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Recap

The number of free parameters in probabilistic models
increases with the number of random variables involved.

Making statistical independence assumptions reduces the
number of free parameters that need to be specified.

Starting with the chain rule and an ordering of the random
variables, we used statistical independencies to simplify the
representation.

We thus obtained a factorisation in terms of a product of
conditional pdfs that we visualised as a DAG.

In turn, we used DAGs to define sets of distributions
(“directed graphical models™).

We discussed independence properties satisfied by the
distributions, d-separation, and the equivalence to the
factorisation.
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The directionality in directed graphical models

» So far we mainly exploited the property

x 1Ly |z <+ p(x,y|z) = p(x|z)p(y|2)

» But when working with p(x,y|z) we impose an ordering or
directionality from z to x and y.

» Directionality matters in directed graphical models

» In some cases, directionality is natural but in others we do not
want to choose one direction over another.

» We now discuss how to visualise and represent probability
distributions and independencies in a symmetric manner
without assuming a directionality or ordering of the variables.
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1. Visualising factorisations with undirected graphs

2. Undirected graphical models
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Program

1. Visualising factorisations with undirected graphs
o Undirected characterisation of statistical independence
o Gibbs distributions
o Visualising Gibbs distributions with undirected graphs
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Further characterisation of statistical independence

» For non-negative functions a(x, z), b(y, z):
x L y|z <= p(x,y,2z) = a(x,2z)b(y,z)

(see below for proof)

» Equivalent to p(x,y,z) = p(x|z)p(y|z)p(z) but does not
assume that the factors are (conditional) pdfs/pmfs.

» No directionality or ordering of the variables is imposed.

» Unconditional version: For non-negative functions a(x), b(y):
x 1Ly < p(x,y) = a(x)b(y)

» The important point is the factorisation of p(x,y,z) into two
non-negative factors:
» if the factors share a variable z, then we have conditional

independence,
» if not, we have unconditional independence.
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Proof for p(x,y,z) = a(x,z)b(y,z) < x 1l y|z

We prove the equivalence for pmfs. For pdfs, the arguments stay
the same, we just replace the sums with integrals.

The proof uses the sum rule (SR) and the product rule (PR).
= Assume p(x,y,z) = a(x,z)b(y, z) (x)

p(x,2) ‘TS plx,y,2) 2 S a(x, 2)b(y, 2)

y

= a(x, z) Z b(y,z) = a(x,z)b(z)
p(y.2) =3 p(x.y.2) 2 S a(x,2)b(y. 2)

X

— b(y,2) Y a(x,2) = bly. 2)3(z)

X

p(z) =) 3" ply.2) = 3(2) Y b(y.2) = 3(2)b(2)
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Assume p(z) > 0, then 3(z) > 0, b(z) > 0 and

p(x, 2)
b(z)

a(x,z) = b(y,z) =

a(2)

Hence

p(x.y.2) & a(x,2)b(y.2)
_ p(x,2) p(y, z)
b(z) 3a(z)
_ p(X,Z)p(y, Z)
p(2)
(PR) p(x|z)p(2)p(y|2)p(2)
p(z)
= p(x|z)p(y|z)p(2)

and thus

p(x,y|z) = p(x|z)p(y|z) (for p(z) > 0)

which was one of our initial criteria for x 1l y | z.

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0

p(y, z)

8 / 34


https://creativecommons.org/licenses/by/4.0/

< Assume x Il y | z.

We thus have p(x,y,z) = p(z)p(x|z)p(y|z)
» ldentify a(x,z) = p(z)p(x|z) and b(y, z) = p(y|z),
> Or, a(x,2) = p(x|z) and b(y,2) = p(2)p(y[2).
> Or, a(x,z) = p'/?(z)p(x|z) and b(y,z) = p*/?(z)p(y|z).
> etc.
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Reformulation to ensure normalisation

» Since p(x,y,z) must sum (integrate) to one, we must have

Z a(x,z)b(y,z) =1

x7y7z

» Normalisation condition often ensured by re-defining
a(x,z)b(y,z): we have x 1Ly | z iff

1
p(x, y; Z) — ?¢A(x7 Z)¢B(y7 Z) VS Z ¢A(x7 Z)¢B(y7 Z)
x7y7z
» /: normalisation constant (related to partition function, see later)

» ¢;: factors (also called potential functions).
Do generally not correspond to (conditional) pdfs/pmfs.

» Key point remains the same: conditional independence if the
factors share a variable z.
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What does it mean?
x Ly |z <= p(x,y,2) = z¢a(x,2)¢8(y, 2)
“=" If we want our model to satisfy x 1l y | z we should write the

pdf (pmf) as

p(x, y; Z) X gbA(Xv Z)¢B(y7 Z)

‘<" If the pdf (pmf) can be written as

p(X7 Yy, Z) X ¢A(x7 z)¢3(y7 Z)
then we have x 1l y | z
equivalent for unconditional version
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Example

Consider p(X].a X2, X3, X4) X ¢1(X17 X2)¢2(X27 X3)¢3(X4)

What independencies does p satisfy?

» \We can write

p(x1, X2, X3, xa) o [P1(x1, X2)P2(x2, X3)][¢3(xa)]

-~

b1(x1,%2,%3)

x ¢1(x1, X2, X3)P3(x2)

so that xz AL xq1, X, Xx3.

» Integrating out x4 gives

p(x1,x2,x3) = /P(X1,X2,X3,X4)dx4 o P1(X1,X2)P2(X2, X3)

so that x3 1 x3 ‘ X2
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Gibbs distributions

» Example is a special case of a class of pdfs/pmfs that
factorise as

p(Xl7 . ,Xd) = % H gf)c(XC)

> X. C{xq,...,xq}

» ¢, are non-negative factors (potential functions)
Do generally not correspond to (conditional) pdfs/pmfs.
They measure “compatibility”, “agreement”, or “affinity”

» 7 is a normalising constant so that p(xi,...,Xxy) integrates
(sums) to one.

» Known as Gibbs (or Boltzmann) distributions

» b(x1,...,xq) =[], ¢c(Xe) is said to be an unnormalised
model: p > 0 but does not necessarily integrate (sum) to one.
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Energy-based model

» With ¢o(X:) = exp (—Ec(X:)), we have equivalently

p(x1, ..., Xq) = % exp [— Z Ec(Xc)]

Cc

» > E-(Xc) is the energy of the configuration (xi, ..., Xq).
low energy <= high probability
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Visualising Gibbs distributions with undirected graphs

p(X17 SRR 7Xd) X Hc ¢C(XC)
» Node for each x;

» For all factors ¢.: draw an undirected edge between all x; and
x; that belong to A

» Results in a fully-connected subgraph for all x; that are part of
the same factor (this subgraph is called a clique).

Example:
Graph for p(x1,...,X6) o< ¢1(x1, X2, Xa)P2(x2, X3, Xa)P3(x3, X5 ) Pa(x3, X6)

PMR 2025 ©OGutmann, University of Edinburgh CC BY 4.0 15 / 34


https://creativecommons.org/licenses/by/4.0/

Program

1. Visualising factorisations with undirected graphs
o Undirected characterisation of statistical independence
o Gibbs distributions
o Visualising Gibbs distributions with undirected graphs
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Program

2. Undirected graphical models
o Definition
o Examples
o Conditionals, marginals, and change of measure (tilting)
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Undirected graphical models (UGMs)

» We started with a factorised pdf/pmf and associated a

undirected graph with it. We now go the other way around
and start with an undirected graph.

» Definition An undirected graphical model based on an
undirected graph H with d nodes and associated random
variables x; is the set of pdfs/pmfs that factorise as

Pt x0) = 5 [] be(X)

where Z is the normalisation constant, ¢-(X:) > 0, and the
X correspond to the maximal cliques in the graph.

» Remark: a pdf/pmf p(xi,...,xq) that can be written as
above is said to “factorise over the graph H". We say that it
has property F(H) (“F" for factorisation).
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Remarks

» An undirected graph defines the pdfs/pmfs in terms of Gibbs
distributions.

» The undirected graphical model corresponds to a set of
probability distributions . This is because, like in DGMs, we
did not specify any numerical values for the factors ¢.(X¢).
We only specified which variables the factors take as input.

» Individual pdfs/pmf in the set are typically also called a
undirected graphical model.

» Other names for an undirected graphical model: Markov
network (MN), Markov random field (MRF)

» The X form maximal cliques in the graph.

Maximal clique: a set of fully connected nodes (clique) that is
not contained in another clique.
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Why maximal cliques?

» The mapping from Gibbs distribution to graph is many to one.

We may obtain the same graph for different Gibbs
distributions, e.g.

p(X) X ¢1 (Xla X2, X4)¢2(X27 X3, X4)¢3(X37 X5)¢4(X37 X6)
P(X) X él(xlaX2)$2(X1>X4)$3(X2>X4)$4(X27X3)$5(X37X4)$6(X37X5)<57(X37X6)

» By using maximal cliques, we take a conservative approach
and do not make additional assumptions on the factorisation.
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Example

Undirected graph:

Random variables: x = (xg, ..., X6)
Maximal cquueS: {X17X27X4}7 {X27X37X4}7 {X37X5}7 {X37X6}

Undirected graphical model: set of pdfs/pmfs p(x) that factorise

as.

p(x) = %¢1(X1,X2,X4)¢2(X2,X3,X4)¢3(X3,X5)¢4(X3,X6)

o< P1(x1, X2, Xa)P2(x2, X3, X4 ) P3(X3, X5) Pa(X3, X6 )
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Example (pairwise Markov network)

Graph:

Random variables: x = (xg, ..., X6)

Maximal cliques: all neighbours

{X1,X2} {X27X3} {X4,X5} {X57X6} {X1,X4} {X2,X5} {X37X6}

Undirected graphical model: set of pdfs/pmfs p(x) that factorise
as:

p(x) x@1(x1, x2)P2(x2, X3)P3(Xa, X5)Pa(Xs5, X6 ) D5 (X1, Xa) Pe(x2, X5 ) P7 (X3, X6)

This is an example of a pairwise Markov network, which are Gibbs
distributions where all factors depend on one or two variables only.
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Classical instances of pairwise Markov networks

» For pairwise Markov networks, the functional form of the
factors is not constrained, and neither is the domain of x.

» They can thus represent a large number of different
distributions.

» Classical instances are the multivariate Gaussian distribution
for continuous variables and the Boltzmann machine (Ising
model) for binary variables.
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Multivariate Gaussians are pairwise Markov networks

» The pdf of multivariate Gaussian is

1 L e )
X) = e ——(x — 2 (x — 7
P0) = g O (20 W T ) ()
» Re-writing the quadratic term in the exponential gives

(x =) 'Z 7 (x —p) = (x — ) "N(x — ) (8)

=x Ax—x' Ap—p' ' Ax+p'"Ap (9)

=x Ax —2x' Ap+p' Ay (10)

—x Ax—2x"b+pu' Ay (11)

with b = Ap and where we have used that A =X ! is
symmetric.
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Multivariate Gaussians are pairwise Markov networks

» Hence
1 1
p(x) o< exp (_§XTAX +x'b— E,U,TI\,u) (12)
1
X exp (_§XTAX + be> (13)

X EXP (; Z )\,'J'X,'Xj + ZX,'b,') (14)
X Hexp ( ,JX,XJ> Hexp (x;b;) (15)

» All factors either take one or two variables as input, which
makes it a pairwise Markov network.
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Boltzmann machines are pairwise Markov networks

» The Boltzmann machine has exactly the same expression, but
the variables are binary

1
p(X) X exp 5 XU: )\,'J'X,'XJ' + zi:x,'b,' Xj € {0, 1} (16)

where (as for Gaussians) Ajj = \ji
» Properties have been extensively studied in physics

» Have been used by Hopfield and Hinton to model associative
memory and to find patterns in large data sets (Nobel Prize in
Physics 2024).

Talk by Hinton, April 2025: https://informatics.ed.ac.uk/news-events/
events/informatics-distinguished-lectures/

professor-geoffrey-hinton-distinguished
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2. Undirected graphical models
o Definition
o Examples
o Conditionals, marginals, and change of measure (tilting)
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Conditionals

» For DGMs, the factors k(x;|pa;) defining p(x) are the
conditional pdfs/pmfs of x; given pa; under p(x), i.e.
p(xi|pa;). We do not have such a correspondence for UGMs.

» But conditioning on random variables corresponds to a simple
graph operation: removing their nodes from the graph.

» Example: For p(xi,...,Xs) specified by the graph below, what
IS p(X17X27X47X57X6‘X3 — &)7
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Conditionals

» The graph specifies the factorisation

p(x1,- -5 X6) X P1(X1, X2, Xa)P2(x2, X3, Xa ) P3(X3, X5 ) Pa (X3, X6)
» By definition: p(x1, X2, x4, X5, Xe|X3 = Q)
_ p(X17X27X3 — 047X47X57X6)
| p(x1, %2, x3 = @, X4, X5, X6 )dx1dxod x4 d x5 dxe
P1(x1, X2, Xa)P2(x2, ¢, X4)P3( v, X5 ) Pacr, Xp)

N | o1(x1, X2, xa)P2(x2, v, Xa)p3( v, X5) Pa(cv, X6 )dx1dxodxadxsd xs

— Z(loz) ¢1(X17 X2, X4)¢§(X2, X4)¢§é(x5)¢g(x6)

» Gibbs distribution with derived factors ¢f of reduced domain
and new normalisation “constant” Z(«)

» Note that Z(«) depends on the conditioning value «.
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Conditionals

Let p(x1,...,X6) < @1(x1, X2, Xa)D2(X2, X3, Xa)P3(X3, X5 ) Pa(Xx3, X6 ).

» Conditional p(xi, X2, Xa, X5, Xg|x3 = ) is

1

m¢1(xla X2, X4)¢§(X2, X4)¢%(X5)¢2{(X6)

» Conditioning on variables removes the corresponding nodes
and connecting edges from the undirected graph

(=) ()
o
¢
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Marginals

» For DGMs, the product of the first j terms in the factorisation,
1_; p(xilpa;), equaled the marginal p(xi, ..., x;).

» UGMs do not have such a general property. But we can
exploit the factorisation when computing the marginals.

» Will be the discussed in the “inference part” of the course.
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Change of measure (tilting)

» A way to create new pdf/pmfs is to reweight existing ones,
which is a special instance of a “change of measure” also
called “tilting”.

» For example, assume g(x1, x2,x3) = [[; gi(x;) to be a given
pmf. We want to generate a new pmf that assigns higher

probabilities to (x1,x2) € A, and to (x2, x3) € B, for some sets
A and B.

» We can thus define the Gibbs distribution
1 3
p(x) = §¢A(X1,X2)¢B(X2,X3) 1] qi(x)
i=1

where ¢A(X1,X2) — 1 for (X1,X2) §§ A, ¢A(X1,X2) > 1 for
(x1,x2) € A, and equivalently for ¢g.

®H & © OO

graph for q(x) graph for p(x)
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Change of measure (tilting)

» Similarly, we can think that an undirected graph defines how a
base distribution, e.g. g(x) =[], gi(x;), should be reweighted
by factors ¢.(AX,), thus defining a change of measure.

» Two different ways of defining models: Reweighting for UGMSs
vs data generation for DGMs.

» Reweighting is clear when computing expectations, e.g.

Ep[h] = Z h(x)p(x)

X

:% Z h(xl,XQ,X3)¢A(X1,X2)¢B(X27X3)Hqf(Xi)

X1,X2,X3

= %Eq[hﬁbAQbB]

» Since Z = ZX;[,XQ,X3 ¢A(X1,X2)€Z5B(X2,X3) H,- Qi(Xi) — Eq[QbAﬁbB]
B, [A] = Eq[hdads]

[Change of measure ]w Eq[pags]
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Program recap

1. Visualising factorisations with undirected graphs
o Undirected characterisation of statistical independence
o Gibbs distributions
o Visualising Gibbs distributions with undirected graphs

2. Undirected graphical models
o Definition
o Examples
o Conditionals, marginals, and change of measure (tilting)
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