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Recap

p(x|yo) =
∑

z
p(x,yo ,z)∑

x,z
p(x,yo ,z)

Assume that x, y, z each are d = 500 dimensional, and that each
element of the vectors can take K = 10 values.

▶ Issue 1: To specify p(x, y, z), we need to specify
K 3d − 1 = 101500 − 1 non-negative numbers, which is
impossible.
Topic 1: Representation What reasonably weak assumptions
can we make to efficiently represent p(x, y, z)?

▶ Directed and undirected graphical models
▶ Factorisation and independencies
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Recap

p(x|yo) =

∑
z

p(x,yo ,z)∑
x,z

p(x,yo ,z)

▶ Issue 2: The sum in the numerator goes over the order of
Kd = 10500 non-negative numbers and the sum in the
denominator over the order of K 2d = 101000, which is
impossible to compute.
Topic 2: Exact inference Can we further exploit the
assumptions on p(x, y, z) to efficiently compute the posterior
probability or derived quantities?

▶ Note: we do not want to introduce new assumptions but
exploit those that we made to deal with issue 1.

▶ Quantities of interest:
▶ p(x|yo) (marginal inference)
▶ argmaxx p(x|yo) (inference of most probable states)
▶ E [g(x) | yo] for some function g (posterior expectations)
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Assumptions

Unless otherwise mentioned, we here assume discrete valued
random variables whose joint pmf is a Gibbs distribution factorising
as

p(x1, . . . , xd) ∝
m∏

i=1
ϕi(Xi),

with Xi ⊆ {x1, . . . , xd} and xi ∈ {1, . . . , K}.

Note:
▶ Includes case where (some of) the ϕi are conditionals
▶ The xi could be categorical taking on maximally K different

values.
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Program

1. Factor graphs

2. Marginal inference by variable elimination

3. Marginal inference for factor trees (sum-product algorithm)

4. Inference of most probable states for factor trees
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Program

1. Factor graphs
Definition
Visualising Gibbs distributions as factor graphs
Factor graphs represent factorisations better than undirected
graphs

2. Marginal inference by variable elimination

3. Marginal inference for factor trees (sum-product algorithm)

4. Inference of most probable states for factor trees
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Definition of factor graphs

▶ A factor graph represents the factorisation of an arbitrary
function (not necessarily related to pdfs/pmfs)

▶ Example: h(x1, . . . , x5) = fA(x1, x2, x3)fB(x3, x4, x5)fC (x4)

Factor graph (FG):

x1
fA

x2

x3

x5

fB
x4

fC

▶ Two types of nodes: factor and variable nodes
▶ Convention: squares for factors, circles for variables

(other conventions are used too)
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Definition of factor graphs

▶ Example: h(x1, . . . , x5) = fA(x1, x2, x3)fB(x3, x4, x5)fC (x4)

Factor graph (FG):

x1
fA

x2

x3

x5

fB
x4

fC

▶ Edge between variable x and factor f ⇔ x is an argument of f
▶ Variable nodes are always connected to factor nodes; no direct

links between factor or variable nodes (FGs are bipartite graphs)
▶ FGs can have directed edges to indicate conditionals (not

needed here).
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Visualising Gibbs distributions as factor graphs

▶ Example: p(x1, x2, x3, x4) = 1
Z ϕ1(x1, x2, x3)ϕ2(x3, x4)ϕ3(x4)

x1
ϕ1

x2

x3
ϕ2

x4
ϕ3

▶ General case: p(x1, . . . , xd) ∝
∏

c ϕc(Xc)
▶ Factor node for all ϕc
▶ For all factors ϕc :

draw an undirected edge between ϕc and all xi ∈ Xc .
▶ Can visualise any undirected graphical model as a factor

graph.
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Differences to undirected graphs

Some differences to visualising Gibbs distributions with undirected
graph:

▶ Factors ϕc are shown, which makes the graphs more
informative (see next slide).

▶ Variables xi are neighbours if they are connected to the same
factor.

p(x1, x2, x3, x4) = 1
Z ϕ1(x1, x2, x3)ϕ2(x3, x4)ϕ3(x4)

x1
ϕ1

x2

x3
ϕ2

x4
ϕ3

x1

x2

x3 x4
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More informative than undirected graphs

▶ Mapping from Gibbs distribution to undirected graph is many
to one but one-to-one for factor graphs.

▶ Example

pA(x1, x2, x3) ∝ ϕ1(x1, x2)ϕ2(x2, x3)ϕ3(x3, x1)
pB(x1, x2, x3) ∝ ϕ(x1, x2, x3)

x1

x2x3

UG for pA and pB

x1

x2x3

ϕ1ϕ3

ϕ2

FG for pA

x1

x2x3
ϕ

FG for pB
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More informative than undirected graphs
Assume binary random variables xi .
▶ Same undirected graph but

p(x1, . . . , xd) ∝ ϕ(x1, . . . , xd) has 2d free parameters,
p(x1, . . . , xd) ∝

∏
i<j ϕij(xi , xj) has

(d
2
)
22 free parameters

parameters ≡ entries to specify in a table representation
▶ The difference matters for learning and inference when the

number of variables is large.
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Program

1. Factor graphs
Definition
Visualising Gibbs distributions as factor graphs
Factor graphs represent factorisations better than undirected
graphs

2. Marginal inference by variable elimination

3. Marginal inference for factor trees (sum-product algorithm)

4. Inference of most probable states for factor trees
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Program

1. Factor graphs

2. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law
ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
The principles of variable elimination also apply to continuous
random variables

3. Marginal inference for factor trees (sum-product algorithm)

4. Inference of most probable states for factor trees

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 14 / 83

https://creativecommons.org/licenses/by/4.0/


Basic ideas of variable elimination

1. Use the distributive law ab + ac = a(b + c) to exploit the
factorisation (

∑ ∏
→

∏ ∑
):

reduces the overall dimensionality of the domain of the factors
in the sum and thereby the computational cost.

2. Recycle/cache results

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 15 / 83

https://creativecommons.org/licenses/by/4.0/


Example: full factorisation

▶ Consider discrete-valued random variables
x1, x2, x3 ∈ {1, . . . , K}

▶ Assume pmf factorises p(x1, x2, x3) ∝ ϕ1(x1)ϕ2(x2)ϕ3(x3)
▶ Task: compute p(x1 = k) for k ∈ {1, . . . , K}
▶ We can use the sum-rule

p(x1 = k) =
∑
x2,x3

p(x1 = k, x2, x3)

Sum over K 2 terms for each k (value of x1).
▶ Pre-computing p(x1, x2, x3) for all K 3 configurations and then

computing the sum is neither necessary nor a good idea
▶ Exploit factorisation when computing p(x1 = k).
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Example: full factorisation

(sum rule) p(x1 = k) =
∑
x2,x3

p(x1 = k, x2, x3) (1)

(factorisation) ∝
∑
x2

∑
x3

ϕ1(k)ϕ2(x2)ϕ3(x3) (2)

(distr. law) ∝ ϕ1(k)
∑
x2

∑
x3

ϕ2(x2)ϕ3(x3) (3)

(distr. law) ∝ ϕ1(k)
[∑

x2

ϕ2(x2)
] [∑

x3

ϕ3(x3)
]

(4)

Distributive law changes
∑ ∏

in (2) to
∏ ∑

in (4).
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Example: full factorisation

p(x1 = k) ∝ ϕ1(k)
[∑

x2

ϕ2(x2)
] [∑

x3

ϕ3(x3)
]

(5)

What’s the point?
▶ Because of the factorisation (independencies) we do not need

to evaluate and store the values of p(x1, x2, x3) for all K 3

configurations of the random variables.
▶ 2 sums over K numbers vs. 1 sum over K 2 numbers
▶ Recycling/caching of already computed quantities: we only

need to compute [∑
x2

ϕ2(x2)
] [∑

x3

ϕ3(x3)
]

once; the value can be re-used when computing p(x1 = k) for
different k.
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Example: general factor graph

▶ Example:

p(x1, . . . , x6) ∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕC (x3, x5)ϕD(x3, x6)

x1
ϕA

x2

x4

ϕB
x3

ϕC
x5

ϕD
x6

▶ Task: Compute p(x1, x3)
▶ Note the structural changes in the graph during variable

elimination
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Example: general factor graph (cont)
Task: Compute p(x1, x3)

First eliminate x6

p(x1, . . . , x5) =
∑
x6

p(x1, . . . , x6)

(factorisation) ∝
∑
x6

ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕC (x3, x5)ϕD(x3, x6)

(distr. law) ∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕC (x3, x5)
∑
x6

ϕD(x3, x6)

∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕC (x3, x5)ϕ̃6(x3)

x1
ϕA

x2

x4

ϕB
x3

ϕC
x5

x6
ϕD

ϕ̃6
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Example: general factor graph (cont)

Task: Compute p(x1, x3)
Eliminate x5

p(x1, . . . , x4) ∝
∑
x5

ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕC (x3, x5)ϕ̃6(x3)

∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕ̃6(x3)
∑
x5

ϕC (x3, x5)

∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕ̃6(x3)ϕ̃5(x3)

x1
ϕA

x2

x4

ϕB
x3

ϕC
x5

ϕ̃5

ϕ̃6
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Example: general factor graph (cont)

Define ϕ̃56(x3) = ϕ̃6(x3)ϕ̃5(x3)

p(x1, . . . , x4) ∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕ̃6(x3)ϕ̃5(x3)
∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕ̃56(x3)

x1
ϕA

x2

x4

ϕB
x3

ϕ̃5

ϕ̃6

ϕ̃56
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Example: general factor graph (cont)
Task: Compute p(x1, x3)Eliminate x2

p(x1, x3, x4) ∝
∑
x2

ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕ̃56(x3)

∝ ϕ̃56(x3)
∑
x2

ϕA(x1, x2, x4)ϕB(x2, x3, x4)︸ ︷︷ ︸
K3 times K add/mult ⇒ O(K4) cost

∝ ϕ̃56(x3)ϕ̃2(x1, x3, x4)
Other justification for the cost: ϕA(x1, x2, x4)ϕB(x2, x3, x4) equals a compound factor
ϕ∗(x1, x2, x3, x4) that requires K4 space when represented as a table. Summing out x2

for all combinations of (x1, x3, x4) touches each table-entry once ⇒ O(K4) cost.

x1

ϕA

x2

x4

ϕB
x3

ϕ̃56ϕA

x2

x4

ϕB
x3

ϕ̃56

ϕ̃2

x4

x3
ϕ̃56
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Example: general factor graph (cont)
Task: Compute p(x1, x3)

Eliminate x4

p(x1, x3) ∝
∑
x4

ϕ̃56(x3)ϕ̃2(x1, x3, x4)

∝ ϕ̃56(x3)
∑
x4

ϕ̃2(x1, x3, x4)

∝ ϕ̃56(x3)ϕ̃24(x1, x3)

x1
ϕ̃24

x3
ϕ̃56

Normalisation to obtain p(x1 = k, x3 = k ′) for any k, k ′:

p(x1 = k, x3 = k ′) = ϕ̃56(x3 = k ′)ϕ̃24(x1 = k, x3 = k ′)∑
x1,x3 ϕ̃56(x3)ϕ̃24(x1, x3)
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Remarks

▶ Compared to precomputing K 6 numbers and then
marginalising out variables, using the factorisation reduces the
cost to O(K 4).

▶ Caching: Intermediate quantities can be re-used when
computing p(x1 = k, x3 = k ′) for different k, k ′

▶ Structural changes in the graph during variable elimination:
▶ Eliminated leaf-variable and factor node
→ factor node

▶ Factor nodes that depend on the same variables
→ single factor node

▶ Factor nodes between neighbours of the eliminated variable
→ single factor node connecting all neighbours
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Variable (bucket) elimination
Without loss of generality: Given p(x1, . . . , xd) ∝

∏m
i ϕi(Xi)

compute the marginal p(Xtarget) for some Xtarget ⊆ {x1, . . . , xd}.
▶ Assume that at iteration k, you have the pmf over dk = d − k

variables X k = (xi1 , . . . , xidk ) that factorises as

p(X k) ∝
mk∏
i=1

ϕk
i (X k

i )

▶ Decide which variable to eliminate. Call it x∗.
(x∗ ∈ X k , x∗ /∈ Xtarget)

▶ Let X k+1 be equal to X k with x∗ removed. We have

(sum rule) p(X k+1) =
∑
x∗

p(X k) (6)

(factorisation) ∝
∑
x∗

mk∏
i=1

ϕk
i (X k

i ) (7)
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Variable (bucket) elimination (cont.)

p(X k+1) ∝
∑
x∗

∏
i :x∗ /∈X k

i

ϕk
i (X k

i )
∏

i :x∗∈X k
i

ϕk
i (X k

i ) (8)

(distr. law) ∝
∏

i :x∗ /∈X k
i

ϕk
i (X k

i )
∑
x∗

∏
i :x∗∈X k

i

ϕk
i (X k

i )

︸ ︷︷ ︸
compound factor ϕk

∗(X k
∗ )

(9)

∝

 ∏
i :x∗ /∈X k

i

ϕk
i (X k

i )

 ∑
x∗

ϕk
∗(X k

∗ )︸ ︷︷ ︸
new factor ϕ̃k

∗(X̃ k
∗ )

(10)

X k
∗ is the union of all X k

i that contain x∗, and X̃ k
∗ is X k

∗ with x∗

removed,
X k

∗ =
⋃

i :x∗∈X k
i

X k
i X̃ k

∗ = X k
∗ \ x∗ (11)
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Variable (bucket) elimination (cont.)

▶ By re-labelling the factors and variables, we obtain

p(X k+1) ∝

 ∏
i :x∗ /∈X k

i

ϕk
i (X k

i )

 ϕ̃k
∗(X̃ k

∗ ) (12)

∝
mk+1∏
i=1

ϕk+1
i (X k+1

i ), (13)

which has the same form as p(X k).
▶ Set k = k + 1 and decide which variable x∗ to eliminate next.
▶ To compute p(Xtarget) stop when X k = Xtarget, followed by

normalisation.
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How to choose the elimination variable x ∗?

▶ When we marginalise over x∗ in iteration k, we generate the
temporary compound factor ϕk

∗ that depends on

X k
∗ =

⋃
i :x∗∈X k

i

X k
i (14)

Contains x∗ and the variables with which x∗ shares a factor
node in the factor graph (“neighbours”).

▶ Ex.: p(x1, . . . , x6) ∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕC (x3, x5)ϕD(x3, x6)
If we eliminated x∗ = x3: X∗ = {x2, x3, x4, x5, x6}

x1
ϕA

x2

x4

ϕB
x3

ϕC
x5

ϕD
x6
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How to choose the elimination variable x ∗?

▶ When we marginalise over x∗ in iteration k, we generate the
temporary compound factor ϕk

∗ that depends on

X k
∗ =

⋃
i :x∗∈X k

i

X k
i (15)

Contains x∗ and the variables with which x∗ shares a factor
node in the factor graph (“neighbours”).

▶ Eliminating x∗ costs KMk where Mk is the number of
variables in X k

∗ .
▶ Optimal choice of elimination order is difficult since the size of

the factors can change when we eliminate variables (for details,
see e.g. Koller, Section 9.4, not examinable)

▶ Heuristic: in each iteration, choose x∗ in a greedy way so that
X k

∗ is small, i.e. the variable with the least number of
neighbours in the factor graph (e.g. x5 or x6 in the example)
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Computing conditionals

▶ The same approach can be used to compute conditionals.
▶ Example: Given

p(x1, . . . , x6) ∝ ϕA(x1, x2, x4)ϕB(x2, x3, x4)ϕC (x3, x5)ϕD(x3, x6)

assume you want to compute p(x1|x3 = α)
▶ We can write

p(x1, x2, x4, x5, x6|x3 = α) ∝ p(x1, x2, x3 = α, x4, x5, x6)
∝ ϕA(x1, x2, x4)ϕα

B(x2, x4)ϕα
C (x5)ϕα

D(x6)

and consider p(x1, x2, x4, x5, x6|x3 = α) to be a pdf/pmf
p̃(x1, x2, x4, x5, x6) defined up to the proportionality factor.

▶ We can compute p(x1|x3 = α) = p̃(x1) by applying variable
elimination to p̃(x1, x2, x4, x5, x6).
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What if we have continuous random variables?

▶ Conceptually, all stays the same but we replace sums with
integrals
▶ Simplifications due to distributive law remain valid
▶ Caching of results remains valid

▶ In special cases, integral can be computed in closed form (e.g.
Gaussian family)

▶ If not: need for approximations (see later)
▶ Approximations are also needed for discrete random variables

when K is large.
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Program

1. Factor graphs

2. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law
ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
The principles of variable elimination also apply to continuous
random variables

3. Marginal inference for factor trees (sum-product algorithm)

4. Inference of most probable states for factor trees
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Program

1. Factor graphs

2. Marginal inference by variable elimination

3. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Sum-product algorithm = variable elimination for factor trees
Messages = effective factors
The rules for sum-product message passing

4. Inference of most probable states for factor trees
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Factor trees

▶ We next consider the class of models (pmfs/pdfs) for which
the factor graph is a tree.

▶ Tree: graph where there is only one path connecting any two
nodes (no loops!)

▶ Chain is an example of a factor tree. (see later: inference for HMMs)

▶ Useful property: the factor tree obtained after summing out a
leaf variable is still a factor tree.

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF
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Variable elimination for factor trees

Task: Compute p(x1) for

p(x1, . . . , x5) ∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕD(x3, x4)ϕE (x3, x5)ϕF (x5)

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF
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Sum out leaf-variable x5

Task: Compute p(x1)

p(x1, . . . , x4) =
∑

x5

p(x1, . . . , x5)

∝
∑

x5

ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕD(x3, x4)ϕE (x3, x5)ϕF (x5)

∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕD(x3, x4)
∑

x5

ϕE (x3, x5)ϕF (x5)

∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕD(x3, x4)ϕ̃5(x3)

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

ϕ̃5
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Visualising the computation
Graph with transformed factors:

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕ̃5
Graph with “messages”:

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF←

Message: µϕE →x3(x3) = ϕ̃5(x3) =
∑

x5
ϕE (x3, x5)ϕF (x5)

Effective factor for x3 if all variables in the subtree attached to ϕE
are eliminated (subtree does not include x3)
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Sum out leaf-variable x4

Task: Compute p(x1)

p(x1, . . . , x3) =
∑

x4

p(x1, . . . , x4)

∝
∑

x4

ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕD(x3, x4)ϕ̃5(x3)

∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕ̃5(x3)
∑

x4

ϕD(x3, x4)

∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕ̃5(x3)ϕ̃4(x3)

ϕA
x1

ϕC

x2

ϕB

x3
ϕ̃5

ϕD
x4

ϕ̃4
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Visualising the computation
Graph with transformed factors:

ϕA
x1

ϕC

x2

ϕB

x3
ϕ̃5

ϕ̃4

Graph with messages:

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

←

←

Message: µϕD→x3(x3) = ϕ̃4(x3) =
∑

x4
ϕD(x3, x4)

Effective factor for x3 if all variables in the subtree attached to ϕD
are eliminated (subtree does not include x3)
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Simplify by multiplying factors with common domain

Task: Compute p(x1)

p(x1, . . . , x3) ∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3) ϕ̃5(x3)ϕ̃4(x3)︸ ︷︷ ︸
ϕ̃54(x3)

∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕ̃54(x3)

ϕA
x1

ϕC

x2

ϕB

x3

ϕ̃4

ϕ̃5

ϕ̃54
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Visualising the computation
Graph with transformed factors:

ϕA
x1

ϕC

x2

ϕB

x3
ϕ̃54

Graph with messages:

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF
←

←

←

Message: µx3→ϕC (x3) = ϕ̃54(x3) = ϕ̃4(x3)ϕ̃5(x3) = µϕD→x3(x3)µϕE →x3(x3)
Effective factor for x3 if all variables in the subtrees attached to x3
are eliminated (subtrees do not include ϕc)
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Sum out leaf-variable x3

Task: Compute p(x1)

p(x1, x2) =
∑

x3

p(x1, x2, x3)

∝
∑

x3

ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕ̃54(x3)

∝ ϕA(x1)ϕB(x2)
∑

x3

ϕC (x1, x2, x3)ϕ̃54(x3)

∝ ϕA(x1)ϕB(x2)ϕ̃543(x1, x2)

ϕA
x1

x2

ϕB

x3
ϕC

ϕ̃54

ϕ̃543
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Sum out leaf-variable x2 and normalise

p(x1) =
∑

x2

p(x1, x2) ∝
∑

x2

ϕA(x1)ϕB(x2)ϕ̃543(x1, x2)

∝ ϕA(x1)
∑

x2

ϕB(x2)ϕ̃543(x1, x2)

∝ ϕA(x1)ϕ̃5432(x1)

ϕA
x1

ϕ̃543

x2

ϕB

ϕ̃5432

p(x1) = ϕA(x1)ϕ̃5432(x1)∑
x1

ϕA(x1)ϕ̃5432(x1)
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Alternative: sum out both x2 and x3

Since

ϕ̃5432(x1) =
∑
x2

ϕB(x2)ϕ̃543(x1, x2)

=
∑
x2

ϕB(x2)
∑
x3

ϕC (x1, x2, x3)ϕ̃54(x3)

=
∑
x2,x3

ϕC (x1, x2, x3)ϕB(x2)ϕ̃54(x3)

we obtain the same result by first summing out x2 and then x3, or
both at the same time.

In any case:

p(x1) ∝ ϕA(x1)
∑
x2,x3

ϕC (x1, x2, x3)ϕB(x2)ϕ̃54(x3)
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Visualising the computation

Graph with transformed factors:

ϕA
x1

ϕ̃5432

Graph with messages:

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF
← ←

←

←

Message:
µϕC →x1(x1) = ϕ̃5432(x1) =

∑
x2,x3

ϕC (x1, x2, x3)ϕB(x2)µx3→ϕC (x3)
Effective factor for x1 if all variables in the subtrees attached to ϕC
are eliminated (subtrees do not include x1)
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Representing leaf-factors with messages
Since there are no variables “behind” the leaf-factors, we can
consider all leaf-factors to be effective factors themselves:

µϕA→x1(x1) = ϕA(x1)
µϕB→x2(x2) = ϕB(x2)
µϕF →x5(x5) = ϕF (x5)

We then obtain

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

→
←

↓

←

←

←

←
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Variables with single incoming messages copy the message
We had

µx3→ϕC (x3) = µϕD→x3(x3)µϕE →x3(x3)
which corresponded to simplifying the factorisation by multiplying
effective factors defined on the same domain. Special cases:

µx5→ϕE (x5) = µϕF →x5(x5)
µx2→ϕC (x2) = µϕB→x2(x2)

We then obtain

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

→
←
↓

↓

←

←

←

← ←
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Messages from leaf variable nodes
What about x4? We can consider

p(x1, . . . , x5) ∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕD(x3, x4)ϕE (x3, x5)ϕF (x5)

to include an additional factor ϕG(x4) = 1. We can thus set

µϕG →x4(x4) = 1
µx4→ϕD (x4) = µϕG →x4(x4) = 1

Graph:

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

→
←
↓

↓

←

←
←

←

← ←

ϕG←
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Single marginal from messages

We have seen that

p(x1) ∝ ϕA(x1)ϕ̃5432(x1)
∝ µϕA→x1(x1)µϕC →x1(x1)

Marginal is proportional to the product of the incoming messages.

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

→
←
↓

↓

←

←
←

←

← ←
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Single marginal from messages
Cost (due to properties of variable elimination):
▶ Linear in number of variables d , exponential in maximal number of

variables attached to a factor node.
(cost known upfront since no new factors are created unlike in the general case
considered before)

▶ Recycling: most messages do not depend on x1 and can be re-used
for computing p(x1) for any value of x1 (as well as for computing
the marginal distribution of other variables, see next slides)

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

→
←
↓

↓

←

←
←

←

← ←
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Further marginals from messages

▶ We have seen that

p(x1) ∝ ϕA(x1)ϕ̃5432(x1)
∝ µϕA→x1(x1)µϕC →x1(x1)

▶ Remember: Messages are effective factors
ϕA

x1
ϕ̃5432

=
µϕA→x1

x1

µϕc→x1

▶ This correspondence allows us to write down the marginal for
other variables too. The incoming messages are all we need.
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Further marginals from messages
▶ Example: For p(x2) we need µϕB→x2 and µϕC →x2

▶ µϕB→x2 is known but µϕC →x2 needs to be computed
▶ µϕC →x2 is the effective factor for x2 if all variables of the

subtrees attached to ϕc are eliminated.
▶ Can be computed from previously computed factors:

µϕA→x1 and µx3→ϕC

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

→
←
↓ ↑

↓

←

←
←

←

← ←
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Further marginals from messages
▶ By definition of the messages, and their correspondence to

effective factors, we have
p(x1, x2, x3) ∝ ϕC (x1, x2, x3)µϕA→x1(x1)µϕB→x2(x2)µx3→ϕC (x3)

▶ Eliminating x1 and x3 gives
p(x2) ∝ µϕB→x2(x2)

∑
x1,x3

ϕc(x1, x2, x3)µx3→ϕC (x3)µϕA→x1(x1)︸ ︷︷ ︸
µϕC →x2 (x2)

∝ µϕB→x2(x2)µϕC →x2(x2)

µϕA→x1

x1

x2

µϕB→x2

x3
ϕC

µx3→ϕc↑

↓

x2

µϕB→x2

µϕc→x2
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Further marginals from messages
We had

µϕC →x2(x2) =
∑
x1,x3

ϕc(x1, x2, x3)µx3→ϕC (x3)µϕA→x1(x1)

Introducing variable to factor message µx1→ϕc = µϕA→x1 = ϕA

µϕC →x2(x2) =
∑
x1,x3

ϕc(x1, x2, x3)µx3→ϕC (x3)µx1→ϕc (x1)

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

→
←
→ ↓ ↑

↓

←

←
←

←

← ←
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All (univariate) marginals from messages

▶ We can use the messages to compute the marginals of all
variables in the graph.

▶ For the marginal of a variable x we need to know the incoming
messages µϕi →x from all factor nodes ϕi connected to x .

▶ This means that if each edge has a message in both directions,
we can compute the marginals of all variables in the graph.

ϕA
x1

ϕC

x2

ϕB

x3

ϕD
x4

ϕE
x5

ϕF

→
←

→
←
↓ ↑

↓ ↑

→
←

→
← →

←

→
← →

←
→
←
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Joint distributions from messages

▶ The correspondence between messages and effective factors
allows us to find the joint distribution for variables connected
to the same factor node (neighbours).

▶ For example, we can compute p(x3, x5) from messages
▶ The messages µx3→ϕE and µx5→ϕE correspond to effective

factors attached to x3 and x5, respectively.

µx3→ϕE x3
ϕE

x5 µx5→ϕE

▶ Factor graph corresponds to

p(x3, x5) ∝ ϕE (x3, x5)µx3→ϕE (x3)µx5→ϕE (x5)

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 57 / 83

https://creativecommons.org/licenses/by/4.0/


Rules of message passing: initialisation

Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

▶ From a leaf variable node x to a factor node ϕ, the message
µx→ϕ(x) = 1.

▶ From a leaf factor node ϕ to a variable node x , the message
µϕ→x (x) = ϕ(x).
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Rules of message passing: factor to variable messages
Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

Let x1, . . . , xj be the neighbours of factor node ϕ, without variable x .

µϕ→x (x) =
∑

x1,...,xj

ϕ(x1, . . . , xj , x)
j∏

i=1
µxi →ϕ(xi)

x1

x2

x3

ϕ
x

−→

−→

−→

−→

Rule corresponds to eliminating variables x1, . . . , xj
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Rules of message passing: variable to factor messages
Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

Let ϕ1, . . . , ϕj be the neighbours of variable node x , without factor ϕ.

µx→ϕ(x) =
j∏

i=1
µϕi →x (x)

ϕ1

ϕ2

ϕ3

x
ϕ

−→

−→

−→

−→

Rule corresponds to simplifying the factorisation by multiplying effective
factors defined on the same domain.
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Rules of message passing: univariate marginals
Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

Let ϕ1, . . . , ϕj be all neighbours of variable node x .

p(x) = 1
Z

j∏
i=1

µϕi →x (x) Z =
∑

x

∏
i

µϕi →x (x)

ϕ1

ϕ2

ϕ3

x
ϕ4

−→

−→

−→

←−

Note: The normalising constant Z can be computed for any of the
marginals. Same as the normaliser for p(x1, . . . , xd) ∝

∏
i ϕi(Xi).
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Rules of message passing: joint marginals

Note: The rules come from the fact that messages correspond to
effective factors obtained after marginalisation.

Let x1, . . . , xj be all neighbours of factor node ϕ.

p(x1, . . . , xj) = 1
Z ϕ(x1, . . . , xj)

j∏
i=1

µxi →ϕ(xi)

x1

x2

x3

ϕ
x4

−→

−→

−→

←−

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 62 / 83

https://creativecommons.org/licenses/by/4.0/


Other names for the sum-product algorithm

▶ Other names for the sum-product algorithm include
▶ sum-product message passing
▶ message passing
▶ belief propagation

▶ Whatever the name: it is variable elimination applied to factor
trees

▶ For numerical stability, often implemented in the log-domain.
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Key advantages of the sum-product algorithm

Assume p(x1, . . . , xd) ∝
∏m

i=1 ϕi(Xi), with Xi ⊆ {x1, . . . , xd}, can
be represented as a factor tree.
▶ The sum-product algorithm allows us to compute

▶ all univariate marginals p(xi).
▶ all joint distributions p(Xi) for the variables Xi that are part of

the same factor ϕi .
▶ Cost: If variables can take maximally K values and there are

maximally M elements in the Xi : O(2dKM) = O(dKM)
▶ Note the linear increase in the number of variables d .
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Applicability of the sum-product algorithm

▶ Factor graph must be a tree
▶ Can be used to compute conditionals (same argument as for

variable elimination)
▶ May be used for continuous random variables (same caveats

as for variable elimination)
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If the factor graph is not a tree
▶ Use variable elimination
▶ Group variables together so that the factor graph becomes a

tree (for details, see Chapter 6 in Barber, or Section V in Kschischang et
al, Factor Graphs and the Sum-Product Algorithm, 2001; not examinable)

▶ Pretend the factor graph is a tree and use message passing
(loopy belief propagation; not examinable)

▶ Can you condition on some variables so that the conditional is
a tree? Message passing can then be used to solve part of the
inference problem.
Example: p(x1, x2, x3, x4) is not a tree but p(x1, x2, x3|x4) is.
Use law of total probability

p(x1) =
∑
x4

∑
x2,x3

p(x1, x2, x3|x4)︸ ︷︷ ︸
by message passing

p(x4)

(see Barber Section 5.3.2, “Loop-cut conditioning”; not examinable)
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Program

1. Factor graphs

2. Marginal inference by variable elimination

3. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Sum-product algorithm = variable elimination for factor trees
Messages = effective factors
The rules for sum-product message passing

4. Inference of most probable states for factor trees
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Program

1. Factor graphs

2. Marginal inference by variable elimination

3. Marginal inference for factor trees (sum-product algorithm)

4. Inference of most probable states for factor trees
Maximisers of the marginals ̸= maximiser of joint
We can exploit the factorisation (in the log-domain) using the
distributive law max(u + v , u + w) = u + max(v , w)
Max-sum message passing
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Inference task

▶ So far: given a joint distribution p(x), find marginals or
conditionals over variables

▶ Inference task of interest here:
▶ Find a setting of the variables that maximises p(x), i.e.

x̂ = argmax
x

p(x) = argmax
x

log p(x)

▶ Find the corresponding value maximal value of p(x), i.e.

pmax = p(x̂) = max
x

p(x) or

log pmax = log p(x̂) (∗)= max
x

log p(x)

(∗) holds since log is monotonically increasing
▶ Note: the task includes argmaxx p̃(x|yo), which is known as

maximum a-posteriori (MAP) estimation or inference.
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Maximisers of the marginals ̸= maximiser of joint

▶ The sum-product algorithm gives us the univariate marginals
p(xi) for all variables x1, . . . , xd .

▶ But the vector with the argmaxxi p(xi), x1, . . . , xd , is not the
same as argmaxx p(x)

▶ Example (Bishop Table 8.1):

x1 x2 p(x1, x2)

0 0 0.3
1 0 0.4
0 1 0.3
1 1 0.0

x1 p(x1)

0 0.6
1 0.4

x2 p(x2)

0 0.7
1 0.3
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Distributive law to exploit the factorisation
▶ We use that

max
x

log p(x) = max
xd

max
x1,...,xd−1

log p(x) (16)

where xd is an arbitrarily chosen variable that serves as “sink”
(conceptually easiest: choose a leaf variable).

▶ Denote maxx1,...,xd−1 log p(x) by γ∗(xd)
▶ Inserting the assumed factorisation gives

γ∗(xd) = max
x1,...,xd−1

log 1
Z

m∏
i=1

ϕi(Xi) (17)

= − log Z + max
x1,...,xd−1

m∑
i=1

log ϕi(Xi) (18)

▶ Compare to formula for marginal p(xd)

p(xd) =
∑

x1,...,xd−1

p(x) ∝
∑

x1,...,xd−1

m∏
i=1

ϕi(Xi) (19)
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Distributive law to exploit the factorisation

▶ Correspondences

∑
x1,...,xd−1

←→ max
x1,...,xd−1

,
m∏

i=1
←→

m∑
i=1

, ϕi(Xi)←→ log ϕi(Xi)

▶ To compute p(xd), we relied on the distributive law

sum(ab, ac) = a sum(b, c)

▶ To compute γ∗(xd), we can use the distributive law

max(log a + log b, log a + log c) = log a + max(log b, log c)

▶ Message passing algorithm by replacing sum with max,
products with sums, and factors with log-factors.
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Use correspondence to derive the algorithm

▶ In the sum-product algorithm to compute the marginal,
consider the computation of the message µϕ→x (x)

µϕ→x (x) =
∑

x1,...,xj

ϕ(x1, . . . , xj , x)·
j∏

i=1
µxi →ϕ(xi) (20)

▶ Replace sum with max, products with sums, and factors with
log-factors to obtain the computation for the corresponding
message γϕ→x (x)

γϕ→x (x) = max
x1,...,xj

log ϕ(x1, . . . , xj , x)+
j∑

i=1
γxi →ϕ(xi) (21)

▶ Resulting algorithm is called max-sum message passing
(max-product if we do not work in the log-domain)
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Sum-product algorithm with xd as sink (recap)
Factor to variable x1

x2

ϕ
x

−→

−→

−→µϕ→x (x) =
∑

x1,...,xj ϕ(x1, . . . , xj , x)
∏j

i=1 µxi →ϕ(xi)
where {x1, . . . , xj} = ne(ϕ) \ {x}

Variable to factor ϕ1

ϕ2

x
ϕ

−→

−→

−→µx→ϕ(x) =
∏j

i=1 µϕi →x (x)
where {ϕ1, . . . , ϕj} = ne(x) \ {ϕ}

Univariate marginal ϕ1

ϕ2

xd

ϕ3
−→

−→

←−p(xd) = 1
Z

∏j
i=1 µϕi →xd (xd)

Z =
∑

xd

∏j
i=1 µϕi →xd (xd)

where {ϕ1, . . . , ϕj} = ne(xd)

Initialisation
At leaf variable nodes: µx→ϕ(x) = 1
At leaf factor nodes: µϕ→x (x) = ϕ(x)
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Max-sum algorithm with xd as sink

Factor to variable x1

x2

ϕ
x

−→

−→

−→γϕ→x (x) = maxx1,...,xj log ϕ(x1, . . . , xj , x) +
∑j

i=1 γxi →ϕ(xi)
where {x1, . . . , xj} = ne(ϕ) \ {x}

Variable to factor ϕ1

ϕ2

x
ϕ

−→

−→

−→γx→ϕ(x) =
∑j

i=1 γϕi →x (x)
where {ϕ1, . . . , ϕj} = ne(x) \ {ϕ}

Maximum probability ϕ1

ϕ2

xd

ϕ3
−→

−→

←−γ∗(xd) = − log Z +
∑j

i=1 γϕi →xd (xd)
log pmax = maxxd γ∗(xd)
where {ϕ1, . . . , ϕj} = ne(xd)

Initialisation
At leaf variable nodes: γx→ϕ(x) = 0
At leaf factor nodes: γϕ→x (x) = log ϕ(x)
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Backward pass to compute argmaxx p(x)
▶ The max-sum algorithm computes γ∗(xd) and

log pmax = maxxd γ∗(xd) in a forward pass through the graph.
▶ We can compute x̂ = argmaxx p(x) in a backward pass.
▶ When solving the optimisation problem in the forward pass

γϕ→x (x) = max
x1,...,xj

log ϕ(x1, . . . , xj , x) +
j∑

i=1
γxi →ϕ(xi)

we also build the function (look-up table)

γ∗
ϕ→x (x) = argmax

x1,...,xj
log ϕ(x1, . . . , xj , x) +

j∑
i=1

γxi →ϕ(xi)

which returns the maximiser (x̂1, . . . , x̂j) for each value of x .
▶ We then compute x̂ recursively, starting with

x̂d = argmaxxd γ∗(xd) and backtrack to the earlier variables,
obtaining further dimensions of x̂ with the look-up tables.

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0 76 / 83

https://creativecommons.org/licenses/by/4.0/


Example
Model (pmf):

p(x1, x2, x3, x4) ∝ ϕA(x1)ϕB(x2)ϕC (x1, x2, x3)ϕD(x3, x4)

Factor graph (tree):

ϕA
x1

ϕC

x2

ϕB

x3
ϕD

x4

Goal:

(x̂1, x̂2, x̂3, x̂4) = argmax
x1,...,x4

p(x1, x2, x3, x4)

= argmax
x1,...,x4

log p(x1, x2, x3, x4)
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Example: forward pass

▶ Select sink towards which we send messages. Here: x4
(arbitary choice).

▶ Messages that we need to send:

ϕA
x1

ϕC

x2

ϕB

x3
ϕD

x4
→ → ↓

↓

→ → →

▶ Initialise:

γϕA→x1(x1) = log ϕA(x1)
γϕB→x2(x2) = log ϕB(x2)
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Example: forward pass

ϕA
x1

ϕC

x2

ϕB

x3
ϕD

x4
→ → ↓

↓

→ → →

▶ x1 and x2 copy the messages:

γx1→ϕC (x1) = γϕA→x1(x1)
γx2→ϕC (x2) = γϕB→x2(x2)

▶ For γϕC →x3(x3) solve optimisation problem

γϕC →x3(x3) = max
x1,x2

[log ϕC (x1, x2, x3) + γx1→ϕC (x1) + γx2→ϕC (x2)]

γ∗
ϕC →x3(x3) = argmax

x1,x2
[log ϕC (x1, x2, x3) + γx1→ϕC (x1) + γx2→ϕC (x2)]

for all values of x3.
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Example: forward pass

ϕA
x1

ϕC

x2

ϕB

x3
ϕD

x4
→ → ↓

↓

→ → →

▶ x3 copies the message:γx3→ϕD (x3) = γϕC →x3(x3)
▶ For γϕD→x4(x4) solve optimisation problem

γϕD→x4(x4) = max
x3

[log ϕD(x3, x4) + γx3→ϕD (x3)]

γ∗
ϕD→x4(x4) = argmax

x3
[log ϕD(x3, x4) + γx3→ϕD (x3)]

for all values of x4.
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Example: forward pass

ϕA
x1

ϕC

x2

ϕB

x3
ϕD

x4
→ → ↓

↓

→ → →

▶ After computation of γϕD→x4(x4), we obtain log pmax as

log pmax = max
xd

γ∗(xd)

γ∗(x4) = − log Z + γϕD→x4(x4)

▶ This requires knowledge of Z . We can compute Z via the
sum-product algorithm.

▶ Z not needed if we are only interested in argmax p(x1, . . . , x4)
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Example: backward pass

ϕA
x1

ϕC

x2

ϕB

x3
ϕD

x4
→ →

←
↓ ↑

↓

→
←

→
←

→
←

Backtracking:
▶ Compute x̂4 = argmaxx4 γ∗(x4) = argmaxx4 γϕD→x4(x4)
▶ Plug x̂4 into look-up table γ∗

ϕD→x4(x4) to look up best value of
x3:

x̂3 = γ∗
ϕD→x4(x̂4)

▶ Plug x̂3 into look-up table γ∗
ϕC →x3(x3) to look up best values

of (x1, x2):
(x̂1, x̂2) = γ∗

ϕC →x3(x̂3)
▶ This gives (x̂1, x̂2, x̂3, x̂4) = argmaxx1,...,x4 p(x1, x2, x3, x4)
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Program recap
1. Factor graphs

Definition
Visualising Gibbs distributions as factor graphs
Factor graphs represent factorisations better than undirected graphs

2. Marginal inference by variable elimination
Exploiting the factorisation by using the distributive law
ab + ac = a(b + c) and by caching computations
Variable elimination for general factor graphs
The principles of variable elimination also apply to continuous random
variables

3. Marginal inference for factor trees (sum-product algorithm)
Factor trees
Sum-product algorithm = variable elimination for factor trees
Messages = effective factors
The rules for sum-product message passing

4. Inference of most probable states for factor trees
Maximisers of the marginals ̸= maximiser of joint
We can exploit the factorisation (in the log-domain) using the distributive
law max(u + v , u + w) = u + max(v , w)
Max-sum message passing
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