ y | z
- From the product rule it follows that the joint p(x, y, z) factorises as p(x, y, z) = p(z)p(x|z)p(y|z) when $x \perp \!\!\! \perp y \mid z$.

The impact of independence assumptions

- ➤ The key is that independence assumptions lead to a partial factorisation of the pdf/pmf with factors that involve fewer variables.
- Independence assumptions force $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to take on a particular form.
- Reduces the number of directly interacting variables and thereby the amount of numbers (parameters) that specify a pdf/pmf.

Example: table representation without independence

- ightharpoonup Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ all be one-dimensional and binary.
- Nithout independence, we need to specify $2^3 1 = 7$ non-negative parameters p_i to specify the pmf.
- ► Table representation

X	У	Z	p(x, y, z)
0	0	0	p_1
0	0	1	p_2
0	1	0	p_3
0	1	1	p_4
1	0	0	p_5
1	0	1	p_6
1	1	0	p_7
1	1	1	p_8

with the constraint that $\sum_i p_i = 1$, which removes one degree of freedom so that we only need to specify 7 p_i .

Example: table representation with full independence

- ▶ With independence, p(x, y, z) = p(x)p(y)p(z).
- ▶ 3 non-negative parameters, $p(x = 1) = p_1$, $p(y = 1) = p_2$, and $p(z = 1) = p_3$, fully specify the pmf

x, y, z are not interacting: the probability of joint events, e.g. $\{x = 1 \text{ and } y = 1 \text{ and } z = 1\}$, is fully determined by the marginal probabilities.

Example: table repr with conditional independence

- Assume $x \perp \!\!\! \perp y \mid z$ so that p(x, y, z) = p(z)p(x|z)p(y|z)
- For p(z) we need 1 parameter
- For p(x|z), we need 2 parameters: one for p(x|z=0) and one for p(x|z=1).
- ightharpoonup Same for p(y|z).
- ► Total: 1+2+2=5 non-negative parameters
- With

$$p_1 = p(z = 1)$$
 $p_2 = p(x = 1|z = 0),$ $p_3 = p(x = 1|z = 1),$ $p_4 = p(y = 1|z = 0),$ $p_5 = p(y = 1|z = 1)$

we can represent p(x, y, z) as a table.

Conditional independence is often a good middle-ground

- Consider $p(\mathbf{x}) = p(x_1, \dots, x_d)$, with each x_i taking on K different values (e.g. d = 100, K = 10).
- No independence: $K^d 1$ parameters, e.g. $10^{100} 1$
- ▶ Full independence (factorisation): d(K-1), e.g. 900
- ▶ For conditional independence $x_{i+1} \perp \!\!\! \perp x_1, \ldots, x_{i-1} \mid x_i$ (future independent of the past given the present), we have (see later)

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\dots p(x_d|x_{d-1})$$
 (11)

The number of parameters is K - 1 + (d - 1)K(K - 1), e.g. 8919

While no independence is not tractable and full independence often too strong an assumption, conditional independence assumptions are often a powerful middle-ground.

Program

- 1. Independence assumptions
- 2. Assumptions on form of interaction
 - Parametric models restrict how a given number of variables may interact (autoregressive models)
 - Combination with independence assumptions

Assumption 2: limiting the form of the interaction

- Conditional) independence assumptions limit the number of variables that may directly interact with each other, e.g. x_{i+1} only directly interacted with x_i .
- ► How the variables interact, however, was not restricted.
- Assumption 2: We restrict how a given number of variables may interact with each other.
- Often corresponds to making parametric family assumptions.

Interlude: chain rule

Iteratively applying the product rule allows us to factorise any joint $pdf/pmf \ p(\mathbf{x}) = p(x_1, x_2, \dots, x_d)$ into product of conditional pdfs/pmfs.

$$p(\mathbf{x}) = p(x_1)p(x_2, \dots, x_d | x_1)$$

$$= p(x_1)p(x_2 | x_1)p(x_3, \dots, x_d | x_1, x_2)$$

$$= p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2)p(x_4, \dots, x_d | x_1, x_2, x_3)$$

$$\vdots$$

$$= p(x_1)p(x_2 | x_1)p(x_3 | x_1, x_2) \dots p(x_d | x_1, \dots, x_{d-1})$$

$$= p(x_1)\prod_{i=2}^{d} p(x_i | x_1, \dots, x_{i-1}) = \prod_{i=1}^{d} p(x_i | \text{pre}_i)$$

with
$$\operatorname{pre}_i = \operatorname{pre}(x_i) = \{x_1, \dots, x_{i-1}\}, \ \operatorname{pre}_1 = \emptyset \ \text{and} \ p(x_1|\emptyset) = p(x_1).$$

The chain rule can be applied to any ordering of the variables. For each x_i , we condition on all previous variables in the ordering.

No independence assumption made.

Autoregressive model for binary variables

- For $p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \text{pre}_i)$, specify each $p(x_i | \text{pre}_i)$ as a member of a parametric family.
- Defines so-called autoregressive models.
- Let the variables be binary and assume

$$p(x_i = 1 | \text{pre}_i) = \frac{1}{1 + \exp\left(-b_i - \sum_{j=1}^{i-1} w_{ij} x_j\right)}$$
(12)

ightharpoonup The parameters w_{ij} can be stored as a $d \times d$ matrix W

$$\mathbf{W} = \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ w_{21} & 0 & 0 & \dots & 0 & 0 \\ w_{31} & w_{32} & 0 & \dots & 0 & 0 \\ \vdots & & & & & & \\ w_{d1} & w_{d2} & w_{d3} & \dots & w_{d(d-1)} & 0 \end{pmatrix}$$
(13)

- ► Matrix contains $(d^2 d)/2$ parameters w_{ij} .
- ▶ With biases b_i : $(d^2 d)/2 + d = (d^2 + d)/2$ parameters

Autoregressive models for binary variables

- ▶ Table representation without independence requires $2^d 1$ parameters
- For d = 100: 5050 vs $2^{100} 1 \approx 1.27 \cdot 10^{30}$ parameters.
- Instead of linear combination of the predecessors, $\sum_{j=1}^{i-1} w_{ij} x_j$ we may use (parameterised) nonlinear functions such as neural networks.
- Leads to deep generative modelling (see later).
- We can use the same idea for continuous variables.

Recap: the univariate Gaussian distribution

A real-valued random variable x is said to be Gaussian (normally) distributed if it has the pdf

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (14)

- Properties:
 - $ightharpoonup \mathbb{E}[x] = \mu$, $\mathbb{V}[x] = \sigma^2$
 - Any linear combination of univariate Gaussians is Gaussian.
- ightharpoonup Bell-shaped, symmetric around μ .
- Notation: $x \sim \mathcal{N}(x; \mu, \sigma^2)$.
- ▶ Can be generated by $x = \mu + \sigma n$ where $n \sim \mathcal{N}(n; 0, 1)$.
- Libraries can generate samples from $\mathcal{N}(n; 0, 1)$

Recap: the multivariate Gaussian distribution

- A random vector $\mathbf{x} \in \mathbb{R}^d$ is multivariate Gaussian (normal) if for all projections \mathbf{a} , $\mathbf{a}^{\top}\mathbf{x}$ is univariate Gaussian.
- ► If x has a density, it equals

$$p(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{\Sigma})}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right) \quad (15)$$

- Properties:
 - ightharpoonup $\mathbb{E}[\mathsf{x}] = \mu$, $\mathbb{V}[\mathsf{x}] = \mathbf{\Sigma}$
 - lsocontours, i.e. the x where p(x) = const, are ellipses.
- ► Notation: $\mathbf{x} \sim \mathcal{N}(\mathbf{x}; \boldsymbol{\mu}, \boldsymbol{\Sigma})$

Autoregressive model for continuous variables

- We could "convert" continuous variables into discrete ones by discretisation. Loses information and number of bins grows as K^d when each variable has K discretisation levels.
- Use chain rule with parametric assumptions instead.
- For $p(\mathbf{x}) = \prod_{i=1}^{d} p(x_i | \text{pre}_i)$, assume each $p(x_i | \text{pre}_i)$ is a univariate Gaussian where the mean and, possibly, variance depend on pre_i .
- Simplest case: $p(x_i|\text{pre}_i)$ is Gaussian with constant variance σ_i^2 and means μ_i that depend linearly on pre_i

$$\mu_1 = b_1,$$
 $\mu_i = b_i + \sum_{j=1}^{i-1} w_{ij} x_j \quad (i > 1)$ (16)

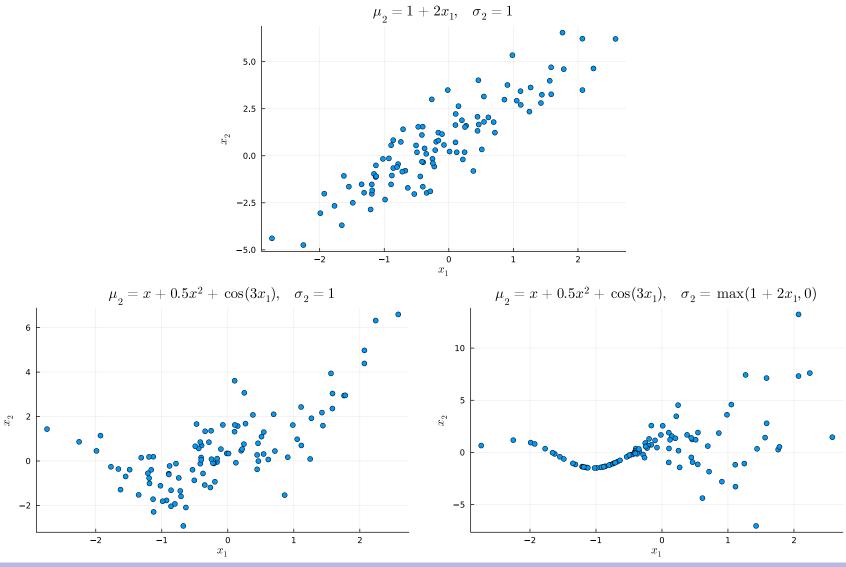
- ► Has $(d^2 + d)/2 + d$ parameters (same reasoning as before).
- Defines a multivariate Gaussian.

Autoregressive model for continuous variables

- More complex cases obtained by
 - \triangleright letting variance depend on pre_i,
 - replacing the linear combination $\sum_{j=1}^{i-1} w_{ij} x_j$ with a (parameterised) nonlinear function such as a neural network.
- In the second case, each conditional mean depends nonlinearly on the predecessors.
- ▶ Each factor $p(x_i|pre_i)$ defines a nonlinear regression model.
- While each factor $p(x_i|pre_i)$ is conditionally Gaussian, the overall pdf $p(\mathbf{x})$ is not multivariate Gaussian.

Autoregressive model for continuous variables

 x_1 is standard normal, and x_2 is Gaussian with different conditional means and variances.



Combining independence and parametric assumptions

▶ Reconsider the case where $x_{i+1} \perp \!\!\! \perp x_1, \ldots, x_{i-1} \mid x_i$ (future independent of the past given the present), so that

$$p(\mathbf{x}) = p(x_1)p(x_2|x_1)p(x_3|x_2)\dots p(x_d|x_{d-1})$$
 (17)

- ▶ Before, we discussed the case of discrete random variables with a table representation.
- For continuous random variables, we can represent $p(x_{i+1}|x_i)$ with a parametric distribution, e.g. a Gaussian with a nonlinear mean function.
- ► We then make two assumptions: independence assumptions and parametric assumptions.
- ► These two assumptions are main workhorses to specify models in probabilistic machine learning (an additional one are latent variables, see later).

Program recap

We asked: What reasonably weak assumptions can we make to efficiently represent a probabilistic model?

1. Independence assumptions

- Definition and properties of statistical independence
- Factorisation of the pdf and reduction in the number of directly interacting variables

2. Assumptions on form of interaction

- Parametric models restrict how a given number of variables may interact (autoregressive models)
- Combination with independence assumptions