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Recap

▶ Need for efficient representation of probabilistic models
▶ Restrict the number of directly interacting variables by making

independence assumptions
▶ Restrict the form of interaction by making parametric family

assumptions
▶ DAGs and undirected graphs to represent independencies and

factorisations
▶ Equivalences between independencies (Markov properties) and

factorisation
▶ Rules for reading independencies from the graph that hold for

all distributions that factorise over the graph
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Program

1. Graphs as independency maps (I-maps)

2. Equivalence of I-maps (I-equivalence)
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Program

1. Graphs as independency maps (I-maps)
I-maps
Perfect maps
Minimal I-maps
Strengths and weaknesses of directed and undirected graphs

2. Equivalence of I-maps (I-equivalence)
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I-map

▶ We have seen that graphs represent independencies. We say
that they are independency maps (I-maps).

▶ Definition: Let U be a set of independencies that random
variables x = (x1, . . . xd) satisfy. A DAG or undirected graph
K with nodes xi is said to be an independency map (I-map)
for U if the independencies I(K ) asserted by the graph are
part of U :

I(K ) ⊆ U
▶ An I-map is a “directed I-map” if K is a DAG, and an

“undirected I-map” if K is an undirected graph.
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I-map

The set of independencies U can be specified in different ways. For
example:
▶ as a list of independencies, e.g.

U = {x1 ⊥⊥ x2}

▶ as the independencies implied by another graph K0

U = I(K0)

▶ denoting by I(p) all the independencies satisfied by a specific
distribution p, we can have

U = I(p)
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I-maps and factorisation

▶ We have previously found that all independencies asserted by
the graph K hold for all p that factorise over K .

▶ Hence, if p factorises over K , we have

I(K ) ⊆ I(p)

and K is an I-map for I(p)
▶ But we do not have guarantees that I(K ) equals I(p) since,

as we have seen, I(K ) may miss some independencies that
hold for p.
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Examples of I-maps

Consider U = {x1 ⊥⊥ x2, x1 ⊥⊥ x2|x3, x2 ⊥⊥ x3, x2 ⊥⊥ x3|x1}

▶ I(H) = {x1 ⊥⊥ x2|x3} ⊂ U
x1 x2x3

▶ I(G) = {x1 ⊥⊥ x2|x3} ⊂ U
x1 x2x3

▶ I(G) = {x1 ⊥⊥ x2} ⊂ U
x1 x2x3

▶ I(G) = ∅ ⊂ U
x1 x2x3
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Remarks

▶ Criterion for an I-map is that the independency assertions
made by the graph are true. I-maps are not concerned with
the number of independency assertions made.

▶ I-maps of U are allowed to “miss” some independencies in U .
▶ I-maps are not unique: all graphs in the last slide were I-maps

for U .
▶ Full graph, as in the last example of the previous slide, does

not make any assertions. Empty set is trivially a subset of any
U , so that the full graph is trivially an I-map.

▶ Different I-maps may make the same independency assertions,
see first two examples on the previous slide.
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Guiding questions

▶ Can we find I-maps that don’t miss independencies?
→ perfect I-maps
▶ Which I-maps are “useful”?
→ minimal I-maps
▶ Which graphs represent the same set of independencies?
→ I-equivalence
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Perfect maps

▶ Definition: K is said to be a perfect I-map (or P-map) for U if
I(K ) = U .

▶ Let K be a DAG or an undirected graph. For what set U of
independencies is a graph K a perfect map?

▶ K is a perfect I-map for the independencies that hold for all p
that factorise over the graph. (proof on next slide)

▶ This result is not very surprising. It just says that K is a
perfect map for the graphical models (set of distributions)
that were defined by K in the first place!

▶ Perfect maps are not guaranteed to exist for individual
distributions or specific sets of independencies.
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Proof (not examinable)

▶ Assume K is such that I(K ) = U . We ask: what is U?
▶ We have seen that:

if X are Y and not (d-)separated by Z then X ⊥̸⊥ Y |Z for
some p that factorises over K (some ≡ not all)

▶ Contrapositive: (Reminder: A⇒ B ⇔ B̄ ⇒ Ā)
if X ⊥⊥ Y |Z for all p that factorise over K then X and Y are
(d-)separated by Z

▶ Denote by PK the set of all p that factorise over K . We thus
have:  ⋂

p∈PK

I(p)

 ⊆ I(K )
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▶ Since for all individual p we have I(K ) ⊆ I(p), it follows that ⋂
p∈PK

I(p)

 ⊆ I(K ) ⊆

 ⋂
p∈PK

I(p)


and hence that

I(K ) =
⋂

p∈PK

I(p)

▶ In plain English: K is a perfect map for the independencies
that hold for all p that factorise over the graph.
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Examples of perfect I-maps

Consider again U = {x1 ⊥⊥ x2, x1 ⊥⊥ x2|x3, x2 ⊥⊥ x3, x2 ⊥⊥ x3|x1}

▶ I(H) = U
x1 x2x3

▶ I(G) = U
x1 x2x3

▶ I(G) = U
x1 x2x3
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Collider does not have an undirected perfect I-map
x1 x2x3 K0

Consider the independencies represented by the collider K0.
▶ Let U = I(Ko) = {x1 ⊥⊥ x2}
▶ I-map for U : I(H) = {}

x1 x2x3

▶ Not an I-map for U : graph wrongly asserts x1 ⊥⊥ x2 | x3

x1 x2x3

▶ Not an I-map for U : graph wrongly asserts x1 ⊥⊥ x3

x1 x2x3

▶ Going through all undirected graphs shows that there is no
undirected perfect I-map for U .
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Diamond does not have a directed perfect I-map

Consider the independencies represented by the di-
amond configuration K0.

z

y

x

u

K0

▶ Let U = I(K0) = {x ⊥⊥ z |u, y ; u ⊥⊥ y |x , z}

▶ G1 is an I-map for U :
I(G1) = {x ⊥⊥ z |u, y} ⊂ U

▶ G2 is not an I-map for U :
graph wrongly asserts u ⊥⊥ y |x

▶ Going through all DAGs shows that there is
no directed perfect I-map for U .

z

y

x

u

G1

z

y

x

u

G2
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Minimal I-maps

▶ Directed or undirected perfect maps may not always exist.
▶ On the other hand, criterion for a graph to be an I-map is

weak (full graph is an I-map!).
▶ Compromise: Let us “sparsify” I-maps so that they become

more useful.
▶ Definition: A minimal I-map is an I-map such that if you

remove an edge (more independencies), the resulting graph is
not an I-map any more.

▶ Note: A perfect I-map for U is also a minimal I-map for U
(being perfect is a stronger requirement than being minimal)
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Our previous visualisations of p(x) are minimal I-maps

▶ To visualise p(x) as a DAG:
▶ Ordering + independencies xi ⊥⊥ (prei \ πi) | πi that p(x)

satisfies, where πi is a minimal subset of the predecessors
▶ Construct a graph with the πi as parents pai
▶ Gives a minimal I-map of I(p) because the πi are the minimal

subsets.
▶ To visualise p(x) as an undirected graph:

▶ Determine the Markov blanket for each variable xi
▶ Construct a graph where the neighbours of xi are its Markov

blanket.
▶ Gives a minimal I-map of I(p) because the Markov blanket is

the minimal set of variables that makes the xi independent
from the remaining variables.
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Directed minimal I-maps are not unique
Consider p with perfect I-map G1. Use G1 to determine
xi ⊥⊥ (prei \ πi) | πi for a given ordering of the variables.

a z

q

e

h

Graph G1

a z

q

e

h

Minimal I-map G2 for ordering
(e, h, q, z, a), see exercises

▶ Directed (minimal) I-maps are not unique.
▶ Here: I(G2) ⊂ I(G1) = I(p).
▶ The minimal directed I-maps from different orderings may not

represent the same independencies. (they are not I-equivalent)
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Pros/cons of directed and undirected graphs

▶ Some independencies are more easily represented with DAGs,
others with undirected graphs.

▶ Both directed and undirected graphical models have strengths
and weaknesses.

▶ Undirected graphs are suitable when interactions are
symmetrical and when there is no natural ordering of the
variables, but they cannot represent “explaining away”
phenomena (colliders).

▶ DAGs are suitable when we have an idea of the data
generating process (e.g. what is causing what), but they may
force directionality where there is none.

▶ It is possible to combine the individual strengths with
mixed/partially directed graphs (see e.g. Barber, Section 4.3;
Lauritzen, Section 3.2.3, not examinable).
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Program

1. Graphs as independency maps (I-maps)

2. Equivalence of I-maps (I-equivalence)
I-equivalence for DAGs: check the skeletons and the
immoralities
I-equivalence for undirected graphs: check the skeletons
I-equivalence between directed and undirected graphs
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I-equivalence for DAGs

▶ How do we determine whether two DAGs make the same
independence assertions (that they are “I-equivalent”)?

▶ From d-separation: what matters is
▶ which node is connected to which irrespective of direction

(skeleton)
▶ the set of collider (head-to-head) connections

Connection p(x , y) p(x , y |z)
x z y x ⊥̸⊥ y x ⊥⊥ y | z
x z y x ⊥̸⊥ y x ⊥⊥ y | z
x z y x ⊥⊥ y x ⊥̸⊥ y | z
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I-equivalence for DAGs

▶ The situation x ⊥⊥ y and x ⊥̸⊥ y | z can only happen if we
have colliders without “covering edge” x → y or x ← y , that
is when parents of the collider node are not directly connected.

▶ Colliders without covering edge are called “immoralities”.
▶ Theorem: For two DAGs G1 and G2:

G1 and G2 are I-equivalent ⇐⇒ G1 and G2 have the same
skeleton and the same set of immoralities.
(for a proof, see e.g. Theorem 4.4, Koski and Noble, 2009; not examinable)

x

z

y

x ⊥⊥ y and x ⊥̸⊥ y | z
Collider w/o covering edge

x

z

y

x ⊥̸⊥ y and x ⊥̸⊥ y | z
Collider with covering edge
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Example

Not I-equivalent because of skeleton mismatch:

G1:
a z

q

e

h

G2:
a z

q

e

h
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Example

Not I-equivalent because of immoralities mismatch:

G1:
a z

q

e

h

G2:
a z

q

e

h
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Example

I-equivalent (same skeleton, same immoralities):

G1:
a z

q

e

h

G2:
a z

q

e

h
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Example

Not I-equivalent (immoralities mismatch)

x u

z

y

x ⊥⊥ y | u and x ⊥̸⊥ y | u, z
Immorality: collider w/o

covering edge

x u

z

y

x ⊥̸⊥ y | u and x ⊥⊥ y | u, z
Not an immorality
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I-equivalence for undirected graphs

▶ Different undirected graphs make different independence
assertions.

▶ I-equivalent if their skeleton is the same.
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I-equivalence between directed and undirected graphs

Recall the example about non-existence of P-maps:
▶ Immoralities (colliders without covering edge) allow DAGs to

represent independencies that cannot be represented with
undirected graphs (e.g. x ⊥⊥ y without enforcing x ⊥⊥ y |z)

▶ Diamond configurations (where the loop has length > 3)
allow undirected graphs to represent independencies that
DAGs cannot represent.

▶ Connection between the two: Turning a diamond
configuration into a DAG introduces an immorality.

z

y

x

u

z

y

x

u
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I-equivalence between directed and undirected graphs
▶ For DAGs without immoralities, only the skeleton is relevant

for I-equivalence. Since the orientation of the arrows does not
matter, we can just replace them with undirected edges to
obtain an I-equivalent undirected graph.

▶ Relatedly, for undirected graphs where the longest loop
without shortcuts is a triangle (chordal/triangulated
undirected graphs), there is at least one way to orient all
edges that does not introduce immoralities (or create loops).
The obtained DAGs are I-equivalent to the undirected graph.

▶ Example of I-equivalent graphs:

z

y

x

u

z

y

x

u

z

y

x

u

(note the covering edge between u and y)
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I-equivalence between directed and undirected graphs

▶ Further examples of I-equivalent graphs:

z

y

x

u

z

y

x

u

z

y

x

u

z

y

x

u

▶ Note that the edges can’t be oriented arbitrarily: we have to
avoid creating loops and immoralities:

z

y

x

u

z

y

x

u

▶ The first graph is not a DAG, the second introduced the
immorality x → z ← y , breaking I-equivalence.
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Program recap

1. Graphs as independency maps (I-maps)
I-maps
Perfect maps
Minimal I-maps
Strengths and weaknesses of directed and undirected graphs

2. Equivalence of I-maps (I-equivalence)
I-equivalence for DAGs: check the skeletons and the immoralities
I-equivalence for undirected graphs: check the skeletons
I-equivalence between directed and undirected graphs
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