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Recap

Need for efficient representation of probabilistic models

» Restrict the number of directly interacting variables by making
independence assumptions

» Restrict the form of interaction by making parametric family
assumptions

DAGs and undirected graphs to represent independencies and
factorisations

Equivalences between independencies (Markov properties) and
factorisation

Rules for reading independencies from the graph that hold for
all distributions that factorise over the graph
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1. Graphs as independency maps (I-maps)

2. Equivalence of I-maps (l-equivalence)
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Program

1. Graphs as independency maps (I-maps)
o |-maps
o Perfect maps
e Minimal I-maps
o Strengths and weaknesses of directed and undirected graphs
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l-map

» We have seen that graphs represent independencies. We say
that they are independency maps (I-maps).
» Definition: Let U be a set of independencies that random

variables x = (x1, ... xy) satisfy. A DAG or undirected graph
K with nodes x; is said to be an independency map (I-map)

for U if the independencies Z(K) asserted by the graph are
part of U:

T(K) C U

» An |-map is a “directed I-map” if K is a DAG, and an
“undirected |I-map” if K is an undirected graph.
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l-map

The set of independencies U/ can be specified in different ways. For
example:

» as a list of independencies, e.g.
U=1{x 1 x}
» as the independencies implied by another graph Ky
U =17Z(Kp)

» denoting by Z(p) all the independencies satisfied by a specific
distribution p, we can have

U=1(p)
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I-maps and factorisation

» We have previously found that all independencies asserted by
the graph K hold for all p that factorise over K.

» Hence, if p factorises over K, we have
I(K) € Z(p)

and K is an |-map for Z(p)

» But we do not have guarantees that Z(K) equals Z(p) since,

as we have seen, Z(K) may miss some independencies that
hold for p.
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Examples of I-maps

Consider U = {Xl Al X2, X1 Al X2‘X3, X2 Al X3, X2 Al X3|X1}

> I(H) = {Xl Al X2|X3} cUu

> 7(G) ={x1 1L xo|x3} C U

QOO

> 7(G)={x L xx} CU
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Remarks

» Criterion for an |I-map is that the independency assertions
made by the graph are true. |I-maps are not concerned with
the number of independency assertions made.

» |-maps of U/ are allowed to “miss” some independencies in /.

» |-maps are not unique: all graphs in the last slide were |I-maps
for U.

» Full graph, as in the last example of the previous slide, does
not make any assertions. Empty set is trivially a subset of any
U, so that the full graph is trivially an I-map.

» Different I-maps may make the same independency assertions,
see first two examples on the previous slide.
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Guiding questions

» Can we find I-maps that don't miss independencies?

— perfect |-maps

» Which |-maps are “useful”?

— minimal |-maps

» Which graphs represent the same set of independencies?

— l-equivalence
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Perfect maps

» Definition: K is said to be a perfect I-map (or P-map) for U/ if
I(K)=U.

» Let K be a DAG or an undirected graph. For what set U/ of
independencies is a graph K a perfect map?

» K is a perfect I-map for the independencies that hold for all p
that factorise over the graph. (proof on next slide)

» This result is not very surprising. It just says that K is a
perfect map for the graphical models (set of distributions)
that were defined by K in the first place!

» Perfect maps are not guaranteed to exist for individual
distributions or specific sets of independencies.
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Proof (not examinable)

» Assume K is such that Z(K) = U. We ask: what is U?

» \We have seen that:

if X are Y and not (d-)separated by Z then X U Y|Z for
some p that factorises over K (some = not all)

» Contrapositive: (Reminder: A= B < B = A)

if X 1L Y|Z for all p that factorise over K then X and Y are
(d-)separated by Z

» Denote by Pk the set of all p that factorise over K. We thus
have:

N ()| < Z(K)

| pEPK
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» Since for all individual p we have Z(K) C Z(p), it follows that

| PEPK

and hence that

» In plain English: K is a perfect map for the independencies
that hold for all p that factorise over the graph.

(M Z(p)

I(K) =
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ﬂ Z(p)

| PEPK

() Z(p)

PEPk
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Examples of perfect I-maps

Consider again U= {Xl A X2, X1 Al X2‘X3, X2 A X3, X2 Al X3’X1}

> I(H)=U

)
> 7(G)=U

)
> I(G)=U

OmONO
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Collider does not have an undirected perfect I-map

Consider the independencies represented by the collider Kj.
> Let U = I(Ko) = {Xl Al X2}
» |-map for U: Z(H) = {}

» Not an I-map for U: graph wrongly asserts x; I xp | x3

» Not an I-map for U: graph wrongly asserts x; I x3

ORORO

» Going through all undirected graphs shows that there is no
undirected perfect I-map for U.
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Diamond does not have a directed perfect |-map

Consider the independencies represented by the di-
amond configuration Kj.

> letUd =Z(Ko) = {x 1L z|u,y; u 1 y|x, z}

» (7 is an I-map for U:
Z(G) = {x 1L zlu,y} CcU

» G» is not an I-map for U:
graph wrongly asserts u Il y|x ()

» Going through all DAGs shows that there is (u) @
no directed perfect I-map for U. ok
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Minimal |-maps

» Directed or undirected perfect maps may not always exist.

» On the other hand, criterion for a graph to be an I-map is
weak (full graph is an I-map!).

» Compromise: Let us “sparsify” |-maps so that they become
more useful.

» Definition: A minimal I-map is an I-map such that if you
remove an edge (more independencies), the resulting graph is
not an I-map any more.

» Note: A perfect I-map for U/ is also a minimal |I-map for U

(being perfect is a stronger requirement than being minimal)
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Our previous visualisations of p(x) are minimal I-maps

» To visualise p(x) as a DAG:
» Ordering + independencies x; L (pre; \ 7;) | m; that p(x)
satisfies, where 7; is a minimal subset of the predecessors

» Construct a graph with the 7; as parents pa;
» Gives a minimal I-map of Z(p) because the 7; are the minimal

subsets.

» To visualise p(x) as an undirected graph:
» Determine the Markov blanket for each variable x;
» Construct a graph where the neighbours of x; are its Markov

blanket.
» Gives a minimal I-map of Z(p) because the Markov blanket is

the minimal set of variables that makes the x; independent
from the remaining variables.
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Directed minimal I-maps are not unique

Consider p with perfect I-map G;. Use G; to determine
x;j AL (pre; \ 7;) | 7; for a given ordering of the variables.

©

Graph G; Minimal I-map G, for ordering

(e, h,q,z,a), see exercises

» Directed (minimal) I-maps are not unique.

» Here: Z(Gp) C Z(G1) = Z(p).

» The minimal directed I-maps from different orderings may not
represent the same independencies. (they are not I-equivalent)
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Pros/cons of directed and undirected graphs

>

>

>

Some independencies are more easily represented with DAGs,
others with undirected graphs.

Both directed and undirected graphical models have strengths
and weaknesses.

Undirected graphs are suitable when interactions are
symmetrical and when there is no natural ordering of the
variables, but they cannot represent “explaining away”
phenomena (colliders).

DAGs are suitable when we have an idea of the data
generating process (e.g. what is causing what), but they may
force directionality where there is none.

It is possible to combine the individual strengths with
mixed /partially directed graphs (see e.g. Barber, Section 4.3;
Lauritzen, Section 3.2.3, not examinable).
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Program

2. Equivalence of I-maps (l-equivalence)
o |-equivalence for DAGs: check the skeletons and the
immoralities
o |-equivalence for undirected graphs: check the skeletons
o |-equivalence between directed and undirected graphs

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 21 / 32


https://creativecommons.org/licenses/by/4.0/

l-equivalence for DAGs

» How do we determine whether two DAGs make the same
independence assertions (that they are “l-equivalent™)?

» From d-separation: what matters is

» which node is connected to which irrespective of direction

(skeleton)

» the set of collider (head-to-head) connections

Connection  p(x,y) p(x,y|z)
O—E@—0) x Ly xly|z
O—E0—0 xUy xlylz
O—GH—) x 1L y xJpLyl|z
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l-equivalence for DAGs

» The situation x 1L y and x U y | z can only happen if we
have colliders without “covering edge” x — y or x <— y, that
is when parents of the collider node are not directly connected.

» Colliders without covering edge are called “immoralities”.

» Theorem: For two DAGs Gy and Go:
G1 and Gy are l-equivalent <= G; and G> have the same
skeleton and the same set of immoralities.
(for a proof, see e.g. Theorem 4.4, Koski and Noble, 2009; not examinable)

x1d yandx L y|z xUyandx L y|z
Collider w/o covering edge Collider with covering edge
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Example

Not l-equivalent because of skeleton mismatch:
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Example

Not |-equivalent because of immoralities mismatch:
Gy: Go:
2 (&) (&) (&
(e O
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Example

l-equivalent (same skeleton, same immoralities):
Gli G2:
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Example

Not I-equivalent (immoralities mismatch)

(=2
o

xAyluvandx L y|uz
Immorality: collider w/o
covering edge
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x W yluand x 1L y | u,z

Not an immorality
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l-equivalence for undirected graphs

» Different undirected graphs make different independence
assertions.

» |-equivalent if their skeleton is the same.
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l-equivalence between directed and undirected graphs

Recall the example about non-existence of P-maps:

» Immoralities (colliders without covering edge) allow DAGs to
represent independencies that cannot be represented with
undirected graphs (e.g. x L y without enforcing x 1L y|z)

» Diamond configurations (where the loop has length > 3)
allow undirected graphs to represent independencies that
DAGs cannot represent.

» Connection between the two: Turning a diamond
configuration into a DAG introduces an immorality.
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l-equivalence between directed and undirected graphs

» For DAGs without immoralities, only the skeleton is relevant
for l-equivalence. Since the orientation of the arrows does not
matter, we can just replace them with undirected edges to
obtain an l-equivalent undirected graph.

» Relatedly, for undirected graphs where the longest loop
without shortcuts is a triangle (chordal/triangulated
undirected graphs), there is at least one way to orient all
edges that does not introduce immoralities (or create loops).
The obtained DAGs are |-equivalent to the undirected graph.

» Example of l-equivalent graphs:

(note the covering edge between u and y)

PMR 2025 ©OGutmann, University of Edinburgh CC BY 4.0 30 / 32


https://creativecommons.org/licenses/by/4.0/

l-equivalence between directed and undirected graphs

» Further examples of l-equivalent graphs:

e o o

» Note that the edges can't be oriented arbitrarily: we have to
avoid creating loops and immoralities:

o <

» The first graph is not a DAG, the second introduced the
immorality x — z <— y, breaking l-equivalence.
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Program recap

1. Graphs as independency maps (I-maps)
@ |-maps
e Perfect maps
@ Minimal I-maps
e Strengths and weaknesses of directed and undirected graphs

2. Equivalence of I-maps (l-equivalence)
o |-equivalence for DAGs: check the skeletons and the immoralities
o |-equivalence for undirected graphs: check the skeletons
@ |-equivalence between directed and undirected graphs
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