Exact Inference

Michael U. Gutmann

Probabilistic Modelling and Reasoning (INFR11134) School of Informatics, The University of Edinburgh

Autumn Semester 2025

Recap

$$p(\mathbf{x}|\mathbf{y}_o) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}$$

Assume that $\mathbf{x}, \mathbf{y}, \mathbf{z}$ each are d = 500 dimensional, and that each element of the vectors can take K = 10 values.

- lssue 1: To specify $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$, we need to specify $K^{3d} 1 = 10^{1500} 1$ non-negative numbers, which is impossible.
 - Topic 1: Representation What reasonably weak assumptions can we make to efficiently represent $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$?
- Directed and undirected graphical models
- Factorisation and independencies

Recap

$$p(\mathbf{x}|\mathbf{y}_o) = \frac{\sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}{\sum_{\mathbf{x}, \mathbf{z}} p(\mathbf{x}, \mathbf{y}_o, \mathbf{z})}$$

- Issue 2: The sum in the numerator goes over the order of $K^d = 10^{500}$ non-negative numbers and the sum in the denominator over the order of $K^{2d} = 10^{1000}$, which is impossible to compute.
 - Topic 2: Exact inference Can we further exploit the assumptions on $p(\mathbf{x}, \mathbf{y}, \mathbf{z})$ to efficiently compute the posterior probability or derived quantities?
- Note: we do not want to introduce new assumptions but exploit those that we made to deal with issue 1.
- Quantities of interest:
 - $p(\mathbf{x}|\mathbf{y}_o)$ (marginal inference)
 - $ightharpoonup \operatorname{argmax}_{\mathbf{x}} p(\mathbf{x}|\mathbf{y}_o)$ (inference of most probable states)
 - $\mathbb{E}\left[g(\mathbf{x}) \mid \mathbf{y}_o\right] \text{ for some function } g \qquad \qquad \text{(posterior expectations)}$

Assumptions

Unless otherwise mentioned, we here assume discrete valued random variables whose joint pmf is a Gibbs distribution factorising as

$$p(x_1,\ldots,x_d) \propto \prod_{i=1}^m \phi_i(\mathcal{X}_i),$$

with $\mathcal{X}_i \subseteq \{x_1, \dots, x_d\}$ and $x_i \in \{1, \dots, K\}$.

Note:

- ▶ Includes case where (some of) the ϕ_i are conditionals
- The x_i could be categorical taking on maximally K different values.

Program

- 1. Factor graphs
- 2. Marginal inference by variable elimination
- 3. Marginal inference for factor trees (sum-product algorithm)
- 4. Inference of most probable states for factor trees

Program

- 1. Factor graphs
 - Definition
 - Visualising Gibbs distributions as factor graphs
 - Factor graphs represent factorisations better than undirected graphs
- 2. Marginal inference by variable elimination
- 3. Marginal inference for factor trees (sum-product algorithm)
- 4. Inference of most probable states for factor trees

Definition of factor graphs

- ► A factor graph represents the factorisation of an arbitrary function (not necessarily related to pdfs/pmfs)
- Example: $h(x_1, ..., x_5) = f_A(x_1, x_2, x_3) f_B(x_3, x_4, x_5) f_C(x_4)$ Factor graph (FG):

- ► Two types of nodes: factor and variable nodes
- Convention: squares for factors, circles for variables (other conventions are used too)

Definition of factor graphs

Example: $h(x_1,...,x_5) = f_A(x_1,x_2,x_3)f_B(x_3,x_4,x_5)f_C(x_4)$ Factor graph (FG):

- ▶ Edge between variable x and factor $f \Leftrightarrow x$ is an argument of f
- ► Variable nodes are always connected to factor nodes; no direct links between factor or variable nodes (FGs are bipartite graphs)
- ► FGs can have directed edges to indicate conditionals (not needed here).

Visualising Gibbs distributions as factor graphs

► Example: $p(x_1, x_2, x_3, x_4) = \frac{1}{7}\phi_1(x_1, x_2, x_3)\phi_2(x_3, x_4)\phi_3(x_4)$

- ▶ General case: $p(x_1, ..., x_d) \propto \prod_c \phi_c(\mathcal{X}_c)$
 - Factor node for all ϕ_c
 - For all factors ϕ_c : draw an undirected edge between ϕ_c and all $x_i \in \mathcal{X}_c$.
- Can visualise any undirected graphical model as a factor graph.

Differences to undirected graphs

Some differences to visualising Gibbs distributions with undirected graph:

- Factors ϕ_c are shown, which makes the graphs more informative (see next slide).
- \triangleright Variables x_i are neighbours if they are connected to the same factor.

$$p(x_1, x_2, x_3, x_4) = \frac{1}{Z}\phi_1(x_1, x_2, x_3)\phi_2(x_3, x_4)\phi_3(x_4)$$

More informative than undirected graphs

- ► Mapping from Gibbs distribution to undirected graph is many to one but one-to-one for factor graphs.
- Example

$$p_A(x_1, x_2, x_3) \propto \phi_1(x_1, x_2)\phi_2(x_2, x_3)\phi_3(x_3, x_1)$$

 $p_B(x_1, x_2, x_3) \propto \phi(x_1, x_2, x_3)$

More informative than undirected graphs

Assume binary random variables x_i .

Same undirected graph but

$$p(x_1, ..., x_d) \propto \phi(x_1, ..., x_d)$$
 has 2^d free parameters, $p(x_1, ..., x_d) \propto \prod_{i < j} \phi_{ij}(x_i, x_j)$ has $\binom{d}{2} 2^2$ free parameters parameters \equiv entries to specify in a table representation

► The difference matters for learning and inference when the number of variables is large.

Program

- 1. Factor graphs
 - Definition
 - Visualising Gibbs distributions as factor graphs
 - Factor graphs represent factorisations better than undirected graphs
- 2. Marginal inference by variable elimination
- 3. Marginal inference for factor trees (sum-product algorithm)
- 4. Inference of most probable states for factor trees

Program

- 1. Factor graphs
- 2. Marginal inference by variable elimination
 - Exploiting the factorisation by using the distributive law ab + ac = a(b + c) and by caching computations
 - Variable elimination for general factor graphs
 - The principles of variable elimination also apply to continuous random variables
- 3. Marginal inference for factor trees (sum-product algorithm)
- 4. Inference of most probable states for factor trees

Basic ideas of variable elimination

- 1. Use the distributive law ab + ac = a(b + c) to exploit the factorisation $(\sum \prod \rightarrow \prod \sum)$: reduces the overall dimensionality of the domain of the factors in the sum and thereby the computational cost.
- 2. Recycle/cache results

Example: full factorisation

- Consider discrete-valued random variables $x_1, x_2, x_3 \in \{1, ..., K\}$
- Assume pmf factorises $p(x_1, x_2, x_3) \propto \phi_1(x_1)\phi_2(x_2)\phi_3(x_3)$
- ▶ Task: compute $p(x_1 = k)$ for $k \in \{1, ..., K\}$
- We can use the sum-rule

$$p(x_1 = k) = \sum_{x_2, x_3} p(x_1 = k, x_2, x_3)$$

Sum over K^2 terms for each k (value of x_1).

- Pre-computing $p(x_1, x_2, x_3)$ for all K^3 configurations and then computing the sum is neither necessary nor a good idea
- ightharpoonup Exploit factorisation when computing $p(x_1 = k)$.

Example: full factorisation

(sum rule)
$$p(x_1 = k) = \sum_{x_2, x_3} p(x_1 = k, x_2, x_3)$$
(1)
$$\times \sum_{x_2} \sum_{x_3} \phi_1(k) \phi_2(x_2) \phi_3(x_3)$$
(2)
$$\times \phi_1(k) \sum_{x_2} \sum_{x_3} \phi_2(x_2) \phi_3(x_3)$$
(3)
$$\times \phi_1(k) \left[\sum_{x_2} \phi_2(x_2) \right] \left[\sum_{x_3} \phi_3(x_3) \right]$$
(4)

PMR 2025 ©Gutmann, University of Edinburgh CC BY 4.0

Distributive law changes $\sum \prod$ in (2) to $\prod \sum$ in (4).

Example: full factorisation

$$p(x_1 = k) \propto \phi_1(k) \left[\sum_{x_2} \phi_2(x_2) \right] \left[\sum_{x_3} \phi_3(x_3) \right]$$
 (5)

What's the point?

- ▶ Because of the factorisation (independencies) we do not need to evaluate and store the values of $p(x_1, x_2, x_3)$ for all K^3 configurations of the random variables.
- \triangleright 2 sums over K numbers vs. 1 sum over K^2 numbers
- Recycling/caching of already computed quantities: we only need to compute

$$\left[\sum_{x_2}\phi_2(x_2)\right]\left[\sum_{x_3}\phi_3(x_3)\right]$$

once; the value can be re-used when computing $p(x_1 = k)$ for different k.

Example: general factor graph

Example:

$$p(x_1,\ldots,x_6) \propto \phi_A(x_1,x_2,x_4)\phi_B(x_2,x_3,x_4)\phi_C(x_3,x_5)\phi_D(x_3,x_6)$$

- ightharpoonup Task: Compute $p(x_1, x_3)$
- Note the structural changes in the graph during variable elimination

Task: Compute $p(x_1, x_3)$

First eliminate x_6

$$p(x_1,\ldots,x_5) = \sum_{x_6} p(x_1,\ldots,x_6)$$

(factorisation)
$$\propto \sum_{x_6} \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \phi_D(x_3, x_6)$$

(distr. law)
$$\propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \sum_{x_6} \phi_D(x_3, x_6)$$

$$\propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \tilde{\phi}_6(x_3)$$

Task: Compute $p(x_1, x_3)$

Eliminate x₅

$$p(x_{1},...,x_{4}) \propto \sum_{x_{5}} \phi_{A}(x_{1},x_{2},x_{4}) \phi_{B}(x_{2},x_{3},x_{4}) \phi_{C}(x_{3},x_{5}) \tilde{\phi}_{6}(x_{3})$$

$$\propto \phi_{A}(x_{1},x_{2},x_{4}) \phi_{B}(x_{2},x_{3},x_{4}) \tilde{\phi}_{6}(x_{3}) \sum_{x_{5}} \phi_{C}(x_{3},x_{5})$$

$$\propto \phi_{A}(x_{1},x_{2},x_{4}) \phi_{B}(x_{2},x_{3},x_{4}) \tilde{\phi}_{6}(x_{3}) \tilde{\phi}_{5}(x_{3})$$

Define
$$\tilde{\phi}_{56}(x_3) = \tilde{\phi}_6(x_3)\tilde{\phi}_5(x_3)$$

$$p(x_1, \dots, x_4) \propto \phi_A(x_1, x_2, x_4)\phi_B(x_2, x_3, x_4)\tilde{\phi}_6(x_3)\tilde{\phi}_5(x_3)$$

$$\propto \phi_A(x_1, x_2, x_4)\phi_B(x_2, x_3, x_4)\tilde{\phi}_{56}(x_3)$$

Eliminate x₂

Task: Compute $p(x_1, x_3)$

$$p(x_1, x_3, x_4) \propto \sum_{x_2} \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \tilde{\phi}_{56}(x_3)$$

$$\propto \tilde{\phi}_{56}(x_3) \sum_{x_2} \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4)$$

$$K^3 \text{ times } K \text{ add/mult} \Rightarrow O(K^4) \text{ cost}$$

$$\propto \tilde{\phi}_{56}(x_3) \tilde{\phi}_2(x_1, x_3, x_4)$$

Other justification for the cost: $\phi_A(x_1, x_2, x_4)\phi_B(x_2, x_3, x_4)$ equals a compound factor $\phi_*(x_1, x_2, x_3, x_4)$ that requires K^4 space when represented as a table. Summing out x_2 for all combinations of (x_1, x_3, x_4) touches each table-entry once $\Rightarrow O(K^4)$ cost.

Task: Compute $p(x_1, x_3)$

Eliminate x₄

$$p(x_1, x_3) \propto \sum_{x_4} \tilde{\phi}_{56}(x_3) \tilde{\phi}_2(x_1, x_3, x_4)$$
 $\propto \tilde{\phi}_{56}(x_3) \sum_{x_4} \tilde{\phi}_2(x_1, x_3, x_4)$
 $\propto \tilde{\phi}_{56}(x_3) \tilde{\phi}_{24}(x_1, x_3)$

Normalisation to obtain $p(x_1 = k, x_3 = k')$ for any k, k':

$$p(x_1 = k, x_3 = k') = \frac{\tilde{\phi}_{56}(x_3 = k')\tilde{\phi}_{24}(x_1 = k, x_3 = k')}{\sum_{x_1, x_3} \tilde{\phi}_{56}(x_3)\tilde{\phi}_{24}(x_1, x_3)}$$

Remarks

- Compared to precomputing K^6 numbers and then marginalising out variables, using the factorisation reduces the cost to $O(K^4)$.
- Caching: Intermediate quantities can be re-used when computing $p(x_1 = k, x_3 = k')$ for different k, k'
- Structural changes in the graph during variable elimination:
 - Eliminated leaf-variable and factor node
 - \rightarrow factor node
 - Factor nodes that depend on the same variables
 - \rightarrow single factor node
 - Factor nodes between neighbours of the eliminated variable
 - \rightarrow single factor node connecting all neighbours

Variable (bucket) elimination

Without loss of generality: Given $p(x_1, ..., x_d) \propto \prod_i^m \phi_i(\mathcal{X}_i)$ compute the marginal $p(\mathcal{X}_{target})$ for some $\mathcal{X}_{target} \subseteq \{x_1, ..., x_d\}$.

Assume that at iteration k, you have the pmf over $d^k = d - k$ variables $X^k = (x_{i_1}, \dots, x_{i_{d^k}})$ that factorises as

$$p(X^k) \propto \prod_{i=1}^{m^k} \phi_i^k(\mathcal{X}_i^k)$$

- Decide which variable to eliminate. Call it x^* . $(x^* \in X^k, x^* \notin \mathcal{X}_{target})$
- ▶ Let X^{k+1} be equal to X^k with x^* removed. We have

(sum rule)
$$p(X^{k+1}) = \sum_{X^*} p(X^k)$$
 (6)

(factorisation)
$$\propto \sum_{x^*} \prod_{i=1}^{m^k} \phi_i^k(\mathcal{X}_i^k)$$
 (7)

Variable (bucket) elimination (cont.)

$$p(X^{k+1}) \propto \sum_{x^*} \prod_{i:x^* \notin \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k) \prod_{i:x^* \in \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k)$$
(8)

(distr. law)
$$\propto \prod_{i:x^* \notin \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k) \sum_{x^*} \prod_{i:x^* \in \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k)$$
 (9)

compound factor $\phi_*^k(\mathcal{X}_*^k)$

$$\propto \left[\prod_{i:x^* \notin \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k)\right] \underbrace{\sum_{x^*} \phi_*^k(\mathcal{X}_*^k)}_{\text{new factor } \tilde{\phi}_*^k(\tilde{\mathcal{X}}_*^k)} \tag{10}$$

 \mathcal{X}_*^k is the union of all \mathcal{X}_i^k that contain x^* , and $\tilde{\mathcal{X}}_*^k$ is \mathcal{X}_*^k with x^* removed,

$$\mathcal{X}_*^k = \bigcup_{i:x^* \in \mathcal{X}_i^k} \mathcal{X}_i^k \qquad \qquad \tilde{\mathcal{X}}_*^k = \mathcal{X}_*^k \setminus x^* \qquad (11)$$

Variable (bucket) elimination (cont.)

By re-labelling the factors and variables, we obtain

$$p(X^{k+1}) \propto \left[\prod_{i:x^* \notin \mathcal{X}_i^k} \phi_i^k(\mathcal{X}_i^k) \right] \tilde{\phi}_*^k(\tilde{\mathcal{X}}_*^k) \tag{12}$$

$$\propto \prod_{i=1}^{m^{k+1}} \phi_i^{k+1}(\mathcal{X}_i^{k+1}), \tag{13}$$

which has the same form as $p(X^k)$.

- ▶ Set k = k + 1 and decide which variable x^* to eliminate next.
- ▶ To compute $p(X_{\text{target}})$ stop when $X^k = X_{\text{target}}$, followed by normalisation.

How to choose the elimination variable x^* ?

Nhen we marginalise over x^* in iteration k, we generate the temporary compound factor ϕ_*^k that depends on

$$\mathcal{X}_*^k = \bigcup_{i:x^* \in \mathcal{X}_i^k} \mathcal{X}_i^k \tag{14}$$

Contains x^* and the variables with which x^* shares a factor node in the factor graph ("neighbours").

Ex.: $p(x_1, ..., x_6) \propto \phi_A(x_1, x_2, x_4) \phi_B(x_2, x_3, x_4) \phi_C(x_3, x_5) \phi_D(x_3, x_6)$ If we eliminated $x^* = x_3$: $\mathcal{X}_* = \{x_2, x_3, x_4, x_5, x_6\}$

How to choose the elimination variable x^* ?

Nhen we marginalise over x^* in iteration k, we generate the temporary compound factor ϕ_*^k that depends on

$$\mathcal{X}_*^k = \bigcup_{i:x^* \in \mathcal{X}_i^k} \mathcal{X}_i^k \tag{15}$$

Contains x^* and the variables with which x^* shares a factor node in the factor graph ("neighbours").

- ► Eliminating x^* costs K^{M_k} where M_k is the number of variables in \mathcal{X}_*^k .
- ➤ Optimal choice of elimination order is difficult since the size of the factors can change when we eliminate variables (for details, see e.g. Koller, Section 9.4, not examinable)
- Heuristic: in each iteration, choose x^* in a greedy way so that \mathcal{X}_*^k is small, i.e. the variable with the least number of neighbours in the factor graph (e.g. x_5 or x_6 in the example)

Computing conditionals

- ▶ The same approach can be used to compute conditionals.
- Example: Given

$$p(x_1,\ldots,x_6) \propto \phi_A(x_1,x_2,x_4)\phi_B(x_2,x_3,x_4)\phi_C(x_3,x_5)\phi_D(x_3,x_6)$$

assume you want to compute $p(x_1|x_3 = \alpha)$

We can write

$$p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha) \propto p(x_1, x_2, x_3 = \alpha, x_4, x_5, x_6)$$

$$\propto \phi_A(x_1, x_2, x_4) \phi_B^{\alpha}(x_2, x_4) \phi_C^{\alpha}(x_5) \phi_D^{\alpha}(x_6)$$

and consider $p(x_1, x_2, x_4, x_5, x_6 | x_3 = \alpha)$ to be a pdf/pmf $\tilde{p}(x_1, x_2, x_4, x_5, x_6)$ defined up to the proportionality factor.

We can compute $p(x_1|x_3 = \alpha) = \tilde{p}(x_1)$ by applying variable elimination to $\tilde{p}(x_1, x_2, x_4, x_5, x_6)$.

What if we have continuous random variables?

- Conceptually, all stays the same but we replace sums with integrals
 - Simplifications due to distributive law remain valid
 - Caching of results remains valid
- In special cases, integral can be computed in closed form (e.g. Gaussian family)
- ► If not: need for approximations (see later)
- ightharpoonup Approximations are also needed for discrete random variables when K is large.

Program

- 1. Factor graphs
- 2. Marginal inference by variable elimination
 - Exploiting the factorisation by using the distributive law ab + ac = a(b + c) and by caching computations
 - Variable elimination for general factor graphs
 - The principles of variable elimination also apply to continuous random variables
- 3. Marginal inference for factor trees (sum-product algorithm)
- 4. Inference of most probable states for factor trees

Program

- 1. Factor graphs
- 2. Marginal inference by variable elimination
- 3. Marginal inference for factor trees (sum-product algorithm)
 - Factor trees
 - Sum-product algorithm = variable elimination for factor trees
 - Messages = effective factors
 - The rules for sum-product message passing
- 4. Inference of most probable states for factor trees

Factor trees

- ► We next consider the class of models (pmfs/pdfs) for which the factor graph is a tree.
- ► Tree: graph where there is only one path connecting any two nodes (no loops!)
- ► Chain is an example of a factor tree. (see later: inference for HMMs)
- ► Useful property: the factor tree obtained after summing out a leaf variable is still a factor tree.

Variable elimination for factor trees

Task: Compute $p(x_1)$ for

$$p(x_1,\ldots,x_5) \propto \phi_A(x_1)\phi_B(x_2)\phi_C(x_1,x_2,x_3)\phi_D(x_3,x_4)\phi_E(x_3,x_5)\phi_F(x_5)$$

Sum out leaf-variable x_5

Task: Compute $p(x_1)$

$$p(x_{1},...,x_{4}) = \sum_{x_{5}} p(x_{1},...,x_{5})$$

$$\propto \sum_{x_{5}} \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\phi_{D}(x_{3},x_{4})\phi_{E}(x_{3},x_{5})\phi_{F}(x_{5})$$

$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\phi_{D}(x_{3},x_{4})\sum_{x_{5}} \phi_{E}(x_{3},x_{5})\phi_{F}(x_{5})$$

$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\phi_{D}(x_{3},x_{4})\tilde{\phi}_{5}(x_{3})$$

Visualising the computation

Graph with transformed factors:

Graph with "messages":

Message:
$$\mu_{\phi_E \to x_3}(x_3) = \tilde{\phi}_5(x_3) = \sum_{x_5} \phi_E(x_3, x_5) \phi_F(x_5)$$

Effective factor for x_3 if all variables in the subtree attached to ϕ_E are eliminated (subtree does *not* include x_3)

Sum out leaf-variable x_4

Task: Compute $p(x_1)$

$$p(x_{1},...,x_{3}) = \sum_{x_{4}} p(x_{1},...,x_{4})$$

$$\propto \sum_{x_{4}} \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\phi_{D}(x_{3},x_{4})\tilde{\phi}_{5}(x_{3})$$

$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\tilde{\phi}_{5}(x_{3})\sum_{x_{4}} \phi_{D}(x_{3},x_{4})$$

$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\tilde{\phi}_{5}(x_{3})\tilde{\phi}_{4}(x_{3})$$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message:
$$\mu_{\phi_D \to x_3}(x_3) = \tilde{\phi}_4(x_3) = \sum_{x_4} \phi_D(x_3, x_4)$$

Effective factor for x_3 if all variables in the subtree attached to ϕ_D are eliminated (subtree does *not* include x_3)

Simplify by multiplying factors with common domain

Task: Compute $p(x_1)$

$$p(x_{1},...,x_{3}) \propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\underbrace{\tilde{\phi}_{5}(x_{3})\tilde{\phi}_{4}(x_{3})}_{\tilde{\phi}_{54}(x_{3})}$$

$$\propto \phi_{A}(x_{1})\phi_{B}(x_{2})\phi_{C}(x_{1},x_{2},x_{3})\tilde{\phi}_{54}(x_{3})$$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message:
$$\mu_{x_3 \to \phi_C}(x_3) = \tilde{\phi}_{54}(x_3) = \tilde{\phi}_4(x_3)\tilde{\phi}_5(x_3) = \mu_{\phi_D \to x_3}(x_3)\mu_{\phi_E \to x_3}(x_3)$$

Effective factor for x_3 if all variables in the subtrees attached to x_3 are eliminated (subtrees do *not* include ϕ_c)

Sum out leaf-variable x_3

Task: Compute $p(x_1)$

$$p(x_1, x_2) = \sum_{x_3} p(x_1, x_2, x_3)$$

$$\propto \sum_{x_3} \phi_A(x_1)\phi_B(x_2)\phi_C(x_1, x_2, x_3)\tilde{\phi}_{54}(x_3)$$

$$\propto \phi_A(x_1)\phi_B(x_2)\sum_{x_3} \phi_C(x_1, x_2, x_3)\tilde{\phi}_{54}(x_3)$$

$$\propto \phi_A(x_1)\phi_B(x_2)\tilde{\phi}_{543}(x_1, x_2)$$

Sum out leaf-variable x_2 and normalise

$$p(x_1) = \sum_{x_2} p(x_1, x_2) \propto \sum_{x_2} \phi_A(x_1) \phi_B(x_2) \tilde{\phi}_{543}(x_1, x_2)$$

$$\propto \phi_A(x_1) \sum_{x_2} \phi_B(x_2) \tilde{\phi}_{543}(x_1, x_2)$$

$$\propto \phi_A(x_1) \tilde{\phi}_{5432}(x_1)$$

$$p(x_1) = \frac{\phi_A(x_1)\tilde{\phi}_{5432}(x_1)}{\sum_{x_1} \phi_A(x_1)\tilde{\phi}_{5432}(x_1)}$$

Alternative: sum out both x_2 and x_3

Since

$$\tilde{\phi}_{5432}(x_1) = \sum_{x_2} \phi_B(x_2) \tilde{\phi}_{543}(x_1, x_2)
= \sum_{x_2} \phi_B(x_2) \sum_{x_3} \phi_C(x_1, x_2, x_3) \tilde{\phi}_{54}(x_3)
= \sum_{x_2, x_3} \phi_C(x_1, x_2, x_3) \phi_B(x_2) \tilde{\phi}_{54}(x_3)$$

we obtain the same result by first summing out x_2 and then x_3 , or both at the same time.

In any case:

$$p(x_1) \propto \phi_A(x_1) \sum_{x_2,x_3} \phi_C(x_1,x_2,x_3) \phi_B(x_2) \tilde{\phi}_{54}(x_3)$$

Visualising the computation

Graph with transformed factors:

Graph with messages:

Message:

$$\mu_{\phi_C \to x_1}(x_1) = \tilde{\phi}_{5432}(x_1) = \sum_{x_2, x_3} \phi_C(x_1, x_2, x_3) \phi_B(x_2) \mu_{x_3 \to \phi_C}(x_3)$$

Effective factor for x_1 if all variables in the subtrees attached to ϕ_C are eliminated (subtrees do *not* include x_1)

Representing leaf-factors with messages

Since there are no variables "behind" the leaf-factors, we can consider all leaf-factors to be effective factors themselves:

$$\mu_{\phi_A \to x_1}(x_1) = \phi_A(x_1)$$
 $\mu_{\phi_B \to x_2}(x_2) = \phi_B(x_2)$
 $\mu_{\phi_F \to x_5}(x_5) = \phi_F(x_5)$

We then obtain

Variables with single incoming messages copy the message

We had

$$\mu_{x_3 \to \phi_C}(x_3) = \mu_{\phi_D \to x_3}(x_3) \mu_{\phi_E \to x_3}(x_3)$$

which corresponded to simplifying the factorisation by multiplying effective factors defined on the same domain. Special cases:

$$\mu_{\mathsf{x}_5 \to \phi_E}(\mathsf{x}_5) = \mu_{\phi_F \to \mathsf{x}_5}(\mathsf{x}_5)$$

$$\mu_{\mathsf{x}_2 \to \phi_{\mathsf{C}}}(\mathsf{x}_2) = \mu_{\phi_{\mathsf{B}} \to \mathsf{x}_2}(\mathsf{x}_2)$$

We then obtain

Messages from leaf variable nodes

What about x_4 ? We can consider

$$p(x_1,\ldots,x_5) \propto \phi_A(x_1)\phi_B(x_2)\phi_C(x_1,x_2,x_3)\phi_D(x_3,x_4)\phi_E(x_3,x_5)\phi_F(x_5)$$

to include an additional factor $\phi_G(x_4) = 1$. We can thus set

$$egin{align} \mu_{\phi_G o x_4}(x_4) &= 1 \ \mu_{x_4 o \phi_D}(x_4) &= \mu_{\phi_G o x_4}(x_4) = 1 \ \end{align*}$$

Graph:

Single marginal from messages

We have seen that

$$p(x_1) \propto \phi_A(x_1) \tilde{\phi}_{5432}(x_1)$$

 $\propto \mu_{\phi_A \to x_1}(x_1) \mu_{\phi_C \to x_1}(x_1)$

Marginal is proportional to the product of the incoming messages.

Single marginal from messages

Cost (due to properties of variable elimination):

- Linear in number of variables d, exponential in maximal number of variables attached to a factor node.
 (cost known upfront since no new factors are created unlike in the general case considered before)
- Recycling: most messages do not depend on x_1 and can be re-used for computing $p(x_1)$ for any value of x_1 (as well as for computing the marginal distribution of other variables, see next slides)

► We have seen that

$$p(x_1) \propto \phi_A(x_1) \tilde{\phi}_{5432}(x_1)$$

 $\propto \mu_{\phi_A \to x_1}(x_1) \mu_{\phi_C \to x_1}(x_1)$

Remember: Messages are effective factors

► This correspondence allows us to write down the marginal for other variables too. The incoming messages are all we need.

- \blacktriangleright Example: For $p(x_2)$ we need $\mu_{\phi_B \to x_2}$ and $\mu_{\phi_C \to x_2}$
- \blacktriangleright $\mu_{\phi_B \to x_2}$ is known but $\mu_{\phi_C \to x_2}$ needs to be computed
- $\mu_{\phi_C \to x_2}$ is the effective factor for x_2 if all variables of the subtrees attached to ϕ_c are eliminated.
- Can be computed from previously computed factors:

► By definition of the messages, and their correspondence to effective factors, we have

$$p(x_1, x_2, x_3) \propto \phi_C(x_1, x_2, x_3) \mu_{\phi_A \to x_1}(x_1) \mu_{\phi_B \to x_2}(x_2) \mu_{x_3 \to \phi_C}(x_3)$$

 \triangleright Eliminating x_1 and x_3 gives

$$p(x_2) \propto \mu_{\phi_B \to x_2}(x_2) \sum_{x_1, x_3} \phi_c(x_1, x_2, x_3) \mu_{x_3 \to \phi_C}(x_3) \mu_{\phi_A \to x_1}(x_1)$$
 $\mu_{\phi_C \to x_2}(x_2)$

$$\propto \mu_{\phi_B \to x_2}(x_2) \mu_{\phi_C \to x_2}(x_2)$$

We had

$$\mu_{\phi_C \to x_2}(x_2) = \sum_{x_1, x_3} \phi_c(x_1, x_2, x_3) \mu_{x_3 \to \phi_C}(x_3) \mu_{\phi_A \to x_1}(x_1)$$

Introducing variable to factor message $\mu_{x_1 \to \phi_c} = \mu_{\phi_A \to x_1} = \phi_A$

$$\mu_{\phi_C \to x_2}(x_2) = \sum_{x_1, x_3} \phi_c(x_1, x_2, x_3) \mu_{x_3 \to \phi_C}(x_3) \mu_{x_1 \to \phi_c}(x_1)$$

All (univariate) marginals from messages

- We can use the messages to compute the marginals of all variables in the graph.
- For the marginal of a variable x we need to know the incoming messages $\mu_{\phi_i \to x}$ from all factor nodes ϕ_i connected to x.
- ► This means that if each edge has a message in both directions, we can compute the marginals of all variables in the graph.

Joint distributions from messages

- ► The correspondence between messages and effective factors allows us to find the joint distribution for variables connected to the same factor node (neighbours).
- For example, we can compute $p(x_3, x_5)$ from messages
- The messages $\mu_{x_3 \to \phi_E}$ and $\mu_{x_5 \to \phi_E}$ correspond to effective factors attached to x_3 and x_5 , respectively.

Factor graph corresponds to

$$p(x_3, x_5) \propto \phi_E(x_3, x_5) \mu_{x_3 \rightarrow \phi_E}(x_3) \mu_{x_5 \rightarrow \phi_E}(x_5)$$

Rules of message passing: initialisation

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

- From a leaf variable node x to a factor node ϕ , the message $\mu_{x\to\phi}(x)=1$.
- From a leaf factor node ϕ to a variable node x, the message $\mu_{\phi \to x}(x) = \phi(x)$.

Rules of message passing: factor to variable messages

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

Let x_1, \ldots, x_j be the neighbours of factor node ϕ , without variable x.

$$\mu_{\phi \to x}(x) = \sum_{x_1, \dots, x_j} \phi(x_1, \dots, x_j, x) \prod_{i=1}^j \mu_{x_i \to \phi}(x_i)$$

Rule corresponds to eliminating variables x_1, \ldots, x_j

Rules of message passing: variable to factor messages

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

Let ϕ_1, \ldots, ϕ_i be the neighbours of variable node x, without factor ϕ .

Rule corresponds to simplifying the factorisation by multiplying effective factors defined on the same domain.

Rules of message passing: univariate marginals

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

Let ϕ_1, \ldots, ϕ_j be all neighbours of variable node x.

Note: The normalising constant Z can be computed for any of the marginals. Same as the normaliser for $p(x_1, \ldots, x_d) \propto \prod_i \phi_i(\mathcal{X}_i)$.

Rules of message passing: joint marginals

Note: The rules come from the fact that messages correspond to effective factors obtained after marginalisation.

Let x_1, \ldots, x_j be all neighbours of factor node ϕ .

$$p(x_1,\ldots,x_j)=\frac{1}{Z}\phi(x_1,\ldots,x_j)\prod_{i=1}^j\mu_{x_i\to\phi}(x_i)$$

Other names for the sum-product algorithm

- Other names for the sum-product algorithm include
 - sum-product message passing
 - message passing
 - belief propagation
- ► Whatever the name: it is variable elimination applied to factor trees
- For numerical stability, often implemented in the log-domain.

Key advantages of the sum-product algorithm

Assume $p(x_1, ..., x_d) \propto \prod_{i=1}^m \phi_i(\mathcal{X}_i)$, with $\mathcal{X}_i \subseteq \{x_1, ..., x_d\}$, can be represented as a factor tree.

- ► The sum-product algorithm allows us to compute
 - ightharpoonup all univariate marginals $p(x_i)$.
 - ▶ all joint distributions $p(X_i)$ for the variables X_i that are part of the same factor ϕ_i .
- Cost: If variables can take maximally K values and there are maximally M elements in the \mathcal{X}_i : $O(2dK^M) = O(dK^M)$
- \triangleright Note the linear increase in the number of variables d.

Applicability of the sum-product algorithm

- Factor graph must be a tree
- Can be used to compute conditionals (same argument as for variable elimination)
- ► May be used for continuous random variables (same caveats as for variable elimination)

If the factor graph is not a tree

- Use variable elimination
- ► Group variables together so that the factor graph becomes a tree (for details, see Chapter 6 in Barber, or Section V in Kschischang et al, Factor Graphs and the Sum-Product Algorithm, 2001; not examinable)
- Pretend the factor graph is a tree and use message passing (loopy belief propagation; not examinable)
- Can you condition on some variables so that the conditional is a tree? Message passing can then be used to solve part of the inference problem.

Example: $p(x_1, x_2, x_3, x_4)$ is not a tree but $p(x_1, x_2, x_3 | x_4)$ is. Use law of total probability

$$p(x_1) = \sum_{x_4} \sum_{x_2, x_3} p(x_1, x_2, x_3 | x_4) p(x_4)$$
by message passing

(see Barber Section 5.3.2, "Loop-cut conditioning"; not examinable)

Program

- 1. Factor graphs
- 2. Marginal inference by variable elimination
- 3. Marginal inference for factor trees (sum-product algorithm)
 - Factor trees
 - Sum-product algorithm = variable elimination for factor trees
 - Messages = effective factors
 - The rules for sum-product message passing
- 4. Inference of most probable states for factor trees

Program

- 1. Factor graphs
- 2. Marginal inference by variable elimination
- 3. Marginal inference for factor trees (sum-product algorithm)
- 4. Inference of most probable states for factor trees
 - Maximisers of the marginals \neq maximiser of joint
 - We can exploit the factorisation (in the log-domain) using the distributive law $\max(u+v,u+w)=u+\max(v,w)$
 - Max-sum message passing

Inference task

- So far: given a joint distribution p(x), find marginals or conditionals over variables
- Inference task of interest here:
 - Find a setting of the variables that maximises $p(\mathbf{x})$, i.e.

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{argmax}} p(\mathbf{x}) = \underset{\mathbf{x}}{\operatorname{argmax}} \log p(\mathbf{x})$$

Find the corresponding value maximal value of $p(\mathbf{x})$, i.e.

$$p_{\mathsf{max}} = p(\hat{\mathbf{x}}) = \max_{\mathbf{x}} p(\mathbf{x}) \quad \mathsf{or}$$
 $\log p_{\mathsf{max}} = \log p(\hat{\mathbf{x}}) \stackrel{(*)}{=} \max_{\mathbf{x}} \log p(\mathbf{x})$

- (*) holds since log is monotonically increasing
- Note: the task includes $\operatorname{argmax}_{\mathbf{x}} \tilde{p}(\mathbf{x}|\mathbf{y}_o)$, which is known as maximum a-posteriori (MAP) estimation or inference.

Maximisers of the marginals \neq maximiser of joint

- The sum-product algorithm gives us the univariate marginals $p(x_i)$ for all variables x_1, \ldots, x_d .
- ▶ But the vector with the $\operatorname{argmax}_{x_i} p(x_i)$, x_1, \ldots, x_d , is not the same as $\operatorname{argmax}_{\mathbf{x}} p(\mathbf{x})$
- Example (Bishop Table 8.1):

$\overline{x_1}$	<i>X</i> ₂	$p(x_1,x_2)$				
0	0	0.3	<i>X</i> ₁	$p(x_1)$	<i>X</i> ₂	$p(x_2)$
1	0	0.4	0	0.6	0	0.7
0	1	0.3	1	0.4	1	0.3
1	1	0.0				

Distributive law to exploit the factorisation

► We use that

$$\max_{\mathbf{x}} \log p(\mathbf{x}) = \max_{x_d} \max_{x_1, \dots, x_{d-1}} \log p(\mathbf{x})$$
 (16)

where x_d is an arbitrarily chosen variable that serves as "sink" (conceptually easiest: choose a leaf variable).

- ▶ Denote $\max_{x_1,...,x_{d-1}} \log p(\mathbf{x})$ by $\gamma^*(x_d)$
- Inserting the assumed factorisation gives

$$\gamma^*(x_d) = \max_{x_1, \dots, x_{d-1}} \log \frac{1}{Z} \prod_{i=1}^m \phi_i(\mathcal{X}_i)$$
 (17)

$$= -\log Z + \max_{x_1, ..., x_{d-1}} \sum_{i=1}^{m} \log \phi_i(\mathcal{X}_i)$$
 (18)

ightharpoonup Compare to formula for marginal $p(x_d)$

$$p(x_d) = \sum_{x_1, \dots, x_{d-1}} p(\mathbf{x}) \propto \sum_{x_1, \dots, x_{d-1}} \prod_{i=1}^m \phi_i(\mathcal{X}_i)$$
 (19)

Distributive law to exploit the factorisation

Correspondences

$$\sum_{x_1,\dots,x_{d-1}} \longleftrightarrow \max_{x_1,\dots,x_{d-1}}, \quad \prod_{i=1}^m \longleftrightarrow \sum_{i=1}^m, \quad \phi_i(\mathcal{X}_i) \longleftrightarrow \log \phi_i(\mathcal{X}_i)$$

▶ To compute $p(x_d)$, we relied on the distributive law

$$sum(ab, ac) = a sum(b, c)$$

- To compute $\gamma^*(x_d)$, we can use the distributive law $\max(\log a + \log b, \log a + \log c) = \log a + \max(\log b, \log c)$
- Message passing algorithm by replacing sum with max, products with sums, and factors with log-factors.

Use correspondence to derive the algorithm

In the sum-product algorithm to compute the marginal, consider the computation of the message $\mu_{\phi \to x}(x)$

$$\mu_{\phi \to x}(x) = \sum_{x_1, \dots, x_j} \phi(x_1, \dots, x_j, x) \cdot \prod_{i=1}^j \mu_{x_i \to \phi}(x_i)$$
 (20)

► Replace sum with max, products with sums, and factors with log-factors to obtain the computation for the corresponding message $\gamma_{\phi \to x}(x)$

$$\gamma_{\phi \to x}(x) = \max_{x_1, \dots, x_j} \log \phi(x_1, \dots, x_j, x) + \sum_{i=1}^j \gamma_{x_i \to \phi}(x_i)$$
 (21)

 Resulting algorithm is called max-sum message passing (max-product if we do not work in the log-domain)

Sum-product algorithm with x_d as sink (recap)

Factor to variable

$$\mu_{\phi \to x}(x) = \sum_{x_1, ..., x_j} \phi(x_1, ..., x_j, x) \prod_{i=1}^{j} \mu_{x_i \to \phi}(x_i)$$

where $\{x_1, ..., x_j\} = \text{ne}(\phi) \setminus \{x\}$

$$\mu_{x \to \phi}(x) = \prod_{i=1}^{j} \mu_{\phi_i \to x}(x)$$

where $\{\phi_1, \dots, \phi_j\} = \operatorname{ne}(x) \setminus \{\phi\}$

Univariate marginal

$$p(x_d) = \frac{1}{Z} \prod_{i=1}^{j} \mu_{\phi_i \to x_d}(x_d)$$

$$Z = \sum_{x_d} \prod_{i=1}^{j} \mu_{\phi_i \to x_d}(x_d)$$
where $\{\phi_1, \dots, \phi_j\} = \operatorname{ne}(x_d)$

Initialisation

At leaf variable nodes: $\mu_{x\to\phi}(x)=1$ At leaf factor nodes: $\mu_{\phi\to x}(x)=\phi(x)$

Max-sum algorithm with x_d as sink

Factor to variable

$$\gamma_{\phi \to x}(x) = \max_{x_1, \dots, x_j} \log \phi(x_1, \dots, x_j, x) + \sum_{i=1}^j \gamma_{x_i \to \phi}(x_i)$$

where $\{x_1, \dots, x_j\} = \operatorname{ne}(\phi) \setminus \{x\}$

$$\gamma_{x \to \phi}(x) = \sum_{i=1}^{j} \gamma_{\phi_i \to x}(x)$$

where $\{\phi_1, \dots, \phi_j\} = \operatorname{ne}(x) \setminus \{\phi\}$

Maximum probability

$$\gamma^*(x_d) = -\log Z + \sum_{i=1}^{j} \gamma_{\phi_i \to x_d}(x_d)$$
 $\log p_{\max} = \max_{x_d} \gamma^*(x_d)$
where $\{\phi_1, \dots, \phi_i\} = \operatorname{ne}(x_d)$

Initialisation

At leaf variable nodes: $\gamma_{x \to \phi}(x) = 0$

At leaf factor nodes: $\gamma_{\phi \to x}(x) = \log \phi(x)$

Backward pass to compute $\operatorname{argmax}_{\mathbf{x}} p(\mathbf{x})$

- The max-sum algorithm computes $\gamma^*(x_d)$ and $\log p_{\max} = \max_{x_d} \gamma^*(x_d)$ in a forward pass through the graph.
- We can compute $\hat{\mathbf{x}} = \operatorname{argmax}_{\mathbf{x}} p(\mathbf{x})$ in a backward pass.
- When solving the optimisation problem in the forward pass

$$\gamma_{\phi \to x}(x) = \max_{x_1, \dots, x_j} \log \phi(x_1, \dots, x_j, x) + \sum_{i=1}^j \gamma_{x_i \to \phi}(x_i)$$

we also build the function (look-up table)

$$\gamma_{\phi \to x}^*(x) = \operatorname*{argmax}_{x_1, \dots, x_j} \log \phi(x_1, \dots, x_j, x) + \sum_{i=1}^j \gamma_{x_i \to \phi}(x_i)$$

which returns the maximiser $(\hat{x_1}, \dots, \hat{x_i})$ for each value of x.

We then compute $\hat{\mathbf{x}}$ recursively, starting with $\hat{x}_d = \operatorname{argmax}_{x_d} \gamma^*(x_d)$ and backtrack to the earlier variables, obtaining further dimensions of $\hat{\mathbf{x}}$ with the look-up tables.

Example

Model (pmf):

$$p(x_1, x_2, x_3, x_4) \propto \phi_A(x_1)\phi_B(x_2)\phi_C(x_1, x_2, x_3)\phi_D(x_3, x_4)$$

Factor graph (tree):

Goal:

$$(\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{x}_4) = \underset{x_1, \dots, x_4}{\operatorname{argmax}} p(x_1, x_2, x_3, x_4)$$

= $\underset{x_1, \dots, x_4}{\operatorname{argmax}} \log p(x_1, x_2, x_3, x_4)$

- Select sink towards which we send messages. Here: x_4 (arbitary choice).
- Messages that we need to send:

Initialise:

$$\gamma_{\phi_A \to x_1}(x_1) = \log \phi_A(x_1)$$

$$\gamma_{\phi_B \to x_2}(x_2) = \log \phi_B(x_2)$$

 \triangleright x_1 and x_2 copy the messages:

$$\gamma_{x_1 \to \phi_C}(x_1) = \gamma_{\phi_A \to x_1}(x_1)$$
$$\gamma_{x_2 \to \phi_C}(x_2) = \gamma_{\phi_B \to x_2}(x_2)$$

► For $\gamma_{\phi_C \to x_3}(x_3)$ solve optimisation problem

$$\gamma_{\phi_C \to x_3}(x_3) = \max_{x_1, x_2} \left[\log \phi_C(x_1, x_2, x_3) + \gamma_{x_1 \to \phi_C}(x_1) + \gamma_{x_2 \to \phi_C}(x_2) \right]$$

$$\gamma_{\phi_C \to x_3}^*(x_3) = \operatorname*{argmax}_{x_1, x_2} \left[\log \phi_C(x_1, x_2, x_3) + \gamma_{x_1 \to \phi_C}(x_1) + \gamma_{x_2 \to \phi_C}(x_2) \right]$$

for all values of x_3 .

- \blacktriangleright x_3 copies the message: $\gamma_{x_3 \to \phi_D}(x_3) = \gamma_{\phi_C \to x_3}(x_3)$
- For $\gamma_{\phi_D \to x_4}(x_4)$ solve optimisation problem

$$\gamma_{\phi_D \to x_4}(x_4) = \max_{x_3} \left[\log \phi_D(x_3, x_4) + \gamma_{x_3 \to \phi_D}(x_3) \right]$$
$$\gamma_{\phi_D \to x_4}^*(x_4) = \underset{x_3}{\operatorname{argmax}} \left[\log \phi_D(x_3, x_4) + \gamma_{x_3 \to \phi_D}(x_3) \right]$$

for all values of x_4 .

▶ After computation of $\gamma_{\phi_D \to x_4}(x_4)$, we obtain $\log p_{\text{max}}$ as

$$\log p_{\text{max}} = \max_{x_d} \gamma^*(x_d)$$
$$\gamma^*(x_4) = -\log Z + \gamma_{\phi_D \to x_4}(x_4)$$

- ightharpoonup This requires knowledge of Z. We can compute Z via the sum-product algorithm.
- ightharpoonup Z not needed if we are only interested in $\operatorname{argmax} p(x_1,\ldots,x_4)$

Example: backward pass

Backtracking:

- ► Compute $\hat{x}_4 = \operatorname{argmax}_{x_4} \gamma^*(x_4) = \operatorname{argmax}_{x_4} \gamma_{\phi_D \to x_4}(x_4)$
- Plug \hat{x}_4 into look-up table $\gamma_{\phi_D \to x_4}^*(x_4)$ to look up best value of x_3 :

$$\hat{x}_3 = \gamma^*_{\phi_D \rightarrow x_4}(\hat{x}_4)$$

▶ Plug \hat{x}_3 into look-up table $\gamma_{\phi_C \to x_3}^*(x_3)$ to look up best values of (x_1, x_2) :

$$(\hat{x}_1, \hat{x}_2) = \gamma^*_{\phi_C \to x_3}(\hat{x}_3)$$

► This gives $(\hat{x}_1, \hat{x}_2, \hat{x}_3, \hat{x}_4) = \operatorname{argmax}_{x_1,...,x_4} p(x_1, x_2, x_3, x_4)$

Program recap

- 1. Factor graphs
 - Definition
 - Visualising Gibbs distributions as factor graphs
 - Factor graphs represent factorisations better than undirected graphs
- 2. Marginal inference by variable elimination
 - Exploiting the factorisation by using the distributive law ab + ac = a(b + c) and by caching computations
 - Variable elimination for general factor graphs
 - The principles of variable elimination also apply to continuous random variables
- 3. Marginal inference for factor trees (sum-product algorithm)
 - Factor trees
 - Sum-product algorithm = variable elimination for factor trees
 - Messages = effective factors
 - The rules for sum-product message passing
- 4. Inference of most probable states for factor trees
 - Maximisers of the marginals \neq maximiser of joint
 - We can exploit the factorisation (in the log-domain) using the distributive law max(u + v, u + w) = u + max(v, w)
 - Max-sum message passing