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Recap

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

Assume that x, y, z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.
▶ Issue 1: To specify p(x, y, z), we need to specify

K 3d − 1 = 101500 − 1 non-negative numbers, which is
impossible.
Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?
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Two fundamental assumptions

Consider two assumptions:
1. only a limited number of variables may directly interact with

each other (independence assumptions)
2. for any number of interacting variables, the form of interaction

is limited or restricted (often: parametric family assumptions)
The two assumptions can be used together or separately.
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Program

1. Independence assumptions

2. Assumptions on form of interaction
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Program

1. Independence assumptions
Definition and properties of statistical independence
Factorisation of the pdf and reduction in the number of
directly interacting variables

2. Assumptions on form of interaction
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Statistical independence

▶ Let x and y be two disjoint subsets of random variables. Then
x and y are independent of each other if and only if (iff)

p(x, y) = p(x)p(y) (1)

for all possible values of x and y, where p(x) and p(y) are the
marginals of x and y, respectively.

▶ We say that the joint factorises into a product of p(x) and
p(y).

▶ Notation: x ⊥⊥ y
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Equivalent characterisation of independence

▶ Equivalent characterisation: x ⊥⊥ y iff

p(x|y) = p(x) (2)

for all values of x and y where p(y) > 0.
▶ The equivalency follows from the product rule:

p(x, y) = p(x|y)p(y).
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Proof for x ⊥⊥ y ⇐⇒ p(x|y) = p(x)

⇒ Assume p(x, y) = p(x)p(y) holds. Since p(x, y) = p(x|y)p(y),
we have

p(x|y)p(y) = p(x)p(y) (3)

and hence p(x|y) = p(x) for all y where p(y) > 0.
⇐ Assume p(x|y) = p(x) holds for all y where p(y) > 0. Then:

p(x, y) = p(x|y)p(y) = p(x)p(y) (4)

which is the first characterisation of independence, and
completes the proof.
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Some intuition for statistical independence
▶ x ⊥⊥ y means that knowing y does not help you to predict x,

and vice versa.
▶ One way to predict the value of x from y is by computing the

conditional expectation E[x|y]
▶ In case of independence, we have (assuming pmfs, replace sums with

integrals in case of pdfs)

E[x|y] =
∑

x
p(x|y)x (5)

=
∑

x
p(x)x (6)

= E[x] (7)

▶ Knowing the value of y does not change the value of the
expectation; it doesn’t help you to predict x.

▶ Generalises to arbitrary functions of x, i.e.
E[g(x)|y] = E[g(x)] if x ⊥⊥ y.
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Statistical independence of multiple random variables

▶ Variables x1, . . . , xn are independent iff for every partition of
the index set {1, . . . , n} into disjoint subsets A and B, the
random vectors xA and xB are independent.

▶ More actionable characterisation: Variables x1, . . . , xn are
independent iff

p(x1, . . . , xn) =
n∏

i=1
p(xi) (8)

where p(xi) is the marginal for xi .
▶ We say that the joint factorises into a product of the

marginals.
▶ Notation: x1 ⊥⊥ x2 ⊥⊥ . . . ⊥⊥ xn
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Conditional statistical independence

▶ The characterisation of statistical independence extends to
conditional pdfs (pmfs) p(x, y|z).

▶ Criteria from before carry over: functions do now also depend
on z.

▶ x and y are conditionally independent given z iff, for all
possible values of x, y, and z,

p(x, y|z) = p(x|z)p(y|z) (for p(z) > 0) or (9)
p(x|y, z) = p(x|z) (for p(y, z) > 0) (10)

▶ Proof of equivalence analogue to unconditional case.
▶ Notation: x ⊥⊥ y | z
▶ From the product rule it follows that the joint p(x, y, z)

factorises as p(x, y, z) = p(z)p(x|z)p(y|z) when x ⊥⊥ y | z.
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The impact of independence assumptions

▶ The key is that independence assumptions lead to a partial
factorisation of the pdf/pmf with factors that involve fewer
variables.

▶ Independence assumptions force p(x, y, z) to take on a
particular form.

▶ Reduces the number of directly interacting variables and
thereby the amount of numbers (parameters) that specify a
pdf/pmf.
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Example: table representation without independence
▶ Let x, y, z all be one-dimensional and binary.
▶ Without independence, we need to specify 23 − 1 = 7

non-negative parameters pi to specify the pmf.
▶ Table representation

x y z p(x , y , z)

0 0 0 p1
0 0 1 p2
0 1 0 p3
0 1 1 p4
1 0 0 p5
1 0 1 p6
1 1 0 p7
1 1 1 p8

with the constraint that
∑

i pi = 1, which removes one degree
of freedom so that we only need to specify 7 pi .
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Example: table representation with full independence
▶ With independence, p(x , y , z) = p(x)p(y)p(z).
▶ 3 non-negative parameters, p(x = 1) = p1, p(y = 1) = p2,

and p(z = 1) = p3, fully specify the pmf

x y z p(x , y , z) = p(x)p(y)p(z)

0 0 0 (1 − p1)(1 − p2)(1 − p3)
0 0 1 (1 − p1)(1 − p2)p3
0 1 0 (1 − p1)p2(1 − p3)
0 1 1 (1 − p1)p2p3
1 0 0 p1(1 − p2)(1 − p3)
1 0 1 p1(1 − p2)p3
1 1 0 p1p2(1 − p3)
1 1 1 p1p2p3

▶ x , y , z are not interacting: the probability of joint events, e.g.
{x = 1 and y = 1 and z = 1}, is fully determined by the
marginal probabilities.
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Example: table repr with conditional independence

▶ Assume x ⊥⊥ y | z so that p(x , y , z) = p(z)p(x |z)p(y |z)
▶ For p(z) we need 1 parameter
▶ For p(x |z), we need 2 parameters: one for p(x |z = 0) and one

for p(x |z = 1).
▶ Same for p(y |z).
▶ Total: 1+2+2 = 5 non-negative parameters
▶ With

p1 = p(z = 1) p2 = p(x = 1|z = 0), p3 = p(x = 1|z = 1),
p4 = p(y = 1|z = 0), p5 = p(y = 1|z = 1)

we can represent p(x , y , z) as a table.
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Conditional independence is often a good middle-ground

▶ Consider p(x) = p(x1, . . . , xd), with each xi taking on K
different values (e.g. d = 100, K = 10).

▶ No independence: Kd − 1 parameters, e.g. 10100 − 1
▶ Full independence (factorisation): d(K − 1), e.g. 900
▶ For conditional independence xi+1 ⊥⊥ x1, . . . , xi−1 | xi (future

independent of the past given the present), we have (see later)

p(x) = p(x1)p(x2|x1)p(x3|x2) . . . p(xd |xd−1) (11)

The number of parameters is K − 1 + (d − 1)K (K − 1), e.g.
8919

▶ While no independence is not tractable and full independence
often too strong an assumption, conditional independence
assumptions are often a powerful middle-ground.
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Program

1. Independence assumptions

2. Assumptions on form of interaction
Parametric models restrict how a given number of variables
may interact (autoregressive models)
Combination with independence assumptions
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Assumption 2: limiting the form of the interaction

▶ (Conditional) independence assumptions limit the number of
variables that may directly interact with each other, e.g. xi+1
only directly interacted with xi .

▶ How the variables interact, however, was not restricted.
▶ Assumption 2: We restrict how a given number of variables

may interact with each other.
▶ Often corresponds to making parametric family assumptions.
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Interlude: chain rule

Iteratively applying the product rule allows us to factorise any joint
pdf/pmf p(x) = p(x1, x2, . . . , xd) into product of conditional pdfs/pmfs.

p(x) = p(x1)p(x2, . . . , xd |x1)
= p(x1)p(x2|x1)p(x3, . . . , xd |x1, x2)
= p(x1)p(x2|x1)p(x3|x1, x2)p(x4, . . . , xd |x1, x2, x3)
...
= p(x1)p(x2|x1)p(x3|x1, x2) . . . p(xd |x1, . . . xd−1)

= p(x1)
d∏

i=2
p(xi |x1, . . . , xi−1) =

d∏
i=1

p(xi |prei)

with prei = pre(xi) = {x1, . . . , xi−1}, pre1 = ∅ and p(x1|∅) = p(x1).
The chain rule can be applied to any ordering of the variables. For each
xi , we condition on all previous variables in the ordering.

No independence assumption made.
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Autoregressive model for binary variables
▶ For p(x) =

∏d
i=1 p(xi |prei), specify each p(xi |prei) as a

member of a parametric family.
▶ Defines so-called autoregressive models.
▶ Let the variables be binary and assume

p(xi = 1|prei) = 1
1 + exp

(
−bi −

∑i−1
j=1 wijxj

) (12)

▶ The parameters wij can be stored as a d × d matrix W

W =


0 0 0 . . . 0 0

w21 0 0 . . . 0 0
w31 w32 0 . . . 0 0

...
wd1 wd2 wd3 . . . wd(d−1) 0

 (13)

▶ Matrix contains (d2 − d)/2 parameters wij .
▶ With biases bi : (d2 − d)/2 + d = (d2 + d)/2 parameters
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Autoregressive models for binary variables

▶ Table representation without independence requires 2d − 1
parameters

▶ For d = 100: 5050 vs 2100 − 1 ≈ 1.27 · 1030 parameters.
▶ Instead of linear combination of the predecessors,

∑i−1
j=1 wijxj

we may use (parameterised) nonlinear functions such as neural
networks.

▶ Leads to deep generative modelling (see later).
▶ We can use the same idea for continuous variables.
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Recap: the univariate Gaussian distribution

▶ A real-valued random variable x is said to be Gaussian
(normally) distributed if it has the pdf

p(x) = 1√
2πσ2

exp
(

−(x − µ)2

2σ2

)
(14)

▶ Properties:
▶ E[x ] = µ, V[x ] = σ2

▶ Any linear combination of univariate Gaussians is Gaussian.
▶ Bell-shaped, symmetric around µ.
▶ Notation: x ∼ N (x ; µ, σ2).
▶ Can be generated by x = µ + σn where n ∼ N (n; 0, 1).
▶ Libraries can generate samples from N (n; 0, 1)
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Recap: the multivariate Gaussian distribution

▶ A random vector x ∈ Rd is multivariate Gaussian (normal) if
for all projections a, a⊤x is univariate Gaussian.

▶ If x has a density, it equals

p(x) = 1√
(2π)n det(ΣΣΣ)

exp
(

−1
2(x − µµµ)⊤ΣΣΣ−1(x − µµµ)

)
(15)

▶ Properties:
▶ E[x] = µµµ, V[x] = ΣΣΣ
▶ Isocontours, i.e. the x where p(x) = const, are ellipses.

▶ Notation: x ∼ N (x;µµµ,ΣΣΣ)
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Autoregressive model for continuous variables

▶ We could “convert” continuous variables into discrete ones by
discretisation. Loses information and number of bins grows as
Kd when each variable has K discretisation levels.

▶ Use chain rule with parametric assumptions instead.
▶ For p(x) =

∏d
i=1 p(xi |prei), assume each p(xi |prei) is a

univariate Gaussian where the mean and, possibly, variance
depend on prei .

▶ Simplest case: p(xi |prei) is Gaussian with constant variance
σ2

i and means µi that depend linearly on prei

µ1 = b1, µi = bi +
i−1∑
j=1

wijxj (i > 1) (16)

▶ Has (d2 + d)/2 + d parameters (same reasoning as before).
▶ Defines a multivariate Gaussian.
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Autoregressive model for continuous variables

▶ More complex cases obtained by
▶ letting variance depend on prei ,
▶ replacing the linear combination

∑i−1
j=1 wijxj with a

(parameterised) nonlinear function such as a neural network.
▶ In the second case, each conditional mean depends nonlinearly

on the predecessors.
▶ Each factor p(xi |prei) defines a nonlinear regression model.
▶ While each factor p(xi |prei) is conditionally Gaussian, the

overall pdf p(x) is not multivariate Gaussian.
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Autoregressive model for continuous variables
x1 is standard normal, and x2 is Gaussian with different conditional
means and variances.
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Combining independence and parametric assumptions

▶ Reconsider the case where xi+1 ⊥⊥ x1, . . . , xi−1 | xi (future
independent of the past given the present), so that

p(x) = p(x1)p(x2|x1)p(x3|x2) . . . p(xd |xd−1) (17)

▶ Before, we discussed the case of discrete random variables
with a table representation.

▶ For continuous random variables, we can represent p(xi+1|xi)
with a parametric distribution, e.g. a Gaussian with a
nonlinear mean function.

▶ We then make two assumptions: independence assumptions
and parametric assumptions.

▶ These two assumptions are main workhorses to specify models
in probabilistic machine learning (an additional one are latent
variables, see later).
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Program recap

We asked: What reasonably weak assumptions can we make to
efficiently represent a probabilistic model?

1. Independence assumptions
Definition and properties of statistical independence
Factorisation of the pdf and reduction in the number of
directly interacting variables

2. Assumptions on form of interaction
Parametric models restrict how a given number of variables
may interact (autoregressive models)
Combination with independence assumptions
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