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Recap

▶ We talked about reasonably weak assumption to facilitate the
efficient representation of a probabilistic model

▶ Independence assumptions reduce the number of interacting
variables, e.g.
▶ p(x, y, z) = p(x)p(y)p(z)
▶ p(x1, . . . , xd) = p(x1)p(x2|x1) . . . p(xd |xd−1)

▶ Chain rule: p(x) =
∏d

i=1 p(xi |prei) where
prei = {x1, . . . , xi−1} are the predecessors of xi in a given
ordering of the variables.

▶ Parametric assumptions, e.g. on p(xi |prei) in the chain rule,
restrict the way the variables may interact.
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1. Visualising factorisations with directed acyclic graphs

2. Directed graphical models
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Cond independencies simplify factors in the chain rule
▶ We can always express a pdf/pmf p(x) in terms of the chain

rule as

p(x) = p(x1)p(x2|x1)p(x3|x2, x1) . . . p(xd |x1, . . . xd−1) (1)

=
d∏

i=1
p(xi |prei) (2)

▶ Assume that, for each i , there is a minimal subset of variables
pai ⊆ prei (called the “parents” of xi) such that p(x) satisfies

xi ⊥⊥ (prei \ pai) | pai for all i (3)

▶ By conditional independence: p(xi |prei) = p(xi |pai)
▶ With the convention pa1 = ∅, we obtain the factorisation

p(x1, . . . , xd) =
d∏

i=1
p(xi |pai) (4)
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What can we do with it?

p(x1, . . . , xd) =
∏d

i=1 p(xi |pai)

1. p(xi |pai) involve fewer interacting variables than p(xi |prei).
▶ Makes them easier to model.
▶ If specified as a table, fewer numbers are needed for their

representation (computational advantage).
2. We can visualise the interactions between the variables with a

graph.
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Visualisation as a directed graph

Assume p(x) =
∏d

i=1 p(xi |pai) with pai ⊆ prei . We visualise the
model as a graph with the random variables xi as nodes, and
directed edges that point from the xj ∈ pai to the xi . This results
in a directed acyclic graph (DAG).
Example:

p(x1, x2, x3, x4, x5) = p(x1)p(x2)p(x3|x1, x2)p(x4|x3)p(x5|x2)

x1 x2

x3

x4

x5
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Visualisation as a directed graph

Example:

p(x1, x2, x3, x4) = p(x1)p(x2|x1)p(x3|x1, x2)p(x4|x1, x2, x3)

x1 x2

x3

x4

Factorisation obtained by chain rule ≡ fully connected directed
acyclic graph. Different orderings give different graphs.
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Graph concepts

▶ Directed graph: graph where all edges are directed
▶ Directed acyclic graph (DAG): by following the direction of

the arrows you will never visit a node more than once
▶ xi is a parent of xj if there is a (directed) edge from xi to xj .

The set of parents of xi in the graph is denoted by
pa(xi) = pai , e.g. pa(x3) = pa3 = {x1, x2}.

▶ xj is a child of xi if xi ∈ pa(xj), e.g. x3 and x5 are children of
x2.

x1 x2

x3

x4

x5
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Graph concepts

▶ A path or trail from xi to xj is a sequence of distinct connected
nodes starting at xi and ending at xj . The direction of the
arrows does not matter. For example: x5, x2, x3, x1 is a trail.

▶ A directed path is a sequence of connected nodes where we
follow the direction of the arrows. For example: x1, x3, x4 is a
directed path. But x5, x2, x3, x1 is not a directed path.

x1 x2

x3

x4

x5
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Graph concepts
▶ The ancestors anc(xi) of xi are all the nodes where a directed

path leads to xi . For example, anc(x4) = {x1, x3, x2}.
▶ The descendants desc(xi) of xi are all the nodes that can be

reached on a directed path from xi . For example,
desc(x1) = {x3, x4}.
(Note: sometimes, xi is included in the set of ancestors and
descendants)

▶ The non-descendents of xi are all the nodes in a graph except
xi and the descendants of xi . For example,
nondesc(x3) = {x1, x2, x5}

x1 x2

x3

x4

x5
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Graph concepts

▶ Topological ordering: an ordering (x1, . . . , xd) of some
variables xi is topological relative to a graph if parents come
before their children in the ordering.
(whenever there is a directed edge from xi to xj , xi occurs prior to
xj in the ordering.)

▶ Examples for the graph on the
right: (non-exhaustive list)
▶ x1, x2, x3, x4, x5
▶ x2, x5, x1, x3, x4
▶ x2, x1, x3, x5, x4

x1 x2

x3

x4

x5

▶ There is always at least one ordering that is topological
relative to a DAG.
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Directed graphical model (DGM)

▶ We started with a factorised pdf/pmf and associated a DAG
with it.

▶ We can also go the other way around and start with a DAG.
▶ Definition A directed graphical model based on a DAG G with

d nodes and associated random variables xi is the set of
pdfs/pmfs that factorise as

p(x1, . . . , xd) =
d∏

i=1
k(xi |pai)

where the k(xi |pai) are some conditional pdfs/pmfs. (They are
sometimes called kernels or factors)

▶ A pdf/pmf p(x1, . . . , xd) that can be written as above is said
to “factorise over the graph G”. We say that it has property
F (G) (“F” for factorisation).
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Why set of pdfs/pmfs?

▶ The directed graphical model corresponds to a set of
probability distributions .

▶ This is because we did not specify any numerical values for
the k(xi |pai). We only specified which variables the
conditionals take as input (namely xi and pai).

▶ The set includes all those distributions that you get by
looping, for all variables xi , over all possible k(xi |pai).
(e.g. tables or parameter values in parametrised models)

▶ While a probability distribution corresponds to a probabilistic
model, a set of probability distributions (probabilistic models)
is often called a statistical model.

▶ Individual pdfs/pmf in the set are typically also called a
directed graphical model.

▶ Other names for directed graphical models: belief network,
Bayesian network, Bayes network.
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The factors k(xi |pai) equal the conditionals p(xi |pai)

▶ When we decomposed a given distribution p(x) with the chain
rule and inserted conditional independencies, we obtained

p(x) =
∏

i
p(xi |pai)

with p(xi |pai) equal to the conditionals of xi given pai .
▶ We now show that the k(xi |pai) in the definition of the DGM

are equal to the conditionals p(xi |pai) wrt p(x), as above.
▶ First step is to label the variables such that the ordering

x1, . . . , xd is topological relative to the DAG G .
▶ In a topological ordering, the parents come before the

children. Hence pai ⊆ prei = (x1, . . . , xi−1)
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The factors k(xi |pai) equal the conditionals p(xi |pai)

p(x1, . . . , xd) =
∏d

i=1 k(xi |pai)
▶ We next compute p(x1, . . . , xd−1) using the sum rule:

p(x1, . . . , xd−1) =
∫

p(x1, . . . , xd)dxd

=
∫ d∏

i=1
k(xi |pai)dxd

=
∫ d−1∏

i=1
k(xi |pai)k(xd |pad)dxd (xd /∈ pai , i < d)

=
d−1∏
i=1

k(xi |pai)
∫

k(xd |pad)dxd

=
d−1∏
i=1

k(xi |pai)
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The factors k(xi |pai) equal the conditionals p(xi |pai)
Hence:

p(xd |x1, . . . , xd−1) = p(x1, . . . , xd)
p(x1, . . . , xd−1) =

∏d
i=1 k(xi |pai)∏d−1
i=1 k(xi |pai)

= k(xd |pad)

Split (x1, . . . , xd−1) = pred into non-overlapping sets pad and
x̃d = pred \ pad so that p(xd |x1, . . . , xd−1) = p(xd |x̃d , pad).
By the product rule, we have

p(xd , x̃d |pad) = p(xd |x̃d , pad)p(x̃d |pad)
= k(xd |pad)p(x̃d |pad)

Next sum out x̃d to obtain

p(xd |pad) =
∫

p(xd , x̃d |pad)dx̃d = k(xd |pad)
∫

p(x̃d |pad)dx̃d

= k(xd |pad)

where we have used that xd and pad are not part of x̃d .
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The factors k(xi |pai) equal the conditionals p(xi |pai)

Hence:

p(xd |x1, . . . , xd−1) = k(xd |pad) = p(xd |pad)

Next, note that p(x1, . . . , xd−1) has the same form as
p(x1, . . . , xd): apply the same procedure to all p(x1, . . . , xk), for
smaller and smaller k ≤ d − 1

Proves that for DGMs, the factors k(xi |pai) are equal to the
conditionals p(xi |pai) of p(x).

In what follows, we will thus use p(xi |pai) instead of k(xi |pai)
when we work with DGMs.

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 20 / 28

https://creativecommons.org/licenses/by/4.0/


Some independences satisfied by DGMs
▶ When we started from the chain rule p(x) =

∏
i p(xi |prei), we

inserted the conditional independencies

xi ⊥⊥ (prei \ pai) | pai for all i (5)

to obtain p(x) =
∏

i p(xi |pai).
▶ For directed graphical models, we started with the

factorisation p(x) =
∏

i p(xi |pai). Does it imply the above
conditional independences?

▶ In the proof above, we found that for all i ,

p(xi |x1, . . . , xi−1) = p(xi |pai), (6)

which means that xi ⊥⊥ (prei \ pai) | pai for all i in the
chosen topological ordering.

▶ Chosen topological ordering was not special: holds for all
orderings that are topological relative to the DAG.

▶ Factorisation p(x) =
∏

i p(xi |pai) implies the independences
and vice versa.

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 21 / 28

https://creativecommons.org/licenses/by/4.0/


Some marginals

▶ In the proof, we also found that (for the chosen topological
ordering)

p(x1, . . . , xk) =
k∏

i=1
p(xi |pai) (7)

▶ The marginal joint distribution of the first k variables in the
chosen topological ordering is given by the product of the
corresponding factors p(xi |pai).

▶ Chosen topological ordering was not special: holds for all
orderings that are topological relative to the DAG.

▶ While marginalisation can be very expensive (see later), the
above marginals are available for free for DGMs.

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 22 / 28

https://creativecommons.org/licenses/by/4.0/


Ancestral sampling

▶ The DAG not only specifies the joint distribution
p(x) =

∏d
i=1 p(xi |pai) but also a sampling/data generating

process.
▶ To generate data from p(x):

1. Pick an ordering x1, . . . , xd of the random variables that is
topological to G .

2. x1 does not have any parents, i.e. set pa1 = ∅ and
p(x1|∅) = p(x1).

3. Following the topological ordering, sample from p(xi |pai),
i = 1, . . . , d .

▶ It’s called ancestral sampling because we sample the parents
before the children, following the arrows in the DAG.

▶ The DAG visualises the data generating process, which can be
used as modelling tool.
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Example
DAG: a z

q

e

h

Random variables: a, z , q, e, h

Parent sets: paa = paz = ∅, paq = {a, z}, pae = {q}, pah = {z}.

Directed graphical model: set of pdfs/pmfs p(a, z , q, e, h) that
factorise as:

p(a, z , q, e, h) = p(a)p(z)p(q|a, z)p(e|q)p(h|z)

Data generating process: For topological ordering a, z , q, e, h:
a ∼ p(a), z ∼ p(z), q ∼ p(q|a, z), e ∼ p(e|q), h ∼ p(h|z)
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Example: Markov chain

DAG:

x1 x2 x3 x4 x5

Random variables: x1, x2, x3, x4, x5

Parent sets:
pa1 = ∅, pa2 = {x1}, pa3 = {x2}, pa4 = {x3}, pa5 = {x4}.

Directed graphical model: set of pdfs/pmfs p(x1, . . . , x5) that
factorise as:

p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x3)p(x5|x4)

Data generating process: For topological ordering x1, . . . , x5:
x1 ∼ p(x1), x2 ∼ p(x2|x1), x3 ∼ p(x3|x2), x4 ∼ p(x4|x3), x5 ∼
p(x5|x4)
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Example: Probabilistic PCA, factor analysis, ICA, VAEs
(PCA/ICA: principal/independent component analysis; VAE: var autoencoders)

DAG: x1 x2 x3

y1 y2 y3 y4 y5

Random variables: x1, x2, x3, y1, . . . , y5

Parent sets: pa(xi) = ∅, pa(yi) = {x1, x2, x3} for all i .

Directed graphical model: set of pdfs/pmfs p(x1, x2, x3, y1, . . . , y5)
that factorise as:

p(x1, x2, x3, y1, . . . , y5) =p(x1)p(x2)p(x3)p(y1|x1, x2, x3)
p(y2|x1, x2, x3) . . . p(y5|x1, x2, x3)

Data generating process: topological ordering x1, x2, x3, y1, . . . , y4
xi ∼ p(xi), yi ∼ p(yi |x1, x2, x3)
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Example: Modeling COVID-19 disease processes

BMC Med Res Methodol, 2023. https://doi.org/10.1186/s12874-023-01856-1
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